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Key steps in the life cycle of a virus, such as the fusion event as the virus infects a host
cell and its maturation process, relate to an intricate interplay between the structure and
the dynamics of its constituent proteins, especially those that define its capsid, much
akin to an envelope that protects its genomic material. We present a comprehensive,
comparative analysis of such interplay for the capsids of two viruses from the flaviviridae
family, Dengue (DENV) and Zika (ZIKV). We use for that purpose our own software
suite, DD-NMA, which is based on normal mode analysis. We describe the elements
of DD-NMA that are relevant to the analysis of large systems, such as virus capsids. In
particular, we introduce our implementation of simplified elastic networks and justify their
parametrization. Using DD-NMA, we illustrate the importance of packing interactions
within the virus capsids on the dynamics of the E proteins of DENV and ZIKV. We
identify differences between the computed atomic fluctuations of the E proteins in DENV
and ZIKV and relate those differences to changes observed in their high resolution
structures. We conclude with a discussion on additional analyses that are needed to
fully characterize the dynamics of the two viruses.

Keywords: proteins, normal modes, elastic network models, viruses, Dengue, Zika

1. INTRODUCTION

A major goal of molecular biology is to understand at the atomic level the functions of
macromolecules and/or biological nano-machines, which are believed to be intimately related to the
dynamics of their three-dimensional structures and especially their collective degrees of freedom
(Koehl, 2014; Bahar et al., 2015). Our current understanding of the dynamics of macromolecules
is, however, largely incomplete. This arises because only a few experimental techniques are capable
of collecting time-resolved structural data, and those that can collect those data are usually limited
to a narrow time window (Fromme, 2015). Similarly, state-of-the-art computational methods are
limited in scope (usually in themicrosecond time-scale), because of limitations in computing power
(Fengand et al., 2015).

An alternate and promising approach to molecular dynamics is to infer dynamics from static
structures corresponding to locally stable states (Mahajan and Sanejouand, 2015), together with
reliable coarse-graining approaches to bridge the time-scale gap (Saunders and Voth, 2013; López-
Blanco and Chacón, 2016). Cartesian Normal Modes, for example, represent a class of movements
around a local energy minimum that are both straightforward to calculate and biologically relevant
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(Noguti and Go, 1982; Brooks et al., 1983; Levitt et al., 1985).
The low-frequency part of the spectrum of normal modes is
often associated with functional transitions, for instance, between
two known states of the same macromolecule such as its apo
(ligand-free) or holo (bound) form. The Elastic Network Model
(ENM), introduced by Tirion in 1996, offers a particularly
simple and efficient way to calculate these modes, allowing fast
access to the collective dynamics of large complexes with no
minimization issues as it enforces that the crystal structure is
already at the energy minimum (Tirion, 1996). This model was
later expanded as the Gaussian Network Model (Bahar et al.,
1997) and the Anisotropic Network Model (Hinsen, 1998; Tama
et al., 2000; Atilgan et al., 2001), which were shown to describe
conformational changes remarkably well (Tama and Sanejouand,
2001; Delarue and Sanejouand, 2002; Zheng and Doniach, 2003;
Mahajan and Sanejouand, 2015).

During the past few years, several web-servers performing
on-line Normal Mode Analysis (NMA) have been set up and
described: ElNemo (Suhre and Sanejouand, 2004), ENCoM
(Frappier et al., 2015), Webnm@ (Tiwari et al., 2014), ANM 2.0
(Eyal et al., 2015), AD-ENM (Zheng and Doniach, 2003), NMSim
(Kruger et al., 2012). We have extended and updated our own
server, NOMAD-REF (Lindahl et al., 2006), with a new and user-
friendlier interface, including a better visual representation of
the results while at the same time enlarging the performances
of the core calculation of Normal Modes in the framework
of the ENM representation. New features include (i) a wider
array of coarse-graining levels prior to the actual building of the
ENM, and (ii) variants of the ENM that are based on a cutoff-
free Delaunay tessellation of the set of atoms of the molecule
of interest. With these features we depart from the original
Elastic Network Model (Tirion, 1996), but keep most of its
salient features, as the construction of the original Tirion Elastic
Model remains available. We found for example that the Elastic
Network coming from a Delaunay tessellation correctly handles
PDB models with isolated domains and/or dangling ends (Xia
et al., 2014). In addition, the performance of the calculation of
Normal Modes has been improved to a point where it can deal
with 100,000 atoms routinely, making it possible, for instance,
to deal with entire virus capsids without having to resort to
a symmetry-specific implementation (Simonson and Perahia,
1992; van Vlijmen and Karplus, 2005; Peeters and Taormina,
2009).

In the present paper, we show an application of some of
the tools implemented in DD-NMA, the updated version of
NOMAD-REF, to study the dynamics of viruses of the flaviviridae
family, namely of Dengue virus and Zika virus.

Dengue virus (DENV) is a positive-sense RNA virus
responsible for dengue fever, a tropical infectious disease whose
incidence has increased drastically over the last decades, for
which no prophylactic treatments are known (with the exception
of eliminating the vector, i.e., mosquitoes). Today, about 3.9
billion people, or 50% of the world’s population, live in areas
where there is a risk of dengue transmission (Brady et al., 2012).
Dengue is endemic in at least 128 countries in Asia, the Pacific,
the Americas, Africa, and the Caribbean (Brady et al., 2012).
The World Health Organization (WHO) estimates that close to

390 million infections occur yearly, of which 96 million manifest
clinically (Bhatt et al., 2013). DENV is recognized as a potential
threat to public health in the USA (Morens and Fauci, 2008). Of
similar concerns are the recent outbreaks of ZIKA virus (ZIKV),
another flaviviridae virus similar to DENV. The current ZIKV
epidemic in the Americas is linked to a sudden increase in the
reported cases of congenital microcephaly and Guillain Barré
syndrome. This led the World Health Organization (WHO)
in February 2016 to declare a “public health emergency of
international concern" (WHO, 2016). As no treatments currently
exist for the consequences of infections with those two viruses,
and as their incidence is only expected to increase, basic research
on their infection mechanisms becomes highly significant.

Flaviviridae genomes encode for ten different proteins, three
structural proteins that form the virus particle, and seven non-
structural (NS) proteins that are involved in its replication (for
recent review see Meng et al., 2015). Structures of all four
serotypes of DENV (Perera and Kuhn, 2008 and references
therein; Zhang et al., 2012; Kostyuchenko et al., 2013, 2014;
Fibriansah et al., 2015) and recently two structures of the same
ZIKV strain have been published (Kostyuchenko et al., 2016;
Sirohi et al., 2016). Those structures show the same global
architecture, with their capsids having icosahedral symmetry
consisting of 60 units, with each unit containing three copies
of the E protein and three copies of protein M. The E protein
is known to play a central role in many parts of the virus
life cycle (Perera and Kuhn, 2008). A perhaps surprising idea
that has emerged from years of studies of viruses is that their
biology is deeply encoded in the dynamics of these proteins.
Significant structural dynamics has been shown to occur during
infection cycles, both at the level of individual proteins and at the
quaternary structure level of the viral particle. These dynamics
can be blocked by antibody binding (Lok et al., 2008; Teoh
et al., 2012; Fibriansah et al., 2015). In addition, while the overall
geometry of the viral capsid is identical in all those viruses and
only small differences are observed at a finer structural scale,
significant differences in stability are observed between those
viruses. For example, while infection with DENV is significantly
affected by temperature, infection with ZIKV remains constant
at even relatively high temperatures (Kostyuchenko et al., 2016).
To better understand differences between those two viruses, we
investigate the dynamics of their capsid E proteins. We study
those proteins independently, as well as the impact of packing
imposed by the icosahedral arrangement of the virus capsid. We
explore whether the differences observed, if any, are consistent
with the differences observed between the structures of the
capsids of DENV and ZIKV and their biological activities.

The paper is organized as follows. In the next section, we
describe normal mode analysis (NMA) in the context of the
Elastic Network Model. We provide an overview of the theory
and discuss the different options for choosing its parameters,
namely the choice of coarse-graining level, the choice of the
elastic force constants, and the cutoff for selecting the pairs
of atoms that belong to the ENM. In the following section,
we provide a description of the algorithms used to implement
NMA within our new server DD-NMA, with a special focus on
scalability to large molecular systems. In the Results section, we
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discuss the applications of DD-NMA to study the dynamics of
DENV and ZIKV, focusing on the differences and similarities of
the dynamics of their capsid E protein. We conclude the paper
with a brief discussion on future developments of normal mode
analysis applied to viral structures.

2. NORMAL MODE ANALYSIS

2.1. Normal Mode Analysis Based on the
Tirion Elastic Network Model
The Elastic Network Model (ENM) was originally introduced by
Tirion (1996). It is a model that captures the geometry of the
molecule of interest in the form of a network of inter-atomic
connections, linked together with elastic springs. Two categories
of normal mode analyses based on ENMs are widely used today,
namely, the Gaussian Network Model (GNM) (Bahar et al.,
1997; Haliloglu et al., 1997) and the anisotropic network model
(ANM) (Tirion, 1996; Atilgan et al., 2001). Here we follow the
latter model, in which the energy of the molecule is equated to
the harmonic energy associated with these springs. This defines
a quadratic energy on the inter-atomic distances. Let M be a
biomolecule containing N atoms, with atom i characterized by
its position Xi = (xi, yi, zi). The whole molecule is then described
by a 3N position vector X. For two atoms i and j of M, we set
rij = |Xi−Xj| and r0ij = |X0

i −X0
j | to be their Euclidean distances

in any conformation X and in the ground-state conformation
X0 (usually the X-ray structure), respectively. The total potential
VENM of the biomolecule is then set to:

VENM(X) =
1

2

N
∑

i=1

∑

j>i

kij(rij − r0ij)
2
2(Rc − r0ij) (1)

where Rc is a cutoff distance, kij is the force constant of the
“spring" formed by the pair of atoms i and j, and 2(x) is the
Heaviside unit step function, i.e.,2(x) = 0 if x < 0 and2(x) = 1
otherwise. Both Rc and kij are discussed in detail below.

In the normal mode framework, the potential VENM is then
approximated with a second-order Taylor expansion in the
neighborhood of the ground state X0:

VENM(X) ≈ VENM(X0)+ ∇VENM(X0)T(X − X0)

+
1

2
(X − X0)TH(X − X0) (2)

where ∇VENM and H are the gradient and Hessian of VENM ,
respectively. Note that based on Equation 1, VENM(X0) = 0 and
∇VENM(X0) is the null vector (i.e., X0 is a global minimum of
VENM by definition). The ENM energy is then simply

VENM(X) ≈
1

2
(X − X0)TH(X − X0) (3)

The 3 × 3 submatrix Hij of the Hessian H corresponding to two
atoms i and j that are in contact is given by:

Hij = −
kij

(r0ij)
2
(Xi − Xj)(Xi − Xj)

T

= −
kij

(r0ij)
2





(xi − xj)2 (xi − xj)(yi − yj) (xi − xj)(zi − zj)
(yi − yj)(xi − xj) (yi − yj)2 (yi − yj)(zi − zj)
(zi − zj)(xi − xj) (zi − zj)(yi − yj) (zi − zj)2





(4)

and the 3×3 submatrixHii on the diagonal ofH is then given by:

Hii = −
∑

j=1,N

Hij (5)

In Cartesian coordinates, the equations of motion defined by the
potential VENM are derived from Newton’s equation:

d2X

dt2
= −H(X − X0) (6)

Writing the solution to this equation as a linear sum of intrinsic
motions (the “normal modes" of the system),

Xj =

3N
∑

k=k0

Ajkαkcos(ωkt + δk) (7)

we get a standard eigenvalue problem,

HA = MA� (8)

The eigenfrequencies ω are given by the elements of the
diagonal matrix �, namely ω

2
i = �(i, i). The eigenvectors

are the columns of the matrix A, and the amplitudes and
phases, αk and δk, are determined by initial conditions. The
matrix M is a diagonal matrix containing the masses of the
atoms. We note that the first six eigenvalues in � are equal
to 0, as they correspond to global translations and rotations
of the biomolecule. To characterize the internal motions of
the biomolecule, the sum in Equation 8 runs then from
k0 = 7 up to 3N, the number of degrees of freedom of the
system.

2.2. Parametrization: Choosing the
Representation of the Molecule
The first requirement when building an ENM is to define the set
of atoms on which it is based. Although all atoms could be used, it
appears natural to lower the dimensionality of the system, namely
“coarse-graining,” when large biomolecules are considered, or in
the context of a harmonic approximation to its energy as is the
case in ENM (Tozzini, 2005). Coarse-grained models have long
been used for studying protein folding and aggregation. They
enable the exploration of large length scales and time scales that
are usually inaccessible to all-atom models in explicit solvent
(Saunders and Voth, 2013; Kmiecik et al., 2016). Combined
with enhanced configuration search methods, these simplified
models with various levels of granularity offer the possibility
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to determine equilibrium structures and to compare folding
kinetics and thermodynamics quantities with the corresponding
values obtained by experimental techniques. In their pioneer
work from 1976, Levitt and Warshel (1976) developed the
foundation of coarse-graining for protein folding. They were
able to fold the 58-residue BPTI protein within 6.5 Å from its
experimental structure using a two-bead representation for each
residue in the protein. This representation included the Cα and
the centroid of the side chain to define a residue. They used
an effective implicit solvent force field such that the atoms of
the solvent need not be considered explicitly, and successive
minimizations and normal mode thermalization to fold BPTI.
Since then, various levels of granularity have been developed,
from lattice representations to multi-bead representations, and
from single atom to multiple-atom residue-level representations
(Kmiecik et al., 2016). The positions of those beads are either
defined by known atoms (usually the Cα), or by fitting to
capture the dynamics of the full molecular systems (Zhang
et al., 2008, 2011; Li et al., 2016). For all the analyses of
virus structures considered in this paper, we used the Cα-only
representation.

2.3. Parametrization: Choosing the Spring
Force Constants
In the original ENM introduced by Tirion, the elastic constants
kij are set to be the same for all pairs of atoms. In other models,
kij vary for different pairs of atoms. For example, Ming and Wall
(2005) employed an enhanced ENM in which the interactions
of neighboring Cα atoms on the backbone were strengthened
to reproduce the correct bimodal distribution of density-of-
states from an all-atom model. Kondrashov et al. (2006) used a
strategy in which they classified residue interactions into several
categories corresponding to different physical properties. The
elastic constants can also be adjusted to have the fluctuations
of the atoms of the molecule computed from the equations of
motions given by Equation (7) to match the atomic fluctuations
captured experimentally and usually reported as B-factors.
Many methods have been developed for that purpose (see for
example Xia et al., 2013, 2014 and references therein). Among
those methods, the one proposed by Erman (2006) is worth
discussing. Erman developed an iterative algorithm to update
the Kirchhoff matrix of a Gaussian Network Model, in which
the connections of neighboring Cα atoms on the backbone
of the protein of interest are fixed, and the strengths of the
interactions between pairs of residues are varied until a good
fit between experimental B-factors and computed fluctuations
is obtained. While this approach generates a really good fit
between those two representations of fluctuations, a significant
number of the optimized spring force constants are found to
be negative. While such negative values are not forbidden, they
do hint at the possibility of overfitting. This is in accordance
with (Fuglebakk et al., 2013), who recently suggested that such
a refinement procedure leads to overfitting, and not to a better
dynamic model for the molecule. As such, in this study we assign
the same value for all kij, following the initial ENM of Tirion
(1996).

2.4. Parametrization: The Cutoff Parameter
Rc
In standard implementations, the cutoff distance Rc and the
force constant k are set constant for all pairs of residues. Their
values, however, differ between the two models. For example,
the cutoff distance Rc for GNM is usually set in the range of
7 to 8 Å (Kundu et al., 2002) while in ANM larger values
are usually considered in the range from 13 to 15 Å (Eyal
et al., 2006). There are, however, no guidelines as to which
values are best and sometimes different implementations lead to
contradicting optimal values. To circumvent these discrepancies,
several authors have proposed to include all pairs of residues
in a protein and to assign different force constants to their
corresponding springs that relate to their lengths at rest (see for
example Hinsen, 1998; Kovacs et al., 2004; Yang et al., 2009).
In these methods, the use of a plain cutoff distance is avoided.
The number of pairs of atoms considered, however, is large and
scales as N2, where N is either the total number of atoms in
the biomolecule considered, or its number of residues. Such a
quadratic behavior makes these methods unfit for studying large
systems. To study the capsids of DENV and ZIKA, we have
considered a traditional cutoff ENM, with the cutoff set to 14 Å,
unless specifically noted.

3. MATERIALS AND METHODS

We have used our own software package, DD-NMA, to perform
all the analyses discussed in the Results section. In the following,
we highlight some of the elements of DD-NMA that are relevant
to the analysis of large systems. We note that DD-NMA is
available as a web-based service at http://lorentz.dynstr.pasteur.
fr/suny/index.php?id0=delaunaynma#welcome.

3.1. An Efficient Algorithm to Diagonalize
the Hessian of the Elastic Potential VENM
The Hessian matrix of VENM is a 3N × 3N symmetric, real-
valued matrix whose elements are described by Equation (4).
The theory described above calls for diagonalizing this matrix,
as its eigenvalues and eigenvectors provide the frequencies and
directions, respectively, of the normal modes of the molecular
systems under study. While many methods exist for solving such
an eigenvalue problem, see Golub and van der Vorst (2000),
many of those methods break down when N becomes large,
both in terms of computing time and memory requirements.
The Hessian matrix is highly sparse as only a subset of all
atom pairs are usually considered (see previous section for
a discussion of this point), but this is not enough to offset
the computing requirements as the matrix A of eigenvectors
is usually not sparse. However, in her original paper, Tirion
(1996) had recognized that the lowest frequency normal modes
can capture most of the dynamics of the protein of interest.
This observation has since been supported by further evidence
that the lowest-frequency normal modes generated from ENM
conform with conformational changes observed by X-ray and
NMR experiments (Kim et al., 2002; Maragakis and Karplus,
2005; Kurkcuoglu et al., 2009) as well as with the results of MD
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simulations (Rueda et al., 2007; Orellana et al., 2010; Leioatts
et al., 2012). While it is unclear as to how many of those
low frequency normal modes need to be considered (Petrone
and Pande, 2006), it remains that only a small fraction of the
eigenvalues and eigenvectors of the Hessian matrix need to
be computed, which leads to the opportunity to use powerful
iterative algorithms for computing those quantities. The most
successful family of such algorithms is based on the efficient
Krylov subspace method, as it allows for targeting only a subset
of the eigenvalue spectrum of a matrix. We provide below the
rationale behind this method to compute the eigenvalues with
lowest magnitude of the Hessian matrix.

An intuitive method for finding the largest eigenvalue of a
given N × N matrix A is the power iteration. Starting with an
initial random vector x, this method calculates Ax, A2x, A3x,. . .
iteratively, storing and normalizing the result into x at every
iteration. The corresponding sequence of Rayleigh quotient Ri

Ri =
xTAix

xTx
(9)

converges to the largest eigenvalue of A, while x itself converges
to the corresponding eigenvector. However, much potentially
useful computation is wasted by using only the final result. This
suggests that, instead, the so-called Krylov matrix is to be formed:

Kn =
[

x Ax A2x . . . An−1x
]

(10)

The columns of this matrix are not orthogonal, but an
orthogonal basis can be constructed via a stabilized Gram–
Schmidt orthogonalization. The resulting vectors are a basis of
the Krylov subspace, Kn. The vectors of this basis give good
approximations of the eigenvectors corresponding to the n largest
eigenvalues of A. In a similar manner, the smallest eigenvalues of
A can be computed by applying this strategy to either A−1, or by
applying a spectral shift, i.e., by computing the largest eigenvalues
of A− λmaxI, where λmax is the largest eigenvalue of A.

We use the ARPACK implementation of a variant of this
approach, the implicitly restarted Arnoldi iteration method
(Lehoucq et al., 1998).

3.2. Atomic Fluctuations Computed From
Normal Modes
From the normal modes of the ENM, it is possible to compute the
mean square fluctuations of the positions of the atoms according
to:

< 1X2
i >=

kBT

mi

m
∑

k=7

A2
ik

ω
2
k

(11)

where 1Xi and mi are the displacement vector and mass of
vertex i, respectively, kB is the Boltzmann’s constant, T is the
temperature considered, Aij is the i-th component of the j
eigenvector Aj of the Hessian, and ωi is its associated eigenvalue.
The summation should run over all the modes of the system
(excluding the six modes for rigid body transformations); it is
truncated here to the firstm = 100modes, as those low frequency
modes are usually responsible of most of the atomic fluctuations
(see above).

3.3. Correlated Motions Within a
Biomolecule
The Boltzmann distribution for the approximate potential of the
ENM (see Equation 3) is described by a multivariate Gaussian
distribution with a covariance matrix proportional to the inverse
of the Hessian H. Because of the six rigid motions captured by
the six normal modes with 0 frequencies, the inverse of H is in
fact not properly defined. We can, however, compute a pseudo-
inverse by ignoring those zero energy modes; this pseudo-inverse
can be regarded as a covariance matrix of internal deformation:

C =

M
∑

k=7

1

ω
2
k

AkA
T
k (12)

FIGURE 1 | The capsid of ZIKV. (A) Cartoon representation of the capsid of ZIKV (PDB file 5IZ7). The capsid includes 180 copies of protein E. The three E proteins
from each asymmetric unit are colored green, orange, and blue. (B) The elastic network of the capsid of ZIKV, constructed from the Cα only, with a cutoff Rc = 14 Å.
(C) Inside view of the elastic network, obtained by cutting the full elastic network along the plane shown as a line on (B). Note that it is possible to identify rafts, as
illustrated with one raft being contoured with a dashed rectangle (see text for details). All three panels were generated using Pymol (http://www.pymol.org).
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where ωk and Ak are the k − th eigenvalues and eigenvectors,
respectively. Note that C is a 3N × 3N matrix. The summation
extends from k = 7, the first non-zero mode, to M, the highest
mode considered (up to 3N). To obtain a scalar quantification of
the correlation of the motions of two atoms i and j, a correlation
matrix P is computed, following Ichiye and Karplus (1991):

Pij =
tr(Cij)

√

tr(Cii)tr(Cjj)
(13)

The values Pij range from −1 to +1, with a negative correlation
value indicating an anticorrelated motion, and a positive
correlation value identifying a correlated pattern of dynamics
between the two atoms considered. These values are stored
into a cross-correlation matrices CCM that is used to visualize
correlations of motion within the molecule under study.

4. RESULTS AND DISCUSSION

DENV and ZIKV are both members of the flaviviridae family.
DENV serotype 1 and ZIKV (which are the focus of this
study) share 53% sequence identity (Kostyuchenko et al.,
2016). Their particles share a common fold, with their capsids
having icosahedral symmetry. Those capsids are formed of 60
asymmetrical units, with each unit containing three copies of E
protein (495 and 504 residues in DENV and ZIKV, respectively)
and three copies of the membrane protein M (74 and 75 residues
in DENV and ZIKV, respectively). The high resolution cryo-EM
structures of all four serotypes of DENV, as well as the structure
of one strain of ZIKV, are available in the Protein Data Bank
(Zhang et al., 2012; Kostyuchenko et al., 2013, 2014; Fibriansah
et al., 2015; Kostyuchenko et al., 2016; Sirohi et al., 2016). Here we
focus on the structure of the mature form of serotype 1 of DENV,
with PDB code 4CCT (Kostyuchenko et al., 2013), and of the
equivalent mature form of ZIKV, as given by one of the recently
published structures, with PDB code 5IZ7 (Kostyuchenko et al.,
2016). Those two structures were shown to be very similar,

with only small differences that will be discussed in light of
their dynamics. A cartoon representation of ZIKV is given in
Figure 1A. The DENV capsid shows the same architecture.

The PDB file for 4CCT only contains Cα atoms. For
consistency, we used Cα only representations of 4CCT and 5IZ7.
We isolated from those two files all the Cα atoms of the viral
capsid. For both viruses, we considered E protein in four different
environments: isolated,MONO, (corresponding to chain A in the
asymmetric unit of 4CCT and chain B of the asymmetric unit of
5IZ7), within the asymmetric unit, UNIT, within a raft, RAFT,
and within the whole capsid structure, FULL. The corresponding
complexes MONO, UNIT, RAFT, and FULL contain 495, 1707,
3414, and 102420 residues for 4CCT, respectively, and 504, 1737,
3474, and 104220 residues for 5IZ7, respectively. We generated
elastic networks for all those eight complexes using a cutoff
procedure, with the cutoff set to 14 Å. Figures 1B,C illustrate the
elastic network for the FULL complex for ZIKV (5IZ7). We note
that this elastic network follows the surface of the capsid virus and
does not include any edges that cross the interior of the capsid;
this is a direct consequence of the cutoff that is used. The inside
of the geometric structure formed by the elastic network reveals
the presence of rafts (one such raft is shown inside a rectangle
in Figure 1C), namely three dimers of E protein lying parallel
to each other. Once the elastic networks were established, we
computed the hundred lowest normal modes for each of them,
using the procedure detailed in the Methods section.

We emphasize that the elastic networks for the full capsids
were computed using the empty protein shells, following
previous studies of viral particles using ENM and their normal
modes (Tama and Brooks III, 2002, 2005; Kim et al., 2003;
Chennubotla et al., 2005; Rader et al., 2005; Polles et al., 2013).
This setting is expected to be satisfactory as the stability of
the empty capsid is guaranteed by the geometric construction
of the ENM, which makes up for the missing stabilizing
interactions of the coat proteins and RNA. We note that
the latter were not resolved in the cryo-EM structures we
considered.

FIGURE 2 | Comparing the low frequencies of the normal modes of DENV and ZIKA. The frequencies of the first hundred normal modes of DENV (red circle,
o) and ZIKV (blue cross, x) are plotted against the normal mode index (#), for the E protein by itself (left), for a raft (middle), and for the full capsid (right). The
frequencies are in arbitrary units, as the force constants are also in arbitrary units. Note the decrease in the amplitude of those frequencies as the size of the complex
increases. The insert in the right panel shows an enlargement for the first 50 normal modes; it highlights the degeneracy of the normal modes for a full capsid.
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4.1. Characterizing the Low Frequency
Normal modes of DENV and ZIKV
In Figure 2 we compare the frequencies of the first hundred
normal modes of the MONO, RAFT, and FULL complexes of
DENV and ZIKV. As expected, the first six frequencies are found
equal to zero, for all complexes considered, as those frequencies
correspond to the rigid motions (three translations and three
rotations). The larger the protein complex, the more the spectra
of frequencies of the normal modes are shifted toward lower
frequencies, indicating the presence of more collective motions
in protein oligomers. The spectra of frequencies for the full
capsids reveal the presence of degeneracy, namely repeating
frequencies, that correspond to symmetries in the capsid. All
the differences observed in the three complexes are conserved
between DENV and ZIKV. We note also the nearly perfect
match between the normal mode frequency spectra of the two
viruses.

4.2. Correlated Dynamics of E Proteins in
the Capsids of DENV and ZIKV
In Figures 3, 4 we assess the extent to which packing influences
the dynamics of the E protein of DENV and ZIKV, respectively.
For both viruses, the cross correlation matrices (CCM) for E
protein vary significantly between the MONO, UNIT, and FULL
complexes. The CCM for the E protein alone reveals significant
positive correlations within each of the three domains I, II,
and III. Domains II and III exhibit both positive and negative
correlations in their atomic fluctuations, while the motions
of domain I are only weakly correlated to the motions of
domain II and III. When the dynamics of the E protein are
studied in the context of the asymmetric unit, the same positive
correlations are observed within each of the three domains. The
interactions between the domains change significantly, however.
In the UNIT complex, the dynamics of domain II are strongly
anticorrelated to the dynamics of domain III, while domain

FIGURE 3 | Correlated motions in the DENV E protein. Cross Correlation Matrices (CCM) obtained from the 94 first non-zero modes for the E protein alone
(MONO, A), the E protein in the asymmetric unit (UNIT, B), and the E protein in the whole capsid (FULL, C). Those plot show correlations between the motions of Cα

atoms in each complex considered. Both axes of a matrix are the amino acid residue index. Each cell in a matrix shows the correlation between the motions of two
residues (Cα atoms) in the protein on a range from −1 (anticorrelated, blue) to 1 (correlated, red), with 0 conferring no correlation. (D) The E protein is shown in
cartoon mode. The color code for the structure in (C) as well as for the X and Y axes of the CCM plots in (A) to follows the standard designation of the E protein
domains I (red), II (yellow), and III (blue). The transmembrane domain is shown in purple. Panel (D) was generated using Pymol.
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FIGURE 4 | Correlated motions in the ZIKV E protein. Cross Correlation Matrices (CCM) obtained from the 94 first non-zero modes for the E protein alone
(MONO, A), the E protein in the asymmetric unit (UNIT, B), and the E protein in the whole capsid (FULL, C). (D) The E protein is shown in cartoon mode. Colors and
layout follow the same schemes as in Figure 3.

I is correlated positively with domain III. In the full viral
capsid, the internal dynamics of the E protein remain mostly
as observed in the asymmetric unit. The only difference is the
addition of a global positive correlation over the full protein
that comes from concerted dynamics within the capsid. In all
three oligomeric states, the transmembrane domain shows weak
positive correlation with domain II.

All the differences in dynamics observed between isolated
E proteins and E proteins in the whole capsid are conserved
between DENV and ZIKV.

4.3. Correlated Dynamics of Rafts of E
Proteins in the Capsids of DENV and ZIKV
Figures 3, 4 reveal the effects of packing in the viral capsid
on the dynamics of one E protein. We performed a similar
analysis on a larger structure of the capsid, namely a raft. A
raft is formed from six E proteins forming 3 dimers arranged
in a parallel manner, resulting from the combination of two
asymmetrical units (see Figure 5E). The whole capsid contains
30 such rafts. In Figures 5A–C, we assess the extent to which

packing influences the dynamics of such rafts for both DENV and
ZIKV. In the CCM for the raft alone (Figures 5A,B for DENV
and ZIKV, respectively) we clearly identify the six E proteins
along the diagonal. Each of those E proteins exhibits dynamics
correlation patterns equivalent to those observed in the E protein
when it is in the asymmetrical unit. The interactions between
the E proteins are consistent with the structure of the raft. The
first E proteins of the two asymmetrical units, proteins E1A
and E1B, show strong positively correlated dynamics. Those two
proteins form a dimer in the raft. In contrast, proteins E2A and
E3A in Unit A, and proteins E2B and E3B in Unit B have a
pattern of interactions that include both positively correlated
and negatively correlated motions, depending on their domains:
for example, domains III have negative correlations between
the two proteins, while domains II are positively correlated
between the two proteins. The pair of proteins (E2A, E3A)
shows weak correlated dynamics with the pair of proteins
(E2B, E3B), with a chessboard pattern (i.e., positive correlations
between E2A and E2B, and negative correlations between E3A
and E3B).
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FIGURE 5 | Correlated motions in the a E protein raft. Cross Correlation Matrices (CCM) obtained from the 94 first non-zero modes for a E protein raft alone
(UNIT), and a raft in the whole capsid (FULL) for DENV (A,C), and for ZIKV (B,D). X axes and Y axes are residue indices. The positions of the six E proteins are
marked, with labels and color codes defined on the structure in (E). (E) Cartoon model for the raft. Note that a raft includes two asymmetric units, labeled Unit A and
Unit B. The first E protein of each unit, E1A and E1B form a dimer. Panel (E) was generated using Pymol.
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The CCMs for a raft included in the whole capsid
(Figures 5C,D for DENV and ZIKV, respectively) reveal different
patterns than those described for the raft alone, highlighting
again the impact of packing in the virus environment. There is
a high level of positive correlation of motions within each of the

units A and B. The proteins E1A and E1B that form a dimer at
the center of the raft are mostly interacting with themselves in the
raft alone, while they show strong levels of positive correlations
with all three E proteins of the opposing unit in the raft when
considered within the whole capsid. In contrast, the pairs of

FIGURE 6 | Atomic fluctuations in the DENV and ZIKV E proteins. The atomic displacement fluctuations obtained from the 94 first non-zero modes for the E
protein alone (MONO, A,B), the E protein in the asymmetric unit (UNIT, C,D), and the E protein in the whole capsid (FULL, E,F) are plotted as a function of the residue
number for both DENV (PDB file 4CCT) and ZIKV (PDB file 5IZ7). The Y axis represents normalized displacements (see text for details). The color code follows the
standard designation of the E protein domains for domains I (red) and III (blue), while domain II has been colored green to enhance visibility.
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proteins (E2A, E3A) and (E2B, E3B) present significantly lower
correlation when considered in the whole capsid compared to
the raft alone. Such a behavior would favor concentration of
concerted internal motions in a few E protein dimers at the center
of the rafts in the whole viral capsid instead of a more uniform
spread of concerted motions.

Similar to the findings for the dynamics of the E proteins, the
differences in dynamics observed between isolated rafts and rafts
in the whole capsid are conserved between DENV and ZIKV.

4.4. Atomic Fluctuations within the E
Proteins of the Capsids of DENV and ZIKV
The normalized squared atomic fluctuations for each Cα atom
in the E protein of DENV and ZIKV were calculated as the
sum of their displacements along the first 94 non-zero modes,
weighted by the reciprocal of the eigenvalues, as given by
Equation (11). For both viruses, the calculation was performed
in three states for the E protein, namely the MONO, UNIT,
and FULL complexes described above. The absolute values of
the amplitudes of the fluctuations computed using Equation (11)
are somewhat arbitrary, as they depend on the parametrization
of the elastic network, namely on the cutoff values Rc and the
strength of the force constants kij. While it is possible to select
those parameters such that a good fit is obtained between the
computed fluctuations and experimental B-factors, we prefer not
to, following the advice of Fuglebakk et al. (2013) that warned
on possible overfitting problems. Instead, we just normalize the
computed fluctuations for an atom i using:

< 1NX
2
i > =

< 1X2
i > −min(< 1X2

>)

max(< 1X2 >)−min(< 1X2 >)
(14)

where the min and max values are computed over all Cα atoms
of the molecule considered. To enable comparison, we computed

the min and max values from the fluctuations observed in the E
protein alone, and applied those to normalize the fluctuations of
all three states considered, i.e., MONO, UNIT, and FULL. Results
for DENV and ZIKV are shown in Figure 6.

Not unexpectedly, the amplitude of the atomic fluctuations
within the E protein decreases as the protein is more constrained,
from a (normalized) range between 0 and 1 in the E protein
alone (Figures 6A,B), to a range between 0 and 0.01 in the full
capsid (Figures 6E,F). Of significance is the change in dynamics
observed in the kl-loop between domains I and II (the DI-DII
hinge, residues 280–290) between the stand alone E protein and
the capsid. In the former, this loop region is predicted to be rigid,
while in the latter it is found to be significantly more dynamic.
This hinge is thought to be important to flip the domain DII to
expose the fusion loop during the fusion event (Modis et al., 2003;
Zhang et al., 2004; Kostyuchenko et al., 2016). In contrast, the
HI-loop in the putative receptor binding domain DIII (residues
230–240) is found to bemore dynamic in the E protein alone than
in the whole capsid. DENV and ZIKV show the same dynamical
behavior in both loops (the kl- and HI-loops).

The two plots showing the atomic fluctuations computed from
normal modes in the E proteins are globally similar between
DENV and ZIKV in all oligomeric states (Figure 6). There are,
however, some localized differences that are worth discussing.
There is a putative increase in dynamics in the region 150–160 in
ZIKV compared to DENV that is most marked in the E protein
monomer, but still present it its oligomeric states. This region
corresponds to the Glycan loop, which contains a glycosylation
site (Asn154 in ZIKV and Asn153 in DENV). It was found to
be the region with the biggest structural differences (up to 6 Å)
in the cryo-EM structures of ZIKV and DENV (Sirohi et al.,
2016). Our calculations were performed in the absence of the
sugar moities on the Asparagine. We believe however that our
results highlight an intrinsic difference in the dynamics of the

FIGURE 7 | Comparison of normalized experimental and computed atomic fluctuations in the DENV and ZIKV E proteins. The computed atomic
displacement fluctuations were obtained from the 94 first non-zero modes of the whole capsid shell. The experimental fluctuations are taken from the cryo-EM
structures of DENV (4CCT, Kostyuchenko et al., 2013) and ZIKV (5IZ7, Kostyuchenko et al., 2016) The color code for the computed atomic fluctuation is: E protein
domain I, red, II, green, III, blue, and transmembrane domain, purple.
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Glycan loops of DENV and ZIKV that is worth exploring further.
In contrast to the Glycan loop, the region 340–350 is found to
be less dynamic in ZIKV than in DENV in all oligomeric states
of their E proteins. This region corresponds to the C strand and
CD loop in domain III. Based on the differences in the structures
of the DENV and ZIKV capsids, Kostyuchenko et al. (2016)
hypothesized that the presence of an additional amino acid in
the C strand in ZIKV was responsible for a rearrangement of
the structure locally that is possibly responsible for the increased
thermal stability of ZIKV. Our results indeed suggest a more rigid
C strand in ZIKV compared to DENV. The exact relationship
between this decrease in atomic fluctuations and thermal stability
is unknown.

All results on dynamics presented above are based on atomic
fluctuations and dynamic correlations computed from normal
mode analyses. In Figure 7 we compare those normalized
computed atomic fluctuations for the Cα atoms of the E protein
in the full capsid structure with the corresponding normalized
experimental B-factors extracted from the PDB files 4CCT and

FIGURE 8 | Running time for DDNMA. The running time of the normal
mode computation is plotted against the initial number of atoms (A), and the
initial number of edges in the corresponding elastic network, EN (B). The
timings are computed on a single Intel Core I7 processor running at 4.0 GHz
with 8 GB of RAM.

5IZ7 for DENV and ZIKV, respectively. Overall, the profiles show
qualitative similarities over the full range of residues in E protein.
The correlation coefficients between the experimental B-factors
for DENV and ZIKV and the computed atomic fluctuations are
0.58 and 0.45, respectively. Those values aremodest.We note that
it would be possible to obtain significantly better correlations if
the elastic constants kij assigned to the links of the networks were
fitted to improve the match between B-factors and computed
fluctuations. We also notice differences in relative amplitudes
of the experimental and computed atomic fluctuations; these
differences exist, however, between the experimental B factors
for the two viruses and they could not be interpreted when
analyzing the differences between the corresponding structures
(Sirohi et al., 2016; Kostyuchenko et al., 2016).

4.5. Computing Time
The main task performed by DD-NMA when computing the
normal modes of an elastic network is the diagonalization of
the Hessian. For large systems, it is not feasible to perform
the full diagonalization, both because of its time and memory
complexities (both of order O(N3), where N is the number
of atoms). Instead, only partial diagonalization is performed,
with only the eigenvalues with the lowest amplitudes (usually
100) being computed. The method implemented is based on an
iterative procedure. As discussed in the Material and Methods
section, this procedure is efficient, of order O(Mk + Nk2 + k3),
where M is the number of non-zero elements in the sparse
representation of the Hessian matrix, and k the number of
eigenvalues that are computed. The first term corresponds to
the matrix vector multiplications needed at each iteration, the
second term relates to the Gram-Schmidt orthogonalization
required to build the Krylov basis, and the last term is the
cost of diagonalizing the matrix representing this basis. To test
if we observe this expected behavior on real systems, we have
experimented with systems of varying size. We have applied
DD-NMA on parts of the capsids of DENV, with increasing
number of asymmetrical units included, from one to sixty. For
all systems, we extracted the Cα atoms, computed an all-atom
elastic network with a cutoff of 14Å, and computed the 100 lowest
frequency normal modes with DD-NMA. All those experiments
were performed on a iMAC Apple computer with a 4.0 GHz Intel
Core I7 processor, with 8 GB of memory. The computing times
for DD-NMAare plotted against the initial numbers of atoms and
edges in the all-atom elastic networks in Figure 8.

The number of non-zero elements in the Hessian matrix
is directly proportional to the number of edges in the elastic
network and implicitly proportional to the number of atoms in
the protein, assuming constant density of atoms. Interestingly,
the curves cpu time vs. number of atoms and vs. number of
edges show three different regimes. For a relatively small number
of atoms (below 20,000), and for a medium number of atoms
(between 20,000 and 40,000), the cpu time is found to vary
linearly, as expected, but with different slopes. The different
slopes come from the relative weights of the two terms Mk and
Nk2 in the time complexity. For larger number of atoms, the
behavior of the cpu time is found to be more erratic, with a
slower rate of increase. We suspect that this behavior is due to

Frontiers in Molecular Biosciences | www.frontiersin.org 12 December 2016 | Volume 3 | Article 85

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Hsieh et al. Normal Modes of Viral Capsids

cache issue. The time complexity of computing the product of
the Hessian with a vector using the sparse representation of the
Hessian is more complex than just being proportional to M, the
number of non-zero elements of the Hessian H. Indeed, for very
large matrices, it depends on their storage patterns. We have not
tried to optimize this storage, which is most likely the reason
for the erratic behavior. It does hint to possible improvement in
the computation of the normal modes, by first re-ordering the
Hessian using for example METIS (Karypis and Kumar, 1999).

We note that it takes approximately 30 min to compute the
first hundred normal modes for amolecular systemwith hundred
thousand atoms, on a single core, on a desktop computer. While
this is not fast per se, it is still manageable. We do note that part
of the codes for computing the eigenvalues of the Hessian can be
parallelized; we are currently working on such an improvement.

5. SUMMARY AND CONCLUSIONS

Understanding the dynamics of viral capsids is of fundamental
interest for modeling the key steps of viral life cycles. In
this paper, we have described an implementation of normal
mode analysis based on elastic network models that enables
such analyses. This implementation is based on the known
foundations in the domain (Tirion, 1996) and does not deviate
significantly from other available implementations (Zheng and
Doniach, 2003; Suhre and Sanejouand, 2004; Kruger et al., 2012;
Tiwari et al., 2014; Eyal et al., 2015; Frappier et al., 2015). We
discuss in details its parametrization, namely the choice of the
coarse graining of the molecular system, the choice of the method
for computing the elastic network, and the assignment of force
constants to the resulting springs, and justify the choices we have
implemented. We emphasize the need for efficient and robust
algorithms for computing the normal modes of elastic networks,
in particular when those networks include a very large number of
nodes -in the hundred of thousands-, such as those derived for
virus capsids. We have illustrated the application of our method
to study the dynamics of the viral capsids of DENV serotype 1 and
ZIKV. We have characterized the impact of the packing imposed
by the capsids on their E proteins that play essential roles in
receptor binding and fusion to the membrane of the host cells.
We have identified differences in the atomic fluctuations of these
proteins between DENV serotype 1 and ZIKV that are consistent
with the structural differences observed using high resolution
cryo-EM experimental structures (Kostyuchenko et al., 2016;
Sirohi et al., 2016). In the future, we will consider two types of
extensions of this first study that relate to the method itself as
well as to its specific application to studying DENV and ZIKV.

First, we recognize that the need for a reasonable
computational cost, when applying a method such as normal
mode analysis to a large molecular system such as a virus capsid,
implies that some sort of coarse graining is applied to such a
system. Many options exist to reduce the dimensionality of the
problem by selecting subsets of atoms, “beads,” to represent the
system (Kmiecik et al., 2016). The positions of those beads are
either defined by known atoms (usually the Cα), or by fitting
to capture the dynamics of the full molecular system (Zhang

et al., 2008, 2011; Li et al., 2016). The main difficulty in coarse-
graining, however, is to design potential energy functions or
force fields that retain the physics of the all-atom explicit solvent
system in terms of structure, thermodynamics and dynamics
(Riniker et al., 2012). While significant efforts have been made to
guarantee that a coarse-grained model and its potential capture
the complexity of the all-atom molecular system (Riniker et al.,
2012; Saunders and Voth, 2013; Na et al., 2015; Zhang, 2015), we
note that much less has been done to generate a true multi-scale
representation of this system, i.e., to define a hierarchy of
coarse-grained models with a coupling between those models.
Our intention is to generate such a hierarchy; for this purpose,
we will rely on the concept of renormalization group (RG) that
is well known in physics (Wilson, 1975). We have implemented
in DD-NMA a beta-version of such a method that performs
iterative decimation of an elastic network. We will test this
method on viral capsids once we have adapted the code to deal
with hundreds of thousands of atoms.

Once the representation of themolecular system is chosen, the
elastic network is defined as a set of links, with a link between two
residues only if the distance between their Cα atoms is smaller
than a given cutoff. As an alternative to this cutoffmodel, Xia et al.
(2014) proposed to use all edges of the Delaunay triangulation
of the selected atoms as an alternate elastic network. We believe
that the use of Delaunay triangulation to define the ENM extends
the range of applicability of NMA to the realm of less globular
proteins. We will proceed in this direction and test this alternate
definition of ENM to study the dynamics of viruses.

Our analyses of the dynamics of DENV and ZIKV capsids
were based on naked, empty shells. There are many opportunities
to extend this work. We are interested in generating plausible
paths between different conformations of the virus capsids,
such as the “breathing" induced by increase of temperature
(Fibriansah et al., 2013), and the changes observed during the
maturation of the virus. We will develop new methods to find
such plausible paths in very large systems such as viral capsids,
where “plausible" refers to a path with minimal frustration, also
defined as the MinimumAction Path (MAP) (Olender and Elber,
1996; Eastman et al., 2001; Franklin et al., 2007; Vanden-Eijnden
and Heymann, 2008; Zhou et al., 2008; Chandrasekaran et al.,
2016). Finally, we plan to study the impact of glycolsylation of
the E protein and/or antibody binding on the virus capsids onto
their dynamical properties.
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