S. L. Devos and T. M. Miller, Antisense oligonucleotides: treating neurodegeneration at the level of RNA, Neurotherapeutics, vol.10, pp.486-497, 2013.

S. T. Crooke, Antisense Drug Technology: Principles, Strategies, and Applications, 2008.

R. R. Breaker, Riboswitches and the RNA world, Cold Spring Harb. Perspect. Biol, vol.4, p.3566, 2012.

N. G. Walter and D. R. Engelke, Ribozymes: catalytic RNAs that cut things, make things, and do odd and useful jobs, Biologist, vol.49, pp.199-203, 2002.

S. Diafa and M. Hollenstein, Generation of aptamers with an expanded chemical repertoire, Molecules, vol.20, pp.16643-16671, 2015.

J. Zhou and J. Rossi, Aptamers as targeted therapeutics: current potential and challenges, Nat. Rev. Drug Discov, vol.16, p.440, 2017.

G. Mayer, The chemical biology of aptamers, Angew. Chem. Int. Ed, vol.48, pp.2672-2689, 2009.

F. Lipi, S. Chen, M. Chakravarthy, S. Rakesh, and R. N. Veedu, In vitro evolution of chemically-modified nucleic acid aptamers: pros and cons, and comprehensive selection strategies, RNA Biol, vol.13, pp.1232-1245, 2016.

R. Stoltenburg, C. Reinemann, and B. Strehlitz, SELEX--A (r)evolutionary method to generate high-affinity nucleic acid ligands, Biomol. Eng, vol.24, pp.381-403, 2007.

M. Delarue, O. Poch, N. Tordo, D. Moras, and P. Argos, An attempt to unify the structure of polymerases, Protein Eng. Des. Sel, vol.3, pp.461-467, 1990.

P. H. Patel and L. A. Loeb, Getting a grip on how DNA polymerases function, Nat. Struct. Biol, vol.8, pp.656-659, 2001.

D. K. Braithwaite and J. Ito, Compilation, alignment, and phylogenetic relationships of DNA polymerases, Nucleic Acids Res, vol.21, pp.787-802, 1993.

T. A. Steitz, DNA polymerases: structural diversity and common mechanisms, J. Biol. Chem, vol.274, pp.17395-17398, 1999.

S. H. Eom, J. Wang, and T. A. Steitz, Structure of Taq polymerase with DNA at the polymerase active site, Nature, vol.382, pp.278-281, 1996.

T. Ellenberger, S. Doublié, S. Tabor, A. M. Long, and C. C. Richardson, Crystal structure of a bacteriophage T7 DNA replication complex at 2.2|[thinsp]||[angst]|resolution, Nature, vol.391, pp.251-258, 1998.

K. E. Zahn, A. M. Averill, P. Aller, R. D. Wood, and S. Doublié, Human DNA polymerase grasps the primer terminus to mediate DNA repair, Nat. Struct. Mol. Biol, vol.22, pp.304-311, 2015.

R. D. Wood and S. Doublié, DNA polymerase (POLQ), double-strand break repair, and cancer, DNA Repair (Amst), vol.44, pp.22-32, 2016.

Y. Lee, Y. Gao, and W. Yang, How a homolog of high-fidelity replicases conducts mutagenic DNA synthesis, Nat. Struct. Mol. Biol, vol.22, pp.298-303, 2015.

M. J. Longley, R. Prasad, D. K. Srivastava, S. H. Wilson, and W. C. Copeland, Identification of 5 -deoxyribose phosphate lyase activity in human DNA polymerase gamma and its role in mitochondrial base excision repair in vitro, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.12244-12248, 1998.

T. Kent, P. A. Mateos-gomez, A. Sfeir, and R. T. Pomerantz, Polymerase is a robust terminal transferase that oscillates between three different mechanisms during end-joining, vol.5, pp.16203-16208, 2016.

S. J. Black, E. Kashkina, T. Kent, and R. T. Pomerantz, DNA polymerase : a unique multifunctional end-joining machine, Genes (Basel), vol.7, p.67, 2016.

P. Andrade, M. J. Martin, R. Juarez, F. Lopez-de-saro, and L. Blanco, Limited terminal transferase in human DNA polymerase defines the required balance between accuracy and efficiency in NHEJ, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.16203-16208, 2009.

K. Ramadan, G. Maga, I. V. Shevelev, G. Villani, L. Blanco et al., Human DNA polymerase possesses terminal deoxyribonucleotidyl transferase activity and can elongate RNA primers: implications for novel functions, J. Mol. Biol, vol.328, pp.63-72, 2003.

J. D. Fowler and Z. Suo, Biochemical, structural, and physiological characterization of terminal deoxynucleotidyl transferase, Chem. Rev, vol.106, pp.2092-2110, 2006.

J. Loc'h, S. Rosario, and M. Delarue, Structural basis for a new templated activity by terminal deoxynucleotidyl Transferase: Implications for V(D), J Recombination. Structure, vol.24, pp.1452-1463, 2016.

J. Gouge, S. Rosario, F. Romain, F. Poitevin, P. Béguin et al., Structural basis for a novel mechanism of DNA bridging and alignment in eukaryotic DSB DNA repair, EMBO J, vol.34, pp.1126-1142, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02167413

J. Boulé, F. Rougeon, and C. Papanicolaou, Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides, J. Biol. Chem, vol.276, pp.31388-31393, 2001.

M. Delarue, J. B. Boulé, J. Lescar, N. Expert-bezançon, N. Jourdan et al., Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase, EMBO J, vol.21, pp.427-439, 2002.

M. Astatke, K. Ng, N. D. Grindley, and C. M. Joyce, A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.3402-3407, 1998.

J. A. Brown and Z. Suo, Steric Gate" of DNA polymerases, Biochemistry, vol.50, pp.1135-1142, 2011.

M. Hogg, M. Seki, R. D. Wood, S. Doublié, and S. S. Wallace, Lesion bypass activity of DNA polymerase (POLQ) is an intrinsic property of the pol domain and depends on unique sequence inserts, J. Mol. Biol, vol.405, pp.642-652, 2011.

Y. Li, S. Korolev, and G. Waksman, Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation, EMBO J, vol.17, pp.7514-7525, 1998.

P. H. Patel and L. A. Loeb, DNA polymerase active site is highly mutable: evolutionary consequences, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.5095-5100, 2000.

J. L. Ong, D. Loakes, S. Jaroslawski, K. Too, and P. Holliger, Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide, J. Mol. Biol, vol.361, pp.537-550, 2006.

D. Su, C. T. Chan, C. Gu, K. S. Lim, Y. H. Chionh et al., Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry, Nat. Protoc, vol.9, pp.828-841, 2014.

M. J. Cavaluzzi and P. N. Borer, Revised UV extinction coefficients for nucleoside-5 -monophosphates and unpaired DNA and RNA, Nucleic Acids Res, vol.32, p.13, 2004.

D. H. Bunka, O. Platonova, and P. G. Stockley, Development of aptamer therapeutics, Curr. Opin. Pharmacol, vol.10, pp.557-562, 2010.

L. H. Lauridsen, J. A. Rothnagel, and R. N. Veedu, Enzymatic recognition of 2 -modified ribonucleoside 5 -triphosphates: towards the evolution of versatile aptamers, ChemBioChem, vol.13, pp.19-25, 2012.

T. Ono, M. Scalf, and L. M. Smith, 2 -Fluoro modified nucleic acids: polymerase-directed synthesis, properties and stability to analysis by matrix-assisted laser desorption/ionization mass spectrometry, Nucleic Acids Res, vol.25, pp.4581-4588, 1997.

W. A. Pieken, D. B. Olsen, F. Benseler, H. Aurup, and F. Eckstein, Kinetic characterization of ribonuclease-resistant 2 -modified hammerhead ribozymes, Science, vol.253, pp.314-317, 1991.

A. Rhie, L. Kirby, N. Sayer, R. Wellesley, P. Disterer et al., Characterization of 2 -fluoro-RNA aptamers that bind preferentially to Disease-Associated conformations of Prion protein and inhibit conversion, J. Biol. Chem, vol.278, pp.39697-39705, 2003.

M. A. Dellafiore, J. M. Montserrat, and A. M. Iribarren, Modified nucleoside triphosphates for In-vitro selection techniques, Front. Chem, vol.4, p.18, 2016.

H. J. Schultz, A. M. Gochi, H. E. Chia, A. L. Ogonowsky, S. Chiang et al., Taq DNA polymerase mutants and 2 -modified sugar recognition, Biochemistry, vol.54, pp.5999-6008, 2015.

R. J. Whitley, C. A. Alford, M. S. Hirsch, R. T. Schooley, J. P. Luby et al., Vidarabine versus acyclovir therapy in herpes simplex encephalitis, N. Engl. J. Med, vol.314, pp.144-149, 1986.

H. Tilly, S. Castaigne, D. Bordessoule, P. Casassus, P. Y. Le-prisé et al., Low-dose cytarabine versus intensive chemotherapy in the treatment of acute nonlymphocytic leukemia in the elderly, J. Clin. Oncol, vol.8, pp.272-279, 1990.

T. Kent, T. D. Rusanov, T. M. Hoang, W. A. Velema, A. T. Krueger et al., DNA polymerase specializes in incorporating synthetic expanded-size (xDNA) nucleotides, Nucleic Acids Res, vol.44, pp.9381-9392, 2016.

A. K. Berglund, C. Navarrete, M. K. Engqvist, E. Hoberg, Z. Szilagyi et al., Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA, PLOS Genet, vol.13, p.1006628, 2017.

T. Chen and F. E. Romesberg, Polymerase chain transcription: exponential synthesis of RNA and modified RNA, J. Am. Chem. Soc, vol.139, pp.9949-9954, 2017.

D. A. Malyshev, K. Dhami, H. T. Quach, T. Lavergne, P. Ordoukhanian et al., Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.12005-12010, 2012.

A. Ferreira-bravo, I. Cozens, C. Holliger, P. Destefano, and J. J. , Selection of 2 -deoxy-2 -fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity, Nucleic Acids Res, vol.43, p.1057, 2015.

L. Zhang, Z. Yang, T. Le-trinh, I. T. Teng, S. Wang et al., Aptamers against cells overexpressing Glypican 3 from expanded genetic systems combined with cell engineering and laboratory evolution, Angew. Chemie Int. Ed, vol.55, pp.12372-12375, 2016.

X. Liu, D. Zhang, G. Cao, G. Yang, H. Ding et al., RNA aptamers specific for bovine thrombin, J. Mol. Recognit, vol.16, pp.23-27, 2003.

B. Deng, Y. Lin, C. Wang, F. Li, Z. Wang et al., Aptamer binding assays for proteins: the thrombin example--a review, Anal. Chim. Acta, vol.837, pp.1-15, 2014.

J. Pei, B. Kim, and N. V. Grishin, PROMALS3D: a tool for multiple protein sequence and structure alignments, Nucleic Acids Res, vol.36, pp.2295-2300, 2008.