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ARTICLE

Hypervirulent Listeria monocytogenes clones’
adaption to mammalian gut accounts for their
association with dairy products
Mylène M. Maury1,2,3, Hélène Bracq-Dieye1,2, Lei Huang1,4, Guillaume Vales1,2, Morgane Lavina1,

Pierre Thouvenot1,2, Olivier Disson1, Alexandre Leclercq 1,2, Sylvain Brisse3,6 & Marc Lecuit 1,2,5

Listeria monocytogenes (Lm) is a major human and animal foodborne pathogen. Here we show

that hypervirulent Lm clones, particularly CC1, are strongly associated with dairy products,

whereas hypovirulent clones, CC9 and CC121, are associated with meat products. Clone

adaptation to distinct ecological niches and/or different food products contamination routes

may account for this uneven distribution. Indeed, hypervirulent clones colonize better the

intestinal lumen and invade more intestinal tissues than hypovirulent ones, reflecting their

adaption to host environment. Conversely, hypovirulent clones are adapted to food proces-

sing environments, with a higher prevalence of stress resistance and benzalkonium chloride

tolerance genes and a higher survival and biofilm formation capacity in presence of sub-lethal

benzalkonium chloride concentrations. Lm virulence heterogeneity therefore reflects the

diversity of the ecological niches in which it evolves. These results also have important public

health implications and may help in reducing food contamination and improving food con-

sumption recommendations to at-risk populations.
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L isteria monocytogenes (Lm) is a ubiquitous foodborne
pathogen that can cause a severe invasive infection in
human and animals called listeriosis. In humans, it occurs

mostly in immunocompromised individuals, the elderlies and
pregnant women, and has one of the highest case fatality rate
among foodborne pathogens (20–30%)1. Human listeriosis
manifests mostly as septicemia, central nervous system infections,
and maternal–neonatal infections leading to major fetal or neo-
natal complications in 80% of the cases1. In animals, especially in
ruminants, it induces rhombencephalitis and abortions, and less
frequently mastitis, which is often undiagnosed owing to the
frequent absence of associated symptoms2. Although very little is
known about Lm fecal carriage in human, it occurs in clinically
healthy ruminants, and correlates with Lm fecal shedding in the
environment3–5. Indeed, a high prevalence of Lm has been
observed in fecal samples of ruminant herds (e.g., 46.3% of dairy
cattle, 30.6% of beef cattle, and 14.2% of sheep herds were con-
taminated in a total of 343 studied herds5).

Lm is a genetically heterogeneous species in which isolates can
be grouped into lineages6,7, PCR serogroups8, multilocus
sequence typing (MLST) clonal complexes (CCs or clones)9 and
core genome MLST (cgMLST) sublineages and types (CTs)10. A
considerable heterogeneity in pathogenic potential among Lm
isolates has been observed11–15. In particular, hypervirulent
MLST clones with high clinical frequency have been identified,
such as CC1, CC2, CC4, and CC615. CC1 is also highly associated
with Lm-associated rhombencephalitis in ruminants16, and the
analysis of fecal samples of beef cattle and sheep herds has shown
that serotype 4b (which includes CC1) is the most prevalent5.
Together, these data highlight the high virulence of this clone for
cattle and its presence in farm environments. In contrast, CC9
and CC121 are associated to a food origin, are hypovirulent, and
infect mostly highly immunocompromised individuals15, in part
owing to truncations in InlA, a major Lm virulence factor17

involved in the crossing of host barriers18,19. In addition, CC121
has been shown to persist in food production environment20,21.

Because of the severity of human listeriosis, many countries
have established surveillance systems to rapidly identify and recall
contaminated food products22–24. Analysis of long-term surveil-
lance data has shown that both raw and processed food products
can be contaminated by Lm at different production stages25–27,
and that some food categories are more frequently con-
taminated28, including dairy products29, meat products30, sea-
food31 and mixed ready-to-eat products32.

The large panel of food products that can be contaminated by
Lm and its ubiquitous distribution in the environment reflect the
unique capacity of this bacterial species to survive, multiply, and/
or produce biofilm in a wide range of conditions, including low
temperatures33, acidic conditions34, high salinity35, or in presence
of commonly used surface disinfectants, such as benzalkonium
chloride (BC)20,21,36. In order to cope with these extreme con-
ditions, stress resistance determinants have been selected in Lm,
conferring resistance to environmental stresses, such as low pH,
high osmolarity, bile and nisin (SSI1)37,38, cadmium and arsenic
(LGI-2)39, and alkaline and oxidative stresses (SSI2)40. In addi-
tion, several BC tolerance determinants have been identified in
Lm, including BC efflux pumps qac (Tn6188)10,41,42, bcrABC43,
and emrE44, which are mostly present in lineage II isolates
and more specifically in CC121, CC9, CC31, CC13, and
CC1410,20,21,36. Additional BC tolerance genes have been identi-
fied, such as emrC, identified on a plasmid in some ST6 isolates45,
qacA46, and qacC47,48, which are both located on plasmids, and
mdrL (lmo1409), negatively regulated by ladR (lmo1408)49.

Given the striking differences of pathogenic potential among
Lm clones15, it is of major interest to investigate their distribution
in different types of food products, and in particular, test for

association of hypervirulent and hypovirulent clones with distinct
food categories. Indeed, this may help to better characterize the
ecological niches of this pathogenic bacterium and inform on the
external conditions in which Lm evolves both its virulence
potential and environmental survival capacities. These data may
also help understanding how Lm circulates between animals,
food/feed, humans, and the environment and eventually help
better identify food contamination routes, leading to a reduction
of food contaminations and to a better prevention of human
listeriosis. The objectives of this study are (i) to identify asso-
ciation of Lm CCs to particular food sources, and specifically
to test whether hypervirulent and hypovirulent clones are asso-
ciated to certain food types; and (ii) to identify bacterial factors
that may explain the contrasted distribution of clones in food
sources. Here, we show that hypervirulent clones are associated
with dairy products and colonize better the intestinal lumen
and invade more intestinal tissues than hypovirulent ones. In
contrast, hypovirulent clones are associated with meat products
and exhibit a higher prevalence of stress resistance and BC tol-
erance genes, and a higher survival and biofilm formation capa-
city in presence of sub-lethal BC concentrations.

Results
Uneven distribution of Lm clones in food products. We studied
the totality of the food (n= 3333) and clinical (n= 3308) non-
redundant isolates prospectively collected for 12 consecutive
years (from 2005 and 2016) in the context of the surveillance of
listeriosis in France. Clinical isolates were collected with a high
degree of exhaustiveness owing to mandatory declaration of
listeriosis in France, and are therefore highly representative of the
listeriosis cases that occurred in France during this time period50.
Food isolates were collected concomitantly in the context of food
alerts triggered when contaminated food products are on the
market, own-checks performed by food industries, or in case of
investigations following neurolisteriosis cases. Therefore, they
are genuinely representative of the Lm isolates to which the whole
population is exposed. As previously shown for a narrower time
window (2005–2013), important differences of clinical frequency
are observed among clones (Fig. 1a; Supplementary Data 1)15.
Indeed, as we have previously reported, CC1, CC6, CC2, and CC4
have the highest clinical frequencies among numerically major
clones, whereas CC9 and CC121 have the lowest clinical fre-
quencies (Fig. 1a, b; Supplementary Data 1)15. Note that the
colors for each CC in Fig. 1a are used throughout the manuscript
in all figures, where appropriate.

Most food isolates (n= 1408) were from meat products
(42.2%), 758 were from dairy products (22.7%), 406 from seafood
products (12.2%), 354 from mixed products (10.6%), 103 from
fruits and vegetables (3.1%), and 304 from unknown food sources
(9.1%) (Supplementary Data 1).

Stricking differences were observed among clones when
considering proportions of isolates from different food types
(Fig. 2a, b; Supplementary Data 1). Indeed, only 4.4% of the
CC121 food isolates were from dairy products (Fig. 2a, c;
Supplementary Data 1), whereas 53.2% were from meat products
and 21.2% from seafood products, with a strong association of
this clone with meat and seafood products (χ2 test, p < 1.10−5;
Fig. 2b, d; Supplementary Data 1). In addition, CC121 was the
most prevalent CC in meat products (36.9%), seafood (51%),
fruits and vegetables (36.9%), and mixed products (34.5%),
whereas it represented only 5.7% of isolates from dairy products
(Fig. 3; Supplementary Data 1). The other major hypovirulent
clone CC9 was also rarely isolated from dairy products (6.6%)
(Fig. 2a, c; Supplementary Data 1), but frequently isolated form
meat products (66.4%) (Fig. 2b, d; Supplementary Data 1), with a

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10380-0

2 NATURE COMMUNICATIONS |         (2019) 10:2488 | https://doi.org/10.1038/s41467-019-10380-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


strong association with this latter type of food (χ2 test, p < 1.10−5;
Fig. 2b; Supplementary Data 1). CC9 was the second most
represented clone in meat, seafood, and mixed products,
corresponding to 19.2%, 8.1%, and 12.4% of these food sources,
respectively, whereas it represented only 3.6% of isolates from
dairy products (Fig. 3; Supplementary Data 1). Altogether, CC121
and CC9 represented around half of all isolates from meat,
seafood and mixed products (Fig. 3). Of note, CC9 was rare
in fruits/vegetables in contrast to CC121, as they represented
2.9% and 36.9% of isolates from this food type, respectively
(Fig. 3; Supplementary Data 1). In sharp contrast, 48.3% of CC1
isolates were from dairy products, with a strong association of this
clone with this food type (χ2 test, p < 1.10−5; Fig. 2a, c;
Supplementary Data 1), whereas only 23.6% of CC1 isolates
were from meat products (Fig. 2b, d; Supplementary Data 1). CC1
was the most frequent clone isolated from dairy products,
representing 11.1% of all isolates, whereas it represented only
2.9% of isolates from meat products (Fig. 3; Supplementary
Data 1). CC37 and CC6 were the second and third most frequent
clones in dairy products, representing 6.7% and 6.6% of all
dairy isolates, respectively.

These results highlight key differences in Lm clonal distribu-
tion in dairy products as compared with meat and other products.
Altogether, these data show that the major hypervirulent clones
CC1, CC4, and CC6, which are highly associated to human and
animal clinical origins15,16, are associated with dairy products
(χ2 test, p < 1.10−5 for CC1 and CC4; p < 1.10−3 for CC6) (Fig. 2a;
Supplementary Data 1); whereas the major hypovirulent clones
CC9 and CC121 are associated with meat products (Fig. 2b;
Supplementary Data 1). In order to quantify the strength of the
association between clonal distribution in dairy products, meat
products and clinical origin, we performed weighted linear
regressions (Supplementary Fig. 1a, b). This analysis demon-
strates that the frequencies of clones in dairy products and clinical
samples are linearly and positively correlated (weighted linear
regression, p < 1.10−7). In contrast, clone prevalence in meat
products is negatively correlated with their frequency in clinical
samples (weighted linear regression, p < 1.10−7).

Overall, these differences suggest key differences of contam-
ination modalities of dairy versus meat products and all other
food categories, and/or differences in niche adaptation among
CCs. Meat products are initially physiologically sterile, and are
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Fig. 1 Distribution of Lm CCs in food and clinical sources. A total of 6641 non-redundant Lm isolates collected between January 2005 and May 2016 by the
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therefore most likely contaminated by Lm during processing and/
or storage. In contrast, dairy products, which physiologically
contain bacteria51, may be contaminated by Lm before and/or
during milking. This hypothesis is supported by the observation
that CC121 and CC9 rank among the least frequent clones in
dairy products made of raw milk (ranks 17 and 20, respectively;
Supplementary Fig. 2), whereas in dairy products made of
pasteurized/unknown type of milk, these two clones are the
second and the 7th most abundant clones, respectively (Supple-
mentary Fig. 2), with an association of these clones with dairy
products made of non-raw milk, as compared with the rest of
the species (χ2 test; p= 0.042 for CC9; p= 0.002 for CC121).
In addition, CC9 and CC121 are associated with products that
need to be processed before consumption (e.g., meat, seafood;
cf. above) and are known to often harbor BC tolerance genes that
could be involved in their survival/growth and persistence in food
production environments10,20,21,36.

Lm persistence in food production environment. We tested
whether CC9 and CC121 would exhibit characteristics associated

with a higher persistence in food processing environments as
compared with CC1, CC2, CC4, and CC6, using a set of 42 iso-
lates representative of each of these clones, based on their
cgMLST profiles (Supplementary Data 2). To this end, we ana-
lyzed the relative capacity of Lm clones to grow and form
biofilm52,53 at 37 °C in absence and presence of sub-lethal BC
concentrations54. In absence of BC, although CC9 seemed to
produce more biofilm than other clones, it was not statistically
significant (Fig. 4a). Yet, upon increasing BC concentrations
(1.5–7 mg/L), CC9 and CC121 produced significantly more bio-
film than CC1, CC2, CC4, and CC6 (Fig. 4b–d). Median OD595nm

values were close to zero for CC1, CC2, CC4, and CC6 with
4.5 mg/L BC and above, whereas for CC9 and CC121 this point
was reached at 7 and 10 mg/L BC, respectively (Supplementary
Fig. 3 and Fig. 4d, e), showing that biofilm formation by CC9 and
CC121 can occur in presence of higher BC concentrations
than for CC1, CC2, CC4, and CC6. Regarding bacterial growth,
an increased lag phase upon increasing BC concentrations
was observed for some of the isolates, mostly from hypervirulent
clones (Supplementary Fig. 4). Neither growth nor biofilm
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formation was observed for any analyzed isolate in presence of
200 mg/L of BC, which is lower than the concentrations com-
monly used in food production facilities55, suggesting that BC
tolerance in Lm has an impact on its persistence only at sub-lethal
BC concentrations, as already suggested56.

Because refrigeration conditions are used for food storage and
are known to allow Lm growth, we tested whether Lm clones have
distinct capacities to grow and form biofilm at 4 °C in presence
and absence of BC. Although low biofilm formation was observed
when bacteria were cultured at 4 °C for 20 days (median OD595nm

= 0.006), significantly more biofilm was formed by CC9, CC121,
and CC4 in presence of 10 mg/L BC as compared with similar
conditions without BC (Mann–Whitney U test, p < 0.05)
(Supplementary Fig. 5a–f), suggesting that BC may favor biofilm
formation by these isolates at 4 °C. In addition, CC9 and CC121
produced significantly more biofilm than CC1 and CC2 in
presence of 10 mg/L BC (Supplementary Fig. 5g, h).

Distribution of stress resistance genes in Lm clones. Among the
tested isolates, none of those with an increased lag phase and
reduced biofilm formation upon increasing BC concentrations
harbored qac (Tn6188)38,39, bcrABC42,57,58, emrE44, emrC45,
qacC47,48, or qacA46 (Supplementary Data 2). mdrL and ladR are
present in the genome of every tested isolate, as they belong to Lm
core genome10,15. None of the tested CC1 and CC4 isolates
harbored BC tolerance genes, whereas all CC121 tested harbored
qac (Tn6188) (Supplementary Data 2), which is consistent
with previous reports10,41,42. qac was also present in three CC2
and two CC9 isolates, whereas two other CC9 isolates harbored
bcrABC43 (Supplementary Data 2). Three CC6 isolates harbored
the emrC gene45. No isolate harbored emrE44, qacC47,48, or
qacA46. In order to assess the role of qac and bcrABC in the
BC tolerance phenotypes observed in CC9 and CC121, we

constructed a CLIP 2016/00360Δqac mutant (i.e., a CC121 strain
where qac has been removed) and a complemented strain CLIP
2009/00521+pPL2::bcrABC (i.e., CC9 strain where a pPL2 plas-
mid harboring the bcrABC gene cassette under its native pro-
moter has been inserted intra-chromosomally) and measured
their OD600nm after 2 h of growth in BHI with various BC con-
centrations. Both strains harboring no BC tolerance gene (CLIP
2009/00521WT and CLIP 2016/00360Δqac) exhibited a lower
growth than strains harboring qac or bcrABC (CLIP 2016/
00360WT and CLIP 2009/00521+pPL2::bcrABC, respectively) in
presence of 4 mg/L of BC (Supplementary Fig. 6), confirming the
role of qac and bcrABC in the observed BC tolerance42,57,58. BC
concentration higher than 6 mg/L induced no difference of
growth between isolates, showing that qac and bcrABC are only
advantageous in presence of sub-lethal BC concentrations.

In order to gain a global view on the distribution of these
genes among Lm clones, we analyzed all available genome
sequences (n= 2928) of non-redundant Lm isolates collected from
2015 to 2018 in the context of the French surveillance of listeriosis.
This revealed that 32.1% of all isolates harbor at least one of the
known and non-core BC tolerance genes, namely qac, bcrABC,
emrC, qacC, emrE, or qacA, which were present in 18.8%, 8.2%, 5%,
0.1%, 0.03%, and 0.03% of isolates, respectively (Supplementary
Fig. 7). Interestingly, only 45.1% of the clones analyzed contained
isolates harboring BC tolerance genes (32/71). Of the 98.1% of
CC121 isolates harboring a BC tolerance gene, all harbored qac,
and all other BC tolerance genes were absent from this clone. In
CC9, 58.2% of isolates harbored at least one BC tolerance gene,
which were more diverse than in CC121 (qac, 22.5%; bcrABC,
20.1%; emrC, 16.1%; both qac, and bcrABC, 0.4%). Only one CC9
isolate harbored both qac and bcrABC. Very few isolates of CC1 and
CC4 contained BC tolerance genes (3.6% and 2.1%, respectively),
whereas CC2 and CC6 showed a higher prevalence of these genes
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(43.6% and 14.1%, respectively). This is in line with our finding
that within CC2 and CC6, a higher proportion of isolates are
from meat products and a lower proportion from dairy products, as
compared with CC1 and CC4 (Fig. 2a, b).

Together, these results show that BC tolerance is higher in
hypovirulent CCs, owing to higher frequency of BC tolerance
genes in these clones, leading to better growth and biofilm
formation in presence of BC. This may confer a higher
persistence of these clones in food production environments
where BC is classically used and may remain at low concentra-
tions after sanitation56.

In order to investigate the extent of stress adaptation of clones
more globally, we analyzed all the non-core Lm genes known to be
involved in tolerance to a large variety of stresses21. Interestingly,
some genes involved in stress tolerance appear to be enriched in
clones having a low clinical frequency, whereas clones that are more
host associated show less stress resistance genes (Fig. 5). More
specifically, while the hypervirulent CC1, CC4, and CC6 clones only
harbor genes that are common to all clones; CC2 harboring also the
Listeria genomic island 2 containing genes involved in cadmium
and arsenic resistance; CC9 and CC121 harbor additional stress
resistance genes that may help them to adapt to highly diverse

stress conditions, including genes involved in biofilm formation
(bapL and inlL for CC9, and bapL for CC121), cadmium resistance
(cadA1 and cadC1), adaptation to low pH and high salt
concentration (SSI1 genes for CC9), adaptation to alkaline and
oxidative stress (SSI2 genes for CC121) and BC tolerance (as shown
above). In addition, clones having a lower clinical frequency seemed
to harbor more frequently plasmids (i.e., CC121, CC204, and
CC20), as assessed by the presence of a repA gene in these isolates.
As plasmids are known to frequently contain stress resistance
genes45,58,59, this may be advantageous for environmental adapta-
tion of these clones. These results suggest that CC9 and CC121
are better adapted to environmental stress conditions than host-
associated clones.

Growth in different environmental conditions. Both within
food products and after ingestion by a host, bacteria need to cope
with many different stresses, including low pH and high
osmolarity60,61. We therefore tested if clones differ in their
capacities to survive and grow in acidic (pH 5–7) and salty (NaCl
0.09 M, basal NaCl content in BHI; and NaCl 1.1 M) conditions in
BHI at 22 and 37 °C. At 37 °C and pH 6 and 7, adjunction of
NaCl to BHI (1.1 M of total NaCl) induced a better growth of
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CC1, CC2, CC4, and CC6 than CC9 and CC121, as indicated by
significantly higher areas under the growth curves (AUC) for the
former as compared with the latter clones; whereas no difference
was observed with NaCl 0.09 M (Supplementary Fig. 8 and 9).

At 22 °C, pH 6, and in presence of 1.1 M of NaCl, CC9 and
CC121 grew significantly better than CC1, CC2, CC4, and CC6,
as deduced from their AUC values (Supplementary Fig. 8 and 9).
These differences suggest that CC9 and CC121 have a growth
advantage in environments compatible with conditions used for
food preservation, cheese ripening or meat preparation in food
production plants.

Adaptation to host environment. In contrast to CC9 and
CC121, CC1 is hypervirulent in human15, and is also highly

associated with infection of ruminants16 in which subclinical
Lm infections and prolonged fecal carriage occur2,5. The over-
representation of CC1 in dairy products may therefore be
a consequence of a frequent undetected carriage of CC1 in
ruminants, leading to more frequent presence of this clone in
dairy cattle farms and dairy products as compared with the
other clones. To test this hypothesis, colonization experiments
were conducted in mice permissive to Lm oral infection62. mEcad
E16P KI female mice were inoculated orally with a mix
of seven genetically diverse isolates per clone (CC1, CC2, CC4,
CC6, CC9, or CC121; 2 × 107 bacteria/mouse in total, Supple-
mentary Data 2), and stools were collected daily and subjected
to bacterial enumeration. Fecal bacterial shedding (as assessed
by AUC) between days 2 and 6 was slightly higher for CC1,
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CC2, CC4, and CC6 than for CC9 and CC121 but not sig-
nificantly (Fig. 6a, b), whereas when considered together, fecal-
shedding of hypervirulent clones (CC1, CC2, CC4, and CC6)
was significantly higher than hypovirulent clones (CC9 and
CC121) (Mann–Whitney U test, p= 0.003; Fig. 6c). Overall,
these results indicate that hypervirulent CCs are better gut
colonizers than hypovirulent CCs. We showed in the previous
paragraph that hypervirulent CCs grow better than hypovirulent
ones in BHI at 37 °C, pH 7, in presence of NaCl 1.1 M. As
salt is known to be present in high concentrations in the
gut60, these results suggest that hypervirulent CCs may exhibit a
better fitness than hypovirulent CCs in this environment, which
may contribute to their greater capacity to colonize the gut
(Fig. 6a–c).

In order to assess the level of infection of deeper organs, we
infected mice orally with 2 × 108 bacteria/mouse, collected stools

daily and killed mice on day 4 after infection. Fecal shedding of
Lm was consistent with the results obtained with a lower
inoculum (Fig. 6d–f). Colony-forming units (CFU) counts of
Lm bacteria within the small intestine, cecum, and colon tissues
show that hypervirulent clones invade more efficiently the gut
tissues than hypovirulent clones (Fig. 6g). These data suggest that
hypervirulent clones CC1, CC2, CC4, and CC6 cross more
efficiently the intestinal barrier, and part of these bacteria could
be shed back in the gut lumen63, leading to a higher gut
colonization, fecal shedding, release of Lm in the environment
and ultimately favoring inter-host transmission of host-adapted
strains. Deeper organs (liver, spleen, and brain) were also more
infected by hypervirulent CCs than hypovirulent CCs, although
the difference was only significant in the liver under the
experimental conditions tested (4 days post infection, 2 × 108

bacteria/mouse) (Fig. 6h).
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Gene association with dairy and meat origins. We next per-
formed a genome-wide association study (GWAS) to identify
genes associated with dairy or meat origins, in order to identify
genes that may be involved in either host colonization or adap-
tation to food production environment, respectively. To this end,
we first built the pangenome of 1129 genomes from isolates of
dairy and meat origins (out of the 2928 total genomes analyzed
above), and obtained a total of 21,546 gene families. We then
looked for genes enriched in genomes from dairy or meat isolates
(see Methods section). We obtained 455 and 916 gene families
associated with a dairy and meat origin, respectively (Supple-
mentary Data 3 and 4). Classification of these genes into Clusters
of Orthologous Groups (COG) showed a distribution significantly
different between the dairy- and the meat-associated genes
(Fisher’s exact, p < 1.10−3) (Supplementary Fig. 10). Among the
dairy-associated genes, those involved in cell wall/membrane/
envelope biogenesis (M); carbohydrate transport and metabolism
(G) and transcription (K) predominated, whereas meat-associated
genes were mostly involved in transcription (K) and replication,
recombination and repair (L) (Supplementary Fig. 10).

These differences may indicate the need for Lm to acquire new
accessory genes to adapt to one or the other environment.

Discussion
Understanding the distribution of Lm CCs in different food types
has remained a key missing piece to fully unravel the biology of
Lm with regard to its ecological niches adaptation. We show here
that hypervirulent clones are strongly associated with dairy pro-
ducts and adapted to the mammalian gut environment, whereas,
in sharp contrast, hypovirulent clones are associated to processed
food products and persist in food-processing environment in a
saprophytic lifestyle. This argues for a strong relationship
between Lm pathogenic potential and ecological niche adaptation.

CC1 is hypervirulent in human15 and strongly associated with
ruminant rhombencephalitis16. Here, we show that CC1 is highly
over-represented in milk-derived products and that hypervirulent
CCs including CC1 are better colonizers of the gut lumen and
tissue than hypovirulent clones. This suggests that CC1 is more
adapted for within-host survival, persistence, fecal shedding, and
likely inter-host transmission, as compared with other clones.
This underlines a correlation between virulence and fecal shed-
ding, as previously proposed63, and may account for hyperviru-
lence emergence and maintenance. In the particular case of dairy
cattle, the higher gut colonization capacity of CC1 may lead to
prolonged fecal shedding, resulting in its high prevalence and
persistence in dairy cattle farm environments4,64. In healthy
animals, Lm fecal shedding has been shown to occur to a high
frequency5, and longitudinal studies have shown that a given Lm
isolate can be excreted for months from animals in the absence of
clinical symptoms2. Milk and milk-derived products may there-
fore be contaminated to high frequency owing to Lm carriage in
ruminants (10–16% of contaminated bulk tank milk samples in a
total of 186 tested samples65). Re-ingestion of feed contaminated
by fecal materials (fecal–oral cycle), more frequently by CC1, may
contribute to maintain and amplify milk-associated CCs in farm
environments. Furthermore, cow udders may be contaminated by
contact with their contaminated environment, and milk could get
contaminated during the milking process2,65. Lm biofilms have
even been detected in milking equipment in farms66, increasing
the risk of milk contamination. Moreover, the better growth of
hypervirulent clones at 37 °C in presence of salt, as compared
with hypovirulent CCs (in line with the work of Horlbog et al.67),
may account in part for the greater gut colonization capacity of
hypervirulent CCs, as the gut lumen is known to contain high salt
concentrations.

Many studies have shown that Lm may produce biofilm and/or
be tolerant to commonly used disinfectants such as BC, leading
to its persistence in food production environment during
long periods of time68. More specifically, CC121, CC9, CC31,
and CC13 have been shown to better tolerate BC20,21,36, whereas
CC14 has been shown to produce biofilm more efficiently than
CC12121. Whereas there are contradicting data in the literature
regarding differences of biofilm formation capacities in Lm sub-
populations69, our study shows that the hypovirulent clones CC9
and CC121 produce more biofilm and grow better than CC1,
CC2, CC4, and CC6 in presence of low BC concentrations. At 4 °
C, adjunction of BC stimulates biofilm production by CC4, CC9,
and CC121 as compared with growth conditions without BC.
These data strongly suggest that surface disinfection using BC
may provide hypovirulent CCs with a survival and/or growth
advantage, favoring their higher persistence on surfaces or
equipment treated with BC and to their frequent transfer to new
products in contact with contaminated surfaces. The high pre-
valence of CC9 and CC121 in products that need to be processed
before consumption may therefore be a consequence of the use of
BC for disinfection purposes on production facility surfaces. The
fact that no growth was observed with 200 mg/L BC for any tested
strain confirms that BC tolerance genes provide tolerance to low
BC concentration only, which has been shown to occur after
sanitation in meat-processing plants56.

The distribution of BC tolerance genes (qac, bcrABC, emrC,
emrE, qacC, and qacA) in the isolates analyzed in this study fully
correlates with their BC tolerance phenotype and their capacity to
form biofilm in presence of BC. We confirmed the role of qac and
bcrABC on BC tolerance in CC9 and CC121 isolates based on
mutagenesis, complementation, and BC sensitivity assays42,57,58.
By analyzing 2928 Lm genomes representative of the Lm isolates
circulating in France, we could show that 32.1% of isolates may
be able to persist in presence of low BC concentrations, and
that BC tolerance genes are enriched in hypovirulent clones.
The uneven proportion of isolates harboring BC tolerance genes
and more generally stress resistance genes among CCs suggests
that these have variable levels of adaptation to the food-
processing environment, and that more-sensitive isolates could
become tolerant/resistant through the acquisition of BC tolerance
and stress resistance genes, as these are often present on mobile
genetic elements42,45,57–59. In order to limit the spread of
disinfectant-tolerant bacteria and their persistence in food pro-
duction environments, the use of combined antimicrobials
approaches has been proposed, as well as the use of non-chemical
approaches70–72.

As compared with CC1 and CC4, CC2, and CC6 have lower
proportions of clinical isolates and of isolates from dairy products
(Fig. 1a and Fig. 2a), as well as higher proportions of isolates from
meat products (Fig. 2b). In addition, higher proportions of CC2
and CC6 isolates harbor BC tolerance genes than CC1 and
CC4 isolates (Supplementary Fig. 7). These observations suggest
that CC2 and CC6 may have more diversified phenotypes,
combining vertically transmitted features of host-adapted clones
(i.e., CC1 and CC4) and horizontally transferred resistance to BC
typical of clones highly adapted to the food production envir-
onment (i.e., CC9 and CC121).

In summary, our study shows three distinct patterns among
major Lm clones: (i) clones that are host-associated, highly pre-
valent in dairy products, exhibiting a low adaptation to food
production environments and rarely harboring BC tolerance
genes (i.e., CC1 and CC4); (ii) clones with low adaptation to the
host but persisting efficiently in food-production environment
owing to efficient biofilm formation and tolerance to disinfectants
due to high prevalence of BC tolerance genes (i.e., CC9 and
CC121); and (iii) intermediary clones that may be in the process

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10380-0 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2488 | https://doi.org/10.1038/s41467-019-10380-0 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


of transitioning from host-associated to saprophytic lifestyles
through the loss of virulence73 and/or the acquisition of genes
involved in tolerance to disinfectants (i.e., CC2 and
CC6)45. Genes potentially involved in adaptation to the host or to
a saprophytic lifestyle were identified in our study using a GWAS
approach and it will be interesting to test their contribution to
these lifestyles experimentally. The over-representation of genes
involved in replication, recombination, and repair in hypovirulent
CCs may indicate a higher exposure to genotoxic conditions,
whereas the over-representation of genes involved in cell wall and
membrane biogenesis in hypervirulent CCs may reflect the
selection of genes involved in interactions with the host (see
Supplementary Fig. 10).

The unveiling of the relative distribution of Lm lineages and
CCs in different food categories also has strong implications for
risk assessment in food processing plants and should be con-
sidered to identify and control food contamination routes and
sources, as well as to guide public health authorities to better
control the health hazards associated with Lm.

Methods
Strain collection used in this study. A total of 6641 isolates collected between
January 2005 and May 2016 at the National Reference Center for Listeria (NRCL)
in the context of the French surveillance of listeriosis were used for investigation of
CC distribution in food sources (food isolates, n= 3333; clinical isolates, n= 3308).
Similar to Maury, Tsai et al.15, clinical isolates were collected with a high level of
exhaustiveness owing to mandatory declaration of listeriosis in France and are
therefore highly representative of the listeriosis cases that occurred in France
during the study period. Regarding the food isolates, 2623 (78.7%) were collected in
the context of food alerts, which are triggered when contaminated food products
are on the market. The remaining 710 isolates (21.3%) were collected in the context
of own-checks performed by food industries or in case of investigations following
neurolisteriosis cases. Therefore, they largely represent the Lm isolates circulating
in France, to which the population is exposed.

All isolates received at the NRCL before 2015 were routinely typed by Pulse-
Field Gel Electrophoresis (PFGE) according to the PulseNet standardized
procedures with AscI and ApaI enzymes74, from which the MLST clonal complexes
can be deduced15, and all isolates received after 2015 were genotyped by core
genome MLST (cgMLST)10,22 (cf. methods below).

This collection of isolates was deduplicated in order to avoid any bias in the
analyses. More specifically, only one isolate was considered in case of MN listeriosis
(mother’s isolates were kept). Regarding the food isolates, only one was considered
when several had identical cgMLST type or CC (cf. methods below) and identical
food alert number or precise food product.

Genome sequencing, typing, and genome analyzes. DNA extraction, whole-
genome sequencing and cgMLST were routinely performed in the context of the
French surveillance of listeriosis with the same procedures than in Moura et al.22.
In brief, Genomic DNA was extracted using a DNeasy Blood and Tissue Extraction
kit (Qiagen, Denmark) and used for whole-genome sequencing on an Illumina
NextSeq 500 (2 × 150 bp) platform (Illumina, CA, USA). Reads were trimmed to
eliminate adapter sequences and discard reads with Phred scores ≤ 20. De novo
assembly of Illumina reads was performed using CLC Assembly Cell version 4.3.0
(QIAGEN, Venlo, Netherlands) or SPADES version 3.11.075. MLST CCs9 were
deduced from genome sequences, when available, using the BIGSdb platform
(http://bigsdb.pasteur.fr/listeria). In case, only PFGE profiles were available, CCs
were deduced using the PFGE/MLST library described in Maury, Tsai et al.15. Only
CCs identified with high confidence were considered (SST ≥ 97.5% and DST ≥ 1%)
15.

A total of 2928 genomes of non-redundant Lm isolates collected from 2015
to 2018 in the context of the French surveillance was analyzed for the presence/
absence of BC tolerance genes (qac (Tn6188)38,39, bcrABC42,57,58, emrE44, emrC45,
qacC47,48, and qacA46) as well as stress resistance genes21, which are not part of the
Lm core genome10,15 using BLASTN (BLAST+ v. 2.6.0; min identity: 80%; min
alignment: 80%; Blastn word size: 11).

Gene association with dairy or meat origins. Genomes were annotated using
Prokka version 1.1276 with the default parameters for Gram-positive bacteria. Pan-
genome of the 1129 genomes from isolates collected from dairy and meat samples was
performed using Roary version 3.677 with a minimum identity of 90%. Identification
of dairy- and meat-associated genes was performed using Scoary version 1.6.1078

using default parameters. Only genes showing a Bonferroni corrected p value higher
than 0.05 were considered, among which those with odd ratio higher than 1 were
considered as associated to a dairy or meat origin, depending on the origin tested.

Genes associated with dairy or meat origins were classified into COG using the online
eggNOG-mapper tool version 4.5.179 (http://eggnogdb.embl.de).

Isolates and culture conditions. Among the NRCL collection of isolates, 42
isolates were selected to represent the Lm phylogenetic diversity of each clone
of interest (CC1, CC2, CC4, CC6, CC9, and CC121; seven isolates per CC), based
on their cgMLST profiles (Supplementary Data 2). In brief, we performed a single
linkage cluster analysis of all sequenced isolates based on their cgMLST profiles
using Bionumerics version 7.6.2 (bioMérieux, Marcy l’Etoile, France), and we
selected one isolate per major clade of each CC. Strains were stored at − 80 °C
in Cryobank (Mast Group Ltd, Bootle, UK) and revived by plating onto Columbia
agar (bioMérieux, Marcy l’Etoile, France) and grown overnight at 37 °C. Then,
single colonies were grown in BHI broth (growth and colonization experiments) or
MCDB 202 broth (MyBioSource, San Diego, CA, USA) supplemented with 1%
yeast extract (Becton Dickinson, USA) and glucose 3.6 g/L (Sigma-Aldrich, USA),
adjusted to pH 7.3 and filtered (for assessment of biofilm production efficiency).

Effect of pH, temperature, NaCl, and BC on growth. Microbial growth efficiency
was assessed as described previously in Maury et al.73. In brief, bacteria were first
cultured overnight on BHI agar at 22 °C or 37 °C, and one colony was used to
inoculate 5 mL of BHI broth. For growth in varying pH, temperatures and NaCl
concentrations, stationary-phase cultures were diluted in BHI supplemented or not
with NaCl (0.09 or 1.1 M, final concentrations) and adjusted to pH 5, 6 or 7, and
grown at 22 °C or 37 °C until OD600nm 0.1. For growth in presence of BC,
stationary-phase cultures were diluted in modified MCDB 202 supplemented or
not with varying BC concentrations (1.5, 4.5, 7, 10, or 200 mg/L) (Sigma-Aldrich;
Saint. Louis, MO, USA). Two hundred µl of the diluted cultures were then
transferred into Bioscreen C 100-well plates (Oy Growth Curves Ab Ltd., Helsinki,
Finland) for microbial growth monitoring at 22 °C or 37 °C by measuring the
OD600nm every 15 min with shaking until stationary phase (during at least 15 h).
Growth at 4 °C was also tested in BHI by adding 200 µl of culture to wells of 96
tissue culture test well plates TPP (Dutsher, Brumath, France). Plates were incu-
bated at 4 °C in a refrigerated room with shaking and the OD600nm was recorded
every day during 9 days. For all conditions, OD600nm values of non-inoculated wells
(blanks) were subtracted from those of inoculated ones to compensate for the
background noise. Each strain was tested in triplicate for each condition. Mean
OD600nm values per strain were used to calculate areas under the curves over time
using the auc function of the AUC R package.

Effect of temperature and BC on biofilm. Methods for assessing biofilm for-
mation efficiency were adapted from Chavant et al.80, Pan et al.81. Combrouse
et al.82. Overnight cultures were grown at 37 °C in modified MCDB 202 (cf.
methods above) and centrifuged at 7000 rpm during 5 min. Bacteria were re-
suspended in modified MCDB 202 (see above) without or with varying BC con-
centrations (1.5, 4.5, 7, or 10 mg/L) to reach OD600nm 0.1, and 300 µl of this
suspension was transferred in wells of 96-well polystyrene microplates (Nunclon
Delta 96-well MicroWell Plates, Thermo Fischer Scientific, Waltham, MA, USA),
in triplicate. Microplates were incubated at 37 °C during 48h or at 4 °C during
20 days. Wells were washed gently twice with 200 µl of sterile distilled water, 200 µl
of a violet crystal solution 1% (Química Clínica Aplicada S.A, Tarragona, Spain)
was added and plates were incubated 45 min in the dark at room temperature.
Violet crystal was removed, wells were washed twice with 200 µl of sterile distilled
water and 200 µl of ethanol 95% was added to detach the colored biofilm. The
resulting colored suspension was transferred in 96-well microplates (Tissue Culture
Test Plate, TPP) and quantified by measuring the OD595nm using a Multiskan plus
plate reader (Thermo Fisher Scientific, Waltham, MA, USA). Average OD595nm

from un-inoculated wells containing modified MCDB 202 was subtracted from the
OD595nm of test wells, and mean OD600nm values per strain were determined.

Mutagenesis of qac (Tn6188) and bcrABC. The qac gene and its flanking regions
were PCR amplified using oligonucleotide primers BamHI-qacfwd (5′-
GGGGATCCTGCAACAATCGCTCCCGTTA-3′) and SalI-qacrev (5′-
GGGTCGACAGTAATTGCTGGACCCTGCC-3′). The fragment was then pur-
ified and digested with BamHI and SalI and cloned into the pLR16-PheS shuttle
vector (kind gift from professor Anat Herskovits, Tel Aviv University), resulting
in the recombinant plasmid pLR16-qac. An in-frame deletion was introduced
in the qac gene by PCR using oligonucleotide primers Δqacfwd (phosphoryl-5′-
ATTGTTATTCGCCCTCCT-3′) and Δqacrev (phosphoryl-5′-TCTTTCT
TCCGCAAACCT-3′). The resulting recombinant plasmid pLR16-Δqac was shut-
tled into Lm isolate CLIP 2016/00360 via conjugation from Escherichia coli S17–1.
Mutagenesis was then performed as previously described83.

The bcrABC gene cluster was PCR amplified using the oligonucleotide primer
pairs SacI-bcrABCfwd (5′-GGGAGCTCGATTCTGGAACATCCCTATC-3′)–SalI-
bcrABCrev (5′-GGGTCGACGTATAATCCGGATGCTGCCC-3′) and EagI-
bcrABCfwd (5′-GGCGGCCGGATTCTGGAACATCCCTATC-3′)–SalI-bcrABCrev
(5′-GGGTCGACGTATAATCCGGATGCTGCCC-3′). The fragments were then
purified and digested with SacI, EagI, and SalI and cloned into pPL2 shuttle vector,
resulting in recombinant plasmid pPL2-bcrABC. The plasmid was then transferred
into Lm CLIP 2009/00521 via conjugation from E. coli S17–1. Plasmid integration
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was verified by PCR using oligonucleotide primers NC16 (5′-GTCAAAACATA
CGCTCTTATC-3′) and PL95 (5′-CACATAATCAGTCCAAAGTAGATGC-3′) as
previously described84.

BC sensitivity assessment of Δqac and pPL2::bcrABC strains. Lm strains to be
tested (CLIP 2009/00521+pPL2::bcrABC, CLIP 2009/00521WT, CLIP 2016/
00360Δqac, and CLIP 2016/00360WT) were grown in BHI overnight at 37 °C with
shaking. Cultures were diluted 20-fold in BHI containing BC or not (0 mg/L–10
mg/L) and dilutions were incubated at 37 °C with shaking for 2 h. Sensitivity of the
WT and mutant strains was evaluated by measuring the OD600nm of all cultures.
Three independent experiments were performed.

Colonization. We used 7- to 8-week-old mEcad E16P KI female mice in a C57BL/
6J genetic background62. For colonization experiments, a minimum of four mice
were used for each tested CC. Mice had their food restricted overnight with free
access to water before inoculation. Lm inoculum was prepared by diluting over-
night pre-cultures to the 1:20 in BHI broth and incubated at 37 °C until they reach
8 × 108 bacteria/mL (~ OD600nm 0.8). Bacteria were washed in phosphate-buffered
saline (PBS) and strains belonging to the same CC were mixed together equipro-
portionally. Mice were orally inoculated with 2 × 107 of total bacteria and 300 µl of
CaCO3 (50 mg/mL) and placed in separated cages for convenient collection of total
stools per mice every day during 10 days. Total stools from each mice were
homogenized in PBS and 100 to 10−7 dilutions in PBS were plated on ALOA agar
plates (bioMérieux, Marcy l’Etoile, France). CFU enumerations were performed
after 48h of incubation at 37 °C.

In order to evaluate infection of deeper organs, a similar protocol was used,
except that each mouse was infected with 2 × 108 bacteria and that total stools per
cage were collected every day during 4 days. Then total stools were homogenized in
PBS and 100 to 10−7 dilutions in PBS were plated on ALOA agar plates
(bioMérieux, Marcy l’Etoile, France). CFU enumerations were performed after 48h
of incubation at 37 °C. In addition, a stool sample was collected from each mouse
every day for evaluation of bacteria concentration per mouse. CFUs per day and
per mouse were deduced from the total CFU counts per cage and CFU
concentration per mouse. Mice were killed on the 4th day for CFU enumeration in
organs. Organs were homogenized in PBS. Before homogenization, small intestine,
cecum and colon were rinsed with DMEM and incubated for 2 h at room
temperature in DMEM supplemented with gentamicin (100 µg/mL; Sigma-
Aldrich). All the procedures used in this study are in agreement with the guidelines
of the European Commission for the handling of laboratory animals, directive 86/
609/EEC. They were approved by the ethical committee of Institut Pasteur
(CETEA-C2EA no. 89) under the number dap170057 and received an agreement
from the ministry of higher education, research, and innovation under the number
APAFIS#14644–2018041116183944 v1.

Statistics and data analyzes. As in Maury, Tsai et al.15, association of CCs with
food origins (dairy products, meat products, and seafood products) was tested
using χ2 tests. Sequential Bonferroni correction was used to adapt significance
thresholds according to the number of tests performed85. In order to quantify the
strength of association between the frequency of clones in dairy and meat products
and their clinical frequency, linear regressions were performed using the lm
function implemented in the basic R distribution. To avoid any bias owing to rare
clones, weights were applied to take into account the total number of isolates in
each clone.

The Wilcoxon rank sum test (equivalent to Mann–Whitney U test) was used to
compare clones or groups of clones (hypervirulent versus hypovirulent clones)
pairwise regarding their capacity to form biofilm (OD595nm), grow in different
conditions (AUC), colonize the gut of mice (AUC) and infect mice organs using
the pairwise.wilcox.test function with option paired= FALSE available in the basic
R distribution. The Holm correction was used in order to adjust p-values according
to the number of tests performed. When ex-aequo values of AUC or OD595nm were
obtained, the nparcomp function that performs non-parametric tests for pairwise
comparisons, implemented in the nparcomp R package, was used with the option
type= Tukey.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all the data supporting the findings of this study are available
within the article and its supplementary information files. Data underlying Fig. 4 and 6 as
well as Supplementary Figs. 3, 4, 5, 6, 8, and 9 are provided in a Source Data file. Genome
data analyzed in this study were generated in the context of the epidemiological
surveillance of listeriosis in France. As mentioned in the “Décret no. 2016–806 du 16 juin
2016 relatif aux centres nationaux de reference pour la lute contre les maladies
transmissibles” and in the “Arrêté du 16 juin 2016 fixant le cahier des charges des centres
nationaux de références pour la lute contre les maladies transmissibles”, all samples
collected at the NRCL as well as the data generated from these samples belong to the
French Government and constitute a “national collection of biological resources of

interest to public health”, which has to remain under medical and industrial
confidentiality, and therefore they cannot be made publicly available”.
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