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Abstract: 31 

Clostridium difficile is the leading cause of antibiotic-associated diarrhea in adults. During 32 

infection, C. difficile must detect the host environment and induce an appropriate survival 33 

strategy. Signal transduction networks involving serine/threonine kinases (STKs) play key 34 

roles in adaptation, as they regulate numerous physiological processes. PrkC of C. difficile is 35 

a STK with two PASTA domains. We showed that PrkC is membrane associated and is 36 

found at the septum. We observed that deletion of prkC affects cell morphology with an in-37 

crease in mean size, cell length heterogeneity, and presence of abnormal septa. When com-38 

pared with the wild-type strain, a ∆prkC mutant was able to sporulate and germinate but was 39 

less motile and formed more biofilm. Moreover, a ∆prkC mutant was more sensitive to an-40 

timicrobial compounds that target the cell envelope such as the secondary bile salt deoxy-41 

cholate, cephalosporins, cationic antimicrobial peptides, and lysozyme. This increased sus-42 

ceptibility was not associated with differences in peptidoglycan or polysaccharide II compo-43 

sition. However, the ∆prkC mutant had less peptidoglycan and released more polysaccharide 44 

II into the supernatant. A proteomic analysis showed that the majority of C. difficile proteins 45 

associated with the cell wall were less abundant in the ∆prkC mutant compared to the wild-46 

type strain. Finally, in a hamster model of infection the ∆prkC mutant had a colonization 47 

delay that did not significantly affect overall virulence.  48 

 49 

  50 
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Introduction 51 

Clostridium difficile is the leading cause of antibiotic-associated infections in adults. 52 

Severity of C. difficile infection (CDI) symptoms range from diarrhea to life-threatening 53 

pseudo-membranous colitis. Major risks associated with CDI include antibiotic exposure 54 

leading to dysbiosis of gut microbiota, as well as,  advanced aged and hospitalization (1). 55 

The impact of CDI is significant in terms of mortality, morbidity, disease management and 56 

financial burden. With the emergence of new isolates, the incidence and severity of CDI 57 

have increased both in North America and Europe (2). C. difficile is acquired from the envi-58 

ronment through the ingestion of spores. This resistant form of the bacterium is thought to be 59 

responsible for transmission, environmental persistence and dissemination. When the normal 60 

intestinal microbiota is disrupted, the pools of metabolites present in the gut change leading 61 

to an increased concentration of cholate conjugates, which in turn triggers spore germination 62 

(3, 4). The vegetative cells can then multiply and colonize the dysbiotic gastrointestinal tract. 63 

Toxigenic strains of C. difficile produce two toxins, TcdA and TcdB, which are its main vir-64 

ulence factors. These toxins cause alteration of the actin cytoskeleton of epithelial cells and 65 

neutrophil recruitment causing local inflammation (3). Following the administration of a 66 

targeted antibiotic therapy such as metronidazole or vancomycin, CDI relapse can occur, 67 

involving spore and possibly biofilm formation (5, 6). Additional factors including those 68 

involved in stress adaptation and surface associated proteins, such as adhesins, the fibron-69 

ectin-binding protein (FbpA), the surface layer protein (SlpA) and the flagellum also partici-70 

pate in the colonization process, allowing C. difficile to establish its intestinal niche (7). 71 

Gut dysbiosis is an essential step that allows C. difficile to colonize the colon and cause 72 

an infection. Certain antibiotics such as cephalosporins, clindamycin and fluoroquinolones 73 

are known to increase the risk of developing a CDI. Most of C. difficile strains are resistant 74 

to these antibiotics, which is of major concern (1). Fluoroquinolone resistance in C. difficile 75 

strains is associated with amino acid substitution in the gyrases GyrA or GyrB (1). The 76 

mechanisms responsible for cephalosporin resistance by C. difficile remain poorly character-77 

ized (1). However, some progress has been made, as a class D ß-lactamase was identified in 78 

the genomes of most C. difficile strains (8). In addition to antibiotics, vegetative cells also 79 

encounter secondary bile salts (4), host secreted antimicrobial peptides and also reactive ox-80 

ygen and nitrogen species produced during inflammation (3, 9). To survive in the host, C. 81 

difficile must detect the host environment and induce an appropriate survival strategy, which 82 

may include activating the general stress response, sporulation, biofilm formation, and pro-83 
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ducing virulence factors (5, 6, 9).  84 

Protein phosphorylation is a reversible post-translational modification used to transduce 85 

signal and regulate cellular processes. Bacterial serine/threonine kinases of the Hanks family 86 

(STKs) share structural similarities with eukaryotic serine/threonine kinases and undergo 87 

substrate phosphorylation on serine or threonine residues (10). STKs and their associated 88 

phosphatases (STP) regulate numerous physiological processes including translation, carbon 89 

and cell-wall metabolism, antibiotic tolerance, cell division, developmental processes, and 90 

virulence (10, 11). Phosphoproteomic studies revealed that STKs might phosphorylate a 91 

broad spectrum of substrates (12) including enzymes, components of the cellular machinery 92 

involved in translation, division or repair and also several transcriptional regulators that 93 

mainly form part of two-component systems (10, 13). Therefore, STKs are key integration 94 

nodes in signaling networks that control bacterial physiology, growth and stationary phase. 95 

In B. subtilis, PrkC is a trans-membrane kinase with an extracellular signal receptor domain 96 

containing penicillin-binding and STK associated (PASTA) repeats. PrkC interacts with pep-97 

tidoglycan fragments and ß-lactam in vitro (14, 15), while a PASTA-STK (Stk1) homologue 98 

in Staphylococcus aureus interacts with lipid II (16). In B. subtilis, PrkC is a key-signaling 99 

enzyme that controls stationary phase survival, biofilm formation, sporulation, germination 100 

(13) and peptidoglycan (PG) metabolism (17). Inactivation of genes encoding PASTA do-101 

main-containing STKs are associated with a range of phenotypes among Gram-positive bac-102 

teria, with defects in cell division and changes in cell-wall metabolism commonly observed 103 

(10, 17, 18). In S. aureus, Stk1 plays a role in virulence, antibiotic resistance and cell-wall 104 

remodeling (17) whereas in Streptococcus pneumonia, StkP controls cell division, compe-105 

tence, virulence, adherence to eukaryotic cells, stress response and cell wall metabolism (17, 106 

19).  107 

The role of STKs has not been studied in anaerobic firmicutes. C. difficile has two genes 108 

encoding STKs, CD2148 and prkC (CD2578) and one gene encoding a STP (CD2579). In 109 

this study, we characterized the role of the C. difficile PASTA-STK, PrkC, in the regulation 110 

of the physiological processes important in CDI. Inactivation of the prkC gene resulted in 111 

changes in the morphology and the properties of the cell envelope as well as increased sensi-112 

tivity to antimicrobial compounds targeting the cell wall.  113 

 114 

Materials and methods  115 

Bacterial strains and growth conditions 116 
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C. difficile strains and plasmids used in this study are listed in Table S1. C. difficile strains 117 

were grown anaerobically (5% H2, 5% CO2, 90% N2) in TY broth (Bacto tryptone 30 g.l-1, 118 

yeast extract 20 g.l-1, pH 7.4), in Brain Heart Infusion broth (BHI) or in a peptone-containing 119 

medium (Pep-M) (20). Sporulation medium (SM) (21) was used for sporulation assays and 120 

spores were produced in SMC medium (22). Solid media were obtained by adding agar to a 121 

final concentration of 17 g.l-1. When necessary, cefoxitin (Cfx, 25 μg.ml-1) or thiamphenicol 122 

(Tm, 15 μg.ml-1) was added. E. coli strains were grown in LB broth. When indicated, ampi-123 

cillin (100 μg.ml-1) or chloramphenicol (15 μg.ml-1) was added. Anhydrotetracycline (ATc) 124 

was used to induce expression of the prkC gene from the Ptet promoter of pDIA6103 (23). 125 

Construction of plasmids and strains 126 

The allelic exchange cassette used to delete of the CD2578 gene (prkC) was constructed in a 127 

derivative of pMTLSC7315 (24) lacking the multi-cloning site. DNA sequences flanking the 128 

prkC gene (1038 and 1117-bp) were amplified by PCR using primers IMV854 and IMV855 129 

or IMV856 and IMV857 (Table S2 and Fig S1). A DNA fragment obtained by overlapping 130 

PCR was digested by XhoI and BamHI and then ligated into pMTLSC7315∆MCS, giving 131 

pDIA6401. E. coli HB101 (RP4) containing pDIA6401 was mated with C. difficile 132 

630∆erm. Transconjugants were selected on BHI-Cfx-Tm plates. Colonies were restreaked 133 

onto the same medium to identify faster growing single-crossover integrants that were then 134 

streaked onto CDMM supplemented with 50 μg/ml fluorocytosine (FC) to select for second 135 

cross-over events. FCR TmS clones that have lost pDIA6401 were analyzed by PCR using 136 

IMV867 and IMV868 to distinguish between wild-type and ∆prkC clones (Fig S1). For 137 

complementation, the prkC gene (positions -22 to +2205 from the translational start site) was 138 

amplified using primers IMV879 and IMV880. The PCR fragment was cloned between the 139 

StuI and BamHI sites of pDIA6103 (25) to produce pDIA6413. To construct a plasmid ex-140 

pressing PrkC-HA (pDIA6713), an reverse PCR was performed using pDIA6413 as template 141 

and primers EC01 and EC02. The same strategy was used to introduce a point mutation into 142 

the prkC gene [lysine at position 39 replaced by an alanine (K39→A)]. The resulting plas-143 

mid, pDIA6714, was then used to construct pDIA6716 expressing HA-tagged 144 

prkC(K39→A). These plasmids were transferred into C. difficile strains by conjugation (Ta-145 

ble S1).  146 

To construct a translational SNAP-PrkC fusion, we amplified the SNAP coding sequence 147 

fused to a linker in 3’ (GGATCCGCAGCTGCT) using pFT58 as a template and primers 148 

EC238 and EC239. pDIA6413 (pDIA6103-prkC) was amplified by inverse PCR using the 149 
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primers EC236 and EC237. Using these two fragments, pDIA6855 was obtained by Gibson 150 

Assembly. pDIA6855 was conjugated in the 630∆erm strain to obtain CDIP1357 (Table S1).  151 

To determine if prkC is co-transcribed with upstream genes (CD2579 and rlmN), we carried 152 

out an RT-PCR experiment using RNA extracted from exponentially growing cells. After 153 

cDNA synthesis using IMV843, a primer targeting the prkC gene, PCR amplification was 154 

tested with pairs of primers located in adjacent genes (prkC/CD2579 or CD2579/rlmN). 155 

Non-treated RNAs were used as a negative control.  156 

Antimicrobial sensitivity tests 157 

Cultures of C. difficile strains (OD600nm of 0.3) were plated on BHI agar plates. 6-mm paper 158 

disks containing antibiotics were placed onto the agar surface. Lysozyme (800 μg) was also 159 

placed on a 6-mm paper disk using Pep-M agar plates. The growth inhibition diameter was 160 

measured after 24 h of incubation at 37°C. Minimal Inhibitory Concentrations (MICs) were 161 

determined on BHI plates by E-test (bioMérieux) after 24 h incubation at 37°C. To test sus-162 

ceptibility for antimicrobial peptides, protocols were modified from previous published work 163 

(26, 27). Each well of a 24-well microplate was inoculated with 1 ml of a BHI bacterial in-164 

oculum (OD600nm of 0.01). After addition of bacitracin (Sigma Aldrich), polymixin B (Sigma 165 

Aldrich) or nisin (Sigma Aldrich), microplates were incubated at 37°C for 20 h. The MIC 166 

was defined as the lowest concentration of antimicrobial peptide preventing growth. 167 

5 μl of an overnight culture of C. difficile strains was streaked on BHI plates without or with 168 

SDS (0.005% to 0.009%). The plates were incubated at 37°C for 48 h. Deoxycholate (DOC) 169 

resistance tests were performed in 24-well microplates. Each well was inoculated with 1 ml 170 

of TY with or without DOC (0.03%). The OD600nm of each culture was monitored. For autol-171 

ysis, cells (OD600nm of 1) were resuspended in 50 mM potassium phosphate buffer (pH 7.0) 172 

containing 0.01 % of Triton X-100 and incubated at 37°C. The OD600nm was determined eve-173 

ry 5 min. 174 

Sporulation, germination, motility and biofilm formation assays 175 

Sporulation assays were performed as described previously (28). To purify spores, 100 μl of 176 

culture plated on solid SMC were grown at 37°C for 7 days. Spores were scraped off with 177 

water and then incubated 7 days at 4°C to allow the release of spores from the cells. Spores 178 

were purified by centrifugation using a HistoDenz (Sigma-Aldrich) gradient as described 179 

previously (22). For the germination efficiency tests, we monitored OD600nm of purified 180 

spores incubated under anaerobiosis in BHIS supplemented with 0.5 % taurocholate, with 181 

bryostatin or muropeptides.  182 
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To measure motility, plates containing 25 ml of BHI agar (0.3% w/v), Tm and ATc were 183 

inoculated with 5 μl of an exponential-phase culture. Plates were incubated for 48h at room 184 

temperature and the zone of motility was then measured. For the biofilm assay, 1 ml of BHI-185 

S medium containing 0.1 M glucose, 0.1% cysteine and polymixin B (20 μg.ml-1) or DOC 186 

(0.01%) was inoculated and deposited in a well of a 24-well microplate. Microplates were 187 

incubated at 37°C. The biofilm was washed with PBS (Phosphate buffered saline), stained 188 

with 1 ml of crystal violet (0.2%) followed by two washes with PBS. The OD570nm was 189 

measured after resuspension of the cells in methanol/acetone (80%/20%) using non-190 

inoculated medium as a negative control. For dispersion of preformed biofilms, 24 h and 48 191 

h biofilms were treated with DNase I (100 μg/ml in 150 mM NaCl, 1 mM CaCl2) under an-192 

aerobic conditions at 37°C for 1 h (29). Control wells were treated with buffer without 193 

DNase. Biofilms were then washed, stained, and quantified as described above.  194 

Phase contrast and transmission electron microscopy 195 

C. difficile strains were grown 5 h in TY medium. For phase contrast microscopy, cells were 196 

analyzed using an axioskop microscope (Zeiss). For transmission electron microscopy 197 

(TEM), cultures were mixed with 1 volume of a fixative solution containing 4% paraformal-198 

dehyde (PFA) and 4% glutaraldehyde (GA) in PHEM buffer 1x pH 7.3 (60 mM Pipes, 199 

25mM Hepes, 10 mM EGTA, 2mM MgCl2) and then incubated for 30 min at room tempera-200 

ture. After centrifugation, pellets were resuspended in a second fixative solution (2% PFA 201 

and 2% GA in PHEM buffer pH= 7.3) and incubated for 1 h. Samples were then washed 202 

twice in PBS prior to being subjected to a high pressure (>2000 bar) freezing in 1-203 

hexadecane using a BAL-TEC HPM 010 (LEICA). Freeze substitution was done with 2% 204 

OsO4 in acetone followed by several steps:  -90°C for 42 h, warmed up to −30°C (5°C/h), 205 

incubated for 12 h, warmed up to 0°C (10°C/h) and incubated for 1h. Samples were then 206 

washed with acetone on ice and incubated in EPON/acetone at different volume ratio (1/3 207 

for 3 h, 1/1 for 3 h; 2/1 ON; 3/1 for 4 h), followed by an incubation in pure EPON (2 h, 208 

overnight; 6 h). Samples were then incubated overnight in EPON and the hardener BDMI 209 

prior to polymerization at 60°C for 48 h. Sections (60-70 nM) were obtained on a FC6/UC6 210 

ultramicrotome (Leica), transferred on 200 Mesh Square Copper grids coated with formvar 211 

and carbon (CF-200-Cu50, Delta Microscopy). Samples were stained with 4% uranyl acetate 212 

and counterstained with lead citrate. Images were recorded with TECNAI SPIRIT 120 kv 213 

(with a bottom-mounted EAGLE 4Kx4K Camera). 214 

SNAP labelling, fluorescence microscopy and image analysis 215 
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For membrane and chromosome staining, 500 μl of exponential-phase cells were centrifuged 216 

and resuspended in 100 μl of PBS containing the fluorescent membrane dye FM 4-64 (1 217 

μg/ml, Molecular Probes, Invitrogen) and the DNA stain 4,6-Diamidino-2-phenylindole 218 

(DAPI) (2 μg/ml, Sigma). Samples were incubated for 2 min in the dark and mounted on 219 

1.2% agarose pad. Strain CDIP1357 was grown 2 h in TY and expression of the SNAPCd-220 

prkC fusion was induced with 50 ng/ml of ATc for 2 h. For SNAP labelling, the TMR-Star 221 

substrate (New England Biolabs) was added at 250 nM, and the mixture was incubated for 222 

30 min in the dark under anaerobiosis. Cells were then collected by centrifugation, washed 223 

and resuspended in PBS. Cell suspension (3 μl) was mounted on 1.7% agarose-coated glass 224 

slides. The images were taken with 300 ms exposure times for the autofluorescence and 900 225 

ms exposure times for the SNAP using a Nikon Eclipse TI-E microscope 100x Objective and 226 

captured with a CoolSNAP HQ2 Camera. The images were analysed using ImageJ (30).  227 

Detection of phospho-threonine by western blot on soluble and insoluble fractions. 228 

Cells were grown for 6 h in TY and then harvested by centrifugation. The pellets were re-229 

suspended in PBS containing protease and phosphatase inhibitor cocktails (Sigma-Aldrich) 230 

and 0.12 μg/ml of DNase. Cells were lysed for 45 min at 37°C and then centrifuged. The 231 

soluble fraction was diluted twice with 2X Sample buffer (150 mM Tris-HCl pH6.8, 30% 232 

glycerol, 1.5 % SDS, 15% β-mercaptoethanol, 2 μg/ml of bromophenol blue). After 2 wash-233 

es with PBS, the insoluble fraction was resuspended in 2X PBS containing 1% SDS, and 234 

mixed with 2X Sample buffer. Western blots were performed using an anti-P-Thr primary 235 

antibody (Cell signaling) followed by a goat anti-rabbit horseradish-peroxidase-conjugated 236 

secondary antibody (Sigma-Aldrich) and developed using the SuperSignalWest Femto 237 

chemiluminescent Kit (Thermo scientific).  238 

Peptidoglycan and polysaccharide II analysis 239 

Peptidoglycan (PG) samples were prepared from 1.5 l of C. difficile grown in BHI (OD600nm 240 

of 1) as previously described (31). Purified PG was then digested with mutanolysin (Sigma 241 

Aldrich) and the soluble muropeptides were separated by reverse phase high-performance 242 

liquid chromatography (RP-HPLC) (31). Polysaccharides II (PSII) were extracted from C. 243 

difficile grown in BHI (OD600nm of 1) as previously described (32). PSII was lyophilized and 244 

its structure was checked by [1H] and [13C] NMR. Spectra were acquired on a 400 MHz 245 

Bruker spectrometer equipped with a Prodigy probe. PSII was lyophilized and its structure 246 

was determined by [1H] NMR. For the quantification of PG and PSII, 500 ml of culture 247 

(OD600nm of 1) was used to purify PSII covalently linked to PG (PG-PSII). PG-PSII was pu-248 

rified as previously described (33) without the acetone treatment. Linkage between PG and 249 
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PSII was disrupted after an incubation for 48 h at 4°C in hydrofluoric acid (48%). The pellet 250 

containing PG was washed three times in H2O and the hydrofluoric acid supernatant that 251 

contains PSII subunits was evaporated and resuspended in H2O. Both, PG and PSII were 252 

lyophilized and then weighted. 253 

For the PSII dot blot, exponential phase cultures were harvested by centrifugation. Superna-254 

tant and total crude cell extracts were kept as separate fractions. The supernatant fraction 255 

was recovered and precipitated with 10% TCA for 30 min. The supernatant and the total 256 

crude cell fractions were treated with 100 g/ml of proteinase K (Sigma) for 1 h at 37°C. 257 

Samples were then serially diluted and 5 μl of each dilution were spotted onto an activated 258 

polyvinylidene difluoride membrane. The membrane was washed in H2O, blocked for 15 259 

min in TBST (20 mM Tris-HCl, 150 mM NaCl, 0.05% Tween20, pH7.5) containing 10% 260 

milk, and then washed in 5% milk in TBST for 2 min. After overnight incubation in PSII-261 

LTB rabbit antiserum (1:8,000) (34), the membrane was washed once in TBST with 5% 262 

milk, twice in TBST for 5 min, and once in TBST with 5% milk for 10 min. Following incu-263 

bation with goat anti-rabbit horseradish-peroxidase-conjugated secondary antibody at 264 

1:10,000 dilution for 1 h, the membrane was washed 5 times in TBST for 5 min, and re-265 

vealed using the SuperSignalWest Femto chemiluminescent substrate.  266 

Isolation of cell-wall proteins and proteomic analysis  267 

C. difficile strains were grown for 6 h in TY at 37°C and 20 mL of each culture was then 268 

centrifuged. The cell pellets were washed with PBS, resuspended (OD600nm of 100) in 75 269 

mM Tris-HCl pH6.8, 15% glycerol, 7.5% β-mercaptoethanol, 0.75% SDS and boiled for 10 270 

min at 100°C. Proteins were precipitated with 10% TCA, washed with 90% cold acetone, 271 

dried, resuspended in urea 8 M/NH4HCO3 100 mM and sonicated. Total protein extracts (50 272 

µg) were reduced with TCEP (10 mM) (Sigma) for 30 min and alkylated with iodoacetamide 273 

20 mM (Sigma) for 1 h. Proteins were digested with rLys-C 1 µg (Promega) for 4 h at 37°C 274 

and with Trypsin 1µg (Promega) overnight at 37°C. The digestion was stopped with Formic 275 

acid (FA) 4%. Peptides were desalted on C18 Sep-Pak Cartridge (WAT054955, Waters) and 276 

eluted with Acetonitrile (ACN) 50%/FA 0.1% and then ACN 80%/FA 0.1% before being 277 

dried in vacuum centrifuge. Peptides were resuspended with ACN 2%/FA 0.1%. A na-278 

nochromatographic system (Proxeon EASY-nLC 1000, Thermo Fisher Scientific) was cou-279 

pled on-line to a Q ExactiveTM HF Mass Spectrometer (Thermo Fisher Scientific). Peptides 280 

(1 μg) were injected onto a 47 cm C18 column (1.9 μm particles, 100 Å pore size, ReproSil-281 

Pur Basic C18, Dr. Maisch GmbH) and separated with a gradient from 2 to 45 % ACN at a 282 

flow rate of 250 nl/min over 132 min. Column temperature was set to 60°C. Data were ac-283 
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quired as previously described (35). Raw data were analyzed using MaxQuant software ver-284 

sion 1.5.1.2 (36) using the Andromeda search engine (37). The MS/MS spectra were 285 

searched as previously described (35) against an internal C. difficile database containing 286 

3,957 proteins and the contaminant file included in MaxQuant. The statistical analysis was 287 

performed with Perseus 1.5.2.6 (38) as previously described (35). Missing values for LFQ 288 

intensities were imputed and replaced by random LFQ intensities that are drawn from a 289 

normal distribution at the low detection level. Statistical significance was assessed with a 290 

two-sided t-test of the Log2 transformed LFQ intensities with a permutation-based FDR cal-291 

culation at 5% and S0=2 (39). Differentially regulated proteins are visualized on a Volcano-292 

Plot. The mass spectrometry proteomics data have been deposited to the ProteomeXchange 293 

Consortium via the PRIDE (40) partner repository with the dataset identifier PXDX012241. 294 

Golden Syrian hamster infections 295 

Golden Syrian hamsters were first treated with a single oral dose of 50 mg/kg of 296 

clindamycin. Five days after the antibiotics treatment, the hamsters were infected by gavage 297 

with 5000 spores of either the 630∆erm strain or the ∆prkC mutant. Spore inocula were 298 

standardized before challenge. Eight animals per strain per experiment were used for the 299 

infection and we performed two independent experiments. Colonization was followed by 300 

enumeration of C. difficile cells in feces samples and was started 2-day post infection and 301 

each day until the death of the animal. Briefly, feces were resuspended in PBS at 10 mg.ml-1 302 

and serially diluted with PBS before plating on BHI supplemented with 3% of defibrinated 303 

horse blood and the C. difficile selective supplement containing cycloserine (25 µg/ml) plus 304 

cefoxitine (8 µg/ml). All animal experiments were conducted according to the European 305 

Union guidelines for the handling of laboratory animals and Procedures for infection, eutha-306 

nasia, and specimen collection were approved by the Central Animal Care Facilities and Use 307 

committee of University Paris-Sud (agreement 92-019-01; protocol number 2012-107). 308 

 309 

Results 310 

CD2578 is the PASTA-STK of C. difficile  311 

CD2578 (PrkC) from C. difficile contains a cytosolic N-terminal kinase domain and an 312 

extracellular motif containing repeats of a PASTA that are separated by a trans-membrane 313 

segment (Fig 1A). Based on its predicted amino acid sequence, the kinase domain of PrkC 314 

has a high level of sequence identity with that of B. subtilis (PrkC), S. aureus (Stk1), S. 315 

pneumoniae (StkP), Enteroccoccus faecalis (IreK) and Mycobacterium tuberculosis (PknB) 316 

(43 to 50%). The conserved lysine within the ATP-binding P loop of the kinase domain is 317 
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present and corresponds to position 39 in PrkC (Fig 1A). This residue is essential for the 318 

phosphotransfer in other STKs (41). As observed for the PASTA-STKs in other firmicutes, a 319 

trans-membrane segment is predicted from amino acid 375 to 397 (42, 43). The extracellular 320 

sequence of PrkC contains 2 PASTA motifs (Fig 1A) while up to 7 PASTA motifs are typi-321 

cally present in STKs of other firmicutes (17). Interestingly, C. difficile contains a very atyp-322 

ical Ser-Gly-Asn (SGN) rich region of 100 amino acids at the C-terminal part of the protein 323 

(Fig 1A). This SGN-rich region is absent from PASTA-STKs of other firmicutes. Interest-324 

ingly, SGN-rich regions are found in some cell wall anchored proteins of bacilli and in 325 

CwpV, a surface associated protein in C. difficile but their function have yet to be character-326 

ized.  327 

 328 

 329 

The prkC locus of C. difficile 330 

The prkC gene likely belongs to a large cluster of genes, which ranges from dapF (CD2590) 331 

to CD2578-prkC (Fig 2A). As usually observed in other firmicutes (44, 45), a gene 332 

(CD2579-stp) encoding a PP2C-type phosphatase (STP), which is probably involved in the 333 

dephosphorylation of the PrkC substrates, is adjacent to prkC. Upstream of stp, we found 334 

genes encoding proteins involved in translation (rlmN, rsmB, def and fmt), transcription 335 

(rpoZ), DNA replication (priA) and metabolism (gmk and coaBC). This cluster is conserved 336 

in B. subtilis and B. cereus with the exception of 3 genes that are only present in C. difficile; 337 

CD2582 and CD2583 encoding membrane proteins and dapF encoding a diaminopimalate 338 

epimerase (Fig 2A). To determine if prkC is co-transcribed with stp as observed in other 339 

firmicutes, and the other genes located upstream of stp such as the rlmN gene, RT-PCR ex-340 

periments were performed. PCR products were detected using primer pairs located in adja-341 

cent genes (prkC/stp or stp/rlmN) with RNAs processed by a reverse transcriptase but not 342 

with untreated RNA used as negative control (Fig 2B). This result indicated that the prkC 343 

gene is in operon with stp but also rlmN. Using a genome-wide transcriptional start site 344 

(TSS) mapping (25), we identified a unique TSS in the prkC locus located 23 bp upstream of 345 

dapF suggesting that this gene might be the first gene of a large operon. We found a TG-N-346 

TATAAT extended -10 box specific for the consensus of σA-dependent promoters upstream 347 

of the TSS (Fig 2A). However, we cannot exclude the existence of additional promoters be-348 

tween dapF and prkC that were not identified in the genome-wide TSS mapping (25).  349 

 350 

Localization of the PrkC protein 351 
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To determine the cellular location of PrkC, we expressed the prkC gene fused to a HA tag 352 

under the control of the inducible promoter Ptet (pDIA6103-Ptet-prkC-HA). A western blot 353 

analysis of the membrane or cytoplasmic fraction with an anti-HA antibody revealed two 354 

bands corresponding to proteins of about 100 kDa and 50 kDa (Fig S2A). These two proteins 355 

were only detected in the membrane fraction (Fig 1B). The expected molecular weight of the 356 

PrkC-HA tagged protein is around 75 kDa and the band detected around 100 kDa likely cor-357 

responds to PrkC-HA. Indeed, the PrkC and StkP proteins of B. subtilis and S. pneumoniae 358 

are detected with an apparent molecular weight higher than their expected size (42, 43) and 359 

the phosphorylation of the kinase results in a reduced electrophoretic mobility (46). The 360 

lower band at 50 kDa could be a form of degradation product that might correspond to the 361 

extracellular domain fused to HA. It is worth noting that PrkC of B. subtilis is sensitive to 362 

protease cleavage (42).  363 

To determine the localization of PrkC, we used a 630∆erm strain containing a plasmid en-364 

coding a SNAPCd-PrkC protein fusion produced under the control of the Ptet promoter. The 365 

production of the SNAPCd-PrkC protein is stable as shown by western blot using an anti-366 

SNAP antibody (Fig S2B). After 2 h of induction, we detected the SNAPCd-PrkC fusion pro-367 

tein fusion at the septum of dividing cells (Fig 1C). Thus, the PrkC protein is membrane as-368 

sociated and localizes at the septum during cell growth. 369 

 370 

Deletion of the prkC gene in C. difficile and detection of PrkC activity 371 

To study the role of PrkC in the physiology of C. difficile, we inactivated the prkC gene by 372 

allelic exchange in the strain 630∆erm (24). Deletion of the prkC gene from codon two to the 373 

stop codon was confirmed by PCR (Fig S1). The prkC mutant was complemented with the 374 

wild-type prkC gene (pDIA6103-Ptet-prkC) or a modified copy of prkC (pDIA6103-Ptet-375 

prkC-K39→A) with the lysine residue required for phosphotransfer replaced by an alanine.  376 

The kinase activity of PrkC was demonstrated by comparing the profiles of phosphorylation 377 

of the wild-type (WT) strain or the ∆prkC mutant carrying either pDIA6103, pDIA6103-Ptet-378 

prkC or pDIA6103-Ptet-prkC-K39→A. We assumed that PrkC and PrkC-K39→A were pro-379 

duced to the same level and were located in membrane because we detected similar levels in 380 

the membrane fraction of these proteins with an HA tag fusion (PrkC-HA or PrkC-K39→A-381 

HA) (Fig S2A). We detected proteins phosphorylated on threonine in the WT strain both in 382 

soluble and insoluble fractions by western blot analysis with an antibody against phosphory-383 

lated threonine residues (α-PThr (Fig 1D). Some bands that were detected in the WT strain 384 

and with a lower intensity in the complemented strain disappeared in the ∆prkC mutant and 385 
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in the strain producing a modified PrkC-K39→A protein. This result strongly suggested that 386 

PrkC has a kinase activity in vivo and that the lysine at position 39 (Fig 1A) is essential for 387 

the phosphorylation of PrkC targets as observed in the PASTA-STKs of other firmicutes (17, 388 

41).  389 

 390 

Impact of prkC deletion on growth, sporulation and germination 391 

The 630∆erm strain and the ∆prkC mutant exhibited nearly identical doubling time and 392 

growth yield in TY (Fig S3A). No difference in CFU was also observed between the two 393 

strains (Fig S4A and data not shown). We also performed co-culture of the WT and ∆prkC 394 

mutant strains in TY (Fig S3C). We observed that the ∆prkC mutant was less abundant than 395 

the wild-type strain by two-fold after 8 h or 24 h of growth. This suggests that there is no 396 

drastic difference in fitness associated with the inactivation of prkC. The growth of the 397 

∆prkC containing pDIA6103-Ptet-prkC was similar to that of the WT strain in the presence of 398 

15 ng/ml of ATc but was affected when we added 50 ng/ml of ATc (Fig S3B). This growth 399 

defect was also observed in the ∆prkC mutant expressing prkC-K39→A (Fig S3B). In con-400 

trast, the addition of increasing concentrations of ATc had no effect on the growth of the WT 401 

strain harboring an empty plasmid (Fig S3B). A qRT-PCR analysis also showed that expres-402 

sion of prkC was similar in the WT and complemented strains in the presence of 15 ng/ml of 403 

ATc (Fig S3D). In the presence of 50 ng/ml of ATc, the expression of prkC probably in-404 

creased in the ∆prkC strain containing pDIA6103-Ptet-prkC because we detected a drastic 405 

overproduction of the SNAP-PrkC fusion in the presence of 50 ng/ml when compared to 20 406 

ng/ml (Fig S2). Over-production of PrkC is likely responsible for the growth defect observed 407 

in the presence of 50 ng/ml of ATc suggesting that a proper level of prkC expression is im-408 

portant for the fitness of C. difficile. Since the kinase activity of PrkC is apparently not re-409 

sponsible for the growth defect when the protein is overexpressed, the trans-membrane seg-410 

ment or the extracellular domain are probably involved in this toxicity.  411 

To determine if PrkC is involved in sporulation, we measure sporulation levels of the WT 412 

and the ∆prkC mutant strains after 24 h or 72 h of growth in SM. No significant differences 413 

were observed between both strains for the quantity of spores produced (Fig S4A). When we 414 

tested the ability of purified spores to germinate, we observed that the drop in the OD600nm of 415 

spore suspensions after the addition of taurocholate was similar for the WT and the ∆prkC 416 

mutant (Fig S4 B). In B. subtilis, PrkC is involved in the germination of spores in the pres-417 

ence of B. subtilis muropeptides (47). However, purified muropeptides from C. difficile (0.1 418 

to 0.01 mg/ml) failed to induce spore germination of the WT or the ∆prkC mutant (data not 419 
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shown). Bryostatin is a molecule involved in STK activation that induces germination of B. 420 

subtilis spores (47). This compound at 1 µM or 10 µM had no effect on C. difficile spores 421 

(data not shown). All these results indicated that PrkC is not involved in the control of 422 

sporulation and spore germination in C. difficile. 423 

 424 

prkC deletion affects cell morphology  425 

To determine if deletion of prkC had an effect on the cell morphology, we analyzed by phase 426 

contrast microscopy cells of the 630∆erm strain, the ∆prkC mutant, and the complemented 427 

strain during exponential growth phase (Fig S5A). The ∆prkC mutant cells were more elon-428 

gated than those of the WT strain and the complemented strain (Fig S5A). We then meas-429 

ured the cell size using cells labeled with DAPI and FM4-64 (Fig 3A and 3B). The ∆prkC 430 

mutant cells had an average cell size of 9.2 μm whereas the WT and the complemented 431 

strains had an average cell size of 4.5 μm and 6.4 μm, respectively (Fig 3B). We detected 432 

elongated cells (Fig 3A, blue arrows) and cells with several septa and undivided (Fig 3A, 433 

green arrows). Interestingly, we observed septation defects for the ∆prkC mutant (Fig 3A, 434 

white square, Fig 3C and Fig S5B). Our analysis revealed that 4% of the cells had abnormal 435 

septation (Fig 3C and S5B, yellow arrows) and that 1% of the cells had adjacent septa which 436 

created mini-cell lacking DAPI-stained DNA (Fig 3C and Fig S5B, white arrows). We then 437 

analyzed by TEM the cell morphology and the structure of the septa for the WT, the ∆prkC 438 

mutant and the complemented strains.  Cells with normal septation were observed for the 439 

WT strain, complemented strain and ∆prkC mutant (Fig 4A) while some cells of the ∆prkC 440 

mutant displayed aberrant septation with the presence of multiple and adjacent septa (Fig 441 

4B). Mini-cells attached to each other were also observed (Fig 4B left) and these probably 442 

arise from the formation of several septa in close proximity (Fig 4B, right, red arrows). 443 

These results indicated that deletion of the prkC gene in C. difficile affects bacterial cell 444 

morphology and septum formation.  445 

 446 

prkC deletion increases sensitivity to detergents and autolysis 447 

To determine if prkC deletion also affects the cell envelop, we tested the sensitivity of the 448 

prkC mutant to compounds with a detergent activity. The presence of 0.006% SDS affected 449 

the growth of the ∆prkC mutant but did not affect the WT and the complemented strains (Fig 450 

5A). It is worth noting that in the gastrointestinal tract, C. difficile is subjected to the bacteri-451 

cidal effects of secondary bile salts that solubilize phospholipids, impair membrane integrity 452 

and weaken cell wall (48). We therefore tested the sensitivity of the ∆prkC mutant to the 453 
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secondary bile salt, deoxycholate (DOC) and to the primary bile salt, cholate. While the sen-454 

sitivity to cholate (0.03% or 0.04 % in TY) was similar for all the strains (data not shown), 455 

we observed that the growth of the ∆prkC mutant was reduced in the presence of 0.03% 456 

DOC (Fig 5B), a physiological concentration encountered in the gut (49, 50). In addition, the 457 

autolysis in the presence of 0.01% of the non-ionic detergent Triton X-100 is more rapid for 458 

the ∆prkC mutant than for the WT and the complemented strains (Fig 5C) while no differ-459 

ence in autolysis was observed in the absence of Triton (Fig S6A). This result suggested that 460 

the ∆prkC mutant is more sensitive to the PG hydrolysis.  461 

 462 

PrkC controls sensitivity to antimicrobial compounds targeting the cell envelop 463 

Given that the deletion of prkC affected cell morphogenesis, we tested the sensitivity of the 464 

prkC mutant to antibiotics targeting cell wall biosynthesis (46, 51). Using disk assays, we 465 

showed that the size of the zone of inhibition increased for the ∆prkC mutant compared to 466 

the WT and the complemented strains for all ß-lactams tested (Fig 6A). Thus, the prkC mu-467 

tant is more susceptible to ticarcillin, amoxicillin, imipenem and several cephalosporins 468 

(cefoxitin, ceftazidime and cefepime). In contrast, we did not observe any differences for 469 

antibiotics that target transcription or translation (Fig 6A and Fig S6B). We also observed an 470 

important reduction in the MIC of the ∆prkC mutant compared to the WT strain for the gly-471 

copeptide, teicoplanin (>12-fold), but not for vancomycin (2-fold) (Table 1). In addition, we 472 

observed a slight increase in the susceptibility of the mutant to amoxicillin and imipenem (4-473 

fold) and a more substantial increase for the cephalosporins tested (Table 1). The MIC for 474 

the second-generation cephalosporin, cefoxitin, was reduced by more than 6-fold for the 475 

∆prkC mutant compared to the WT strain whereas the MIC for the third generation cephalo-476 

sporins, ceftazidime, cefepime and cefotaxime, was reduced for the ∆prkC mutant by 20- 477 

17.5- and 8-fold, respectively. The same increase in sensitivity to cefoxitin, ceftazidine and 478 

cefepime was seen for the ∆prkC mutant carrying pDIA6103-Ptet-prkC-K39→A (Fig 6A), 479 

suggesting that the kinase activity of PrkC is required for C. difficile to express an intrinsic 480 

high-level of resistance to cephalosporins (1).  481 

Cationic antimicrobial peptides (CAMPs) that are produced by both bacteria and the host 482 

also target the cell envelop and/or membrane of bacteria (52). Thus, we tested the resistance 483 

of the WT and mutant strains for several CAMPS of bacterial origin. The MIC of the ∆prkC 484 

mutant for polymixin B, bacitracin and nisin was 6-, 22- and 4.5-fold lower, respectively 485 

than the MIC for the WT strain (Table 1). In the gastrointestinal tract, host-produced antimi-486 

crobial proteins such as lysozyme inhibit colonization of many Gram-positive pathogens by 487 
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hydrolyzing the PG and breaking the integrity of the cell wall. However, C. difficile is 488 

known for its intrinsic resistance to lysozyme that might be associated with high level of 489 

deacetylation of its PG (26). Interestingly, using an antimicrobial disk assay realized on Pep-490 

M plates, we observed a greater size of the zone of inhibition for the ∆prkC mutant (17 mm) 491 

when compared to the WT strain (7.25 mm) in presence of 800 μg of lysozyme (Fig 6B). 492 

These results indicated that prkC deletion is involved in resistance to CAMPs and lysozyme. 493 

 494 

prkC deletion affect motility, sedimentation and biofilm formation  495 

To identify other phenotypes associated with cell envelop properties, we first tested motility 496 

on semi-solid BHI plates and observed a reduced motility for the ∆prkC mutant compared to 497 

the WT and complemented strains (Fig 7A). After 48 h, the motility of the WT strain is 1.35 498 

mm +/- 0.2 mm while the motility of the ∆prkC mutant is 0.8 mm +/- 0.1 mm. We also ob-499 

served that the ∆prkC mutant formed more aggregates at the bottom of the tube than the WT 500 

and complemented strains (Fig S7A). We also tested the ability of these strains to form bio-501 

film after an exposure to compounds triggering an envelope stress such as DOC or polymix-502 

in B. In the presence of sub-inhibitory concentration of polymixin B (20 μg/ml) or DOC 503 

(0.01%), the ∆prkC mutant formed, respectively, 6- and 10-fold more biofilm than the WT 504 

and complemented strains after 24 h, respectively (Fig 7B and C). However, no difference in 505 

biofilm formation was observed without these compounds (data not shown). When we quan-506 

tified the biofilm formed in presence of DOC at 24 h, 48 h and 72 h (Fig S7B), we found that 507 

the ∆prkC mutant formed biofilm earlier than the WT strain (at 24 h) while more biofilm 508 

was produced by the WT strain than the ∆prkC mutant at 48 h. A previous work show that 509 

extracellular DNA (eDNA) is a major component of the matrix in DOC-induced biofilms 510 

(29). In both the ∆prkC mutant and the WT strain, DOC-induced biofilms were rapidly dis-511 

persed when treated with DNase (Fig S7C). Moreover, we detected eDNA in the extracellu-512 

lar matrix for the ∆prkC mutant at 24 h and 48 h but only at 48 h for the WT strain (Fig 7D). 513 

Since eDNA is required for biofilm stability (29), the early release of eDNA detected in the 514 

∆prkC mutant might be responsible for the premature biofilm formation. Thus, deletion of 515 

prkC seems to affect the motility, the ability of C. difficile to sediment and to form biofilm 516 

under conditions that induce cell envelop stress.  517 

 518 

Comparison of the PG structure and composition between the WT strain and the 519 

∆prkC mutant 520 
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Based on the changes in cell-shape and increased susceptibility to ß-lactams and lysozyme of 521 

the ∆prkC mutant, we hypothesized that these phenotypes could be due to modification of 522 

the PG structure or composition. However, we showed that the muropeptide profiles of the 523 

WT strain (black) and the ∆prkC mutant (red) are almost identical (Fig S8). Indeed, we 524 

found no difference in the abundance of dimers containing a 3-3 cross-link (peaks 9, 10, 11, 525 

13, 14, 15 and 17) generated by L,D-transpeptidases that might be associated with the high 526 

level of intrinsic resistance of C. difficile to some ß-lactams (31) or containing a 4-3 cross-527 

link (peaks 18, 19, 21) catalyzed by D,D-transpeptidases, a target of ß-lactam (Fig S8). 528 

Moreover, the ratio of 4-3 to 3-3 cross-linking was not affected in our conditions. In addi-529 

tion, the amount of deacetylated muropeptides (peaks 4, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 530 

21) (31), was similar in the WT strain and the ∆prkC mutant (Fig S8). As muropeptides 531 

deacetylation contribute to a high level of resistance to lysozyme in C. difficile (26), the in-532 

creased sensitivity of the ∆prkC mutant to lysozyme cannot be explained by changes in the 533 

level of PG deacetylation (Fig S8). Our results suggested that susceptibility of the prkC mu-534 

tant to some ß-lactams or lysozyme is not related to changes of its PG structure or composi-535 

tion.   536 

 537 

Impact of the prkC deletion on the PSII  538 

In firmicutes, the wall teichoic acids (WTA) are involved in cell division, maintenance of 539 

cell-shape and susceptibility to CAMPs or ß-lactam (53). The 630∆erm strain of C. difficile 540 

has an atypical wall teichoic acid known as polysaccharide II (PSII) composed of hexaglyco-541 

sylphosphate repeats (34, 54). To know if the phenotypes observed for the ∆prkC mutant 542 

were associated with changes in the abundance, localization and/or structure of the PSII, we 543 

first purified the PSII of the WT and ∆prkC mutant strains. Their structure was analyzed by 544 

NMR and showed that the 1H NMR and 13C HSQC spectra from the 630erm PSII were in 545 

good agreement with previous data (32, 54) and that no difference in the PSII structure was 546 

detected between the prkC mutant and the WT strain (Fig S9). 547 

We also investigated a possible role for PrkC in controlling PSII localization. Using an im-548 

munoblot analysis with an antibody raised against PSII (34), we observed that more PSII 549 

was shed in the supernatant during growth by the ∆prkC mutant when compared to the pa-550 

rental and complemented strains during growth (Fig 8A). By contrast, we detected similar 551 

quantity of PSII in membrane fraction for all strains (Fig S10). Thus, this result suggests that 552 

the deletion of prkC leads to an enhanced release of PSII into the supernatant.  553 
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To precisely quantify the amount of PSII and PG in the cell wall of the WT and the ∆prkC 554 

mutant strains, we fractionated cells to recover the cell wall containing the PSII covalently 555 

linked to PG. We then separated these two compounds and quantified the amount of each 556 

product. Interestingly, we observed that the amount of PG purified from the ∆prkC mutant 557 

was lower compared to the WT strain, which represented 55 % of the quantity purified from 558 

the WT strain (Fig 8B). Similarly, but to a lesser extent, a reduction of 33 % in the quantity 559 

of PSII was observed for the ∆prkC mutant (Fig 8C). It is possible that the reduction in PG 560 

for the ∆prkC mutant could interfere with the localization of PSII and could explain the in-561 

crease shedding of PSII in the supernatant (Fig 8A).  562 

 563 

prkC deletion affects cell wall associated proteins 564 

Several properties of the bacterial cell envelop can be partly attributed to proteins localized 565 

at the cell surface. We extracted proteins non-covalently anchored to the cell wall of the 566 

∆prkC mutant and the WT strains (55) and compared their relative abundance by mass spec-567 

trometry (Table 2 and Fig S11). A first family of proteins is the CWPs that contain a CWB2 568 

motif responsible for their anchorage to the cell wall by interacting with PSII (56, 57). In-569 

deed, we found that 27 CWP proteins with CWB2 (out of 29 in strain 630) including the S-570 

layer protein, SlpA, were more abundant in the cell wall of the WT strain than in the ∆prkC 571 

mutant while a unique CWP protein, Cwp7, was more abundant in the ∆prkC mutant. Other 572 

non-covalently anchored proteins present of the cell surface (with SH3_3 or PG4 motifs) 573 

were also found in different amount in the WT strain and the ∆prkC mutant. Interestingly, 574 

some of them are involved in cell wall metabolism including L,D-transpeptidases, carboxy-575 

peptidases and putative cell wall hydrolases.  576 

 577 

Virulence and colonization of the ∆prkC mutant in the hamster model 578 

The different phenotypes of the prkC mutant suggest that PrkC can play a role during critical 579 

steps of the infectious cycle of C. difficile (4). To determine a possible role of PrkC in CDI, 580 

we compared the virulence of the WT strain and the ∆prkC mutant in the acute Golden Syri-581 

an hamster model of infection. Despite a trend towards a delay in the death of the hamsters 582 

infected with the prkC mutant, no significant difference was observed for the average time of 583 

post challenge survival between hamsters infected with the WT and the ∆prkC mutant 584 

strains (Fig 9A). When we monitored the daily level of gut colonization of the WT and the 585 

∆prkC mutant, we found no significant difference in the average level of gut colonization the 586 

day the hamster died as determine by the average CFU per g of feces for each hamster (Fig 587 
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9B). However, a significant change in gut colonization was observed between the two strains 588 

40 h post infection (Fig 9C). Despite the fact that the ∆prkC mutant has a delay in gut colo-589 

nization, this delay has no significant effect on the virulence in this infection model. 590 

 591 

Discussion 592 

In this work, we showed that the prkC mutant of C. difficile has pleiotropic phenotypes 593 

such as an increased sensitivity to various antimicrobial compounds (CAMPs, lysozyme, 594 

DOC, ß-lactams), modifications in motility, cell aggregation and biofilm formation, and also 595 

changes in cell morphology and septum formation or localization. The increased sensitivity 596 

to several antimicrobial compounds detected for the C. difficile ∆prkC mutant has been ob-597 

served in other firmicutes. The prkA mutant of L. monocytogenes is more sensitive to lyso-598 

zyme and several CAMPs (58) while the ireK mutant of E. faecalis has an increased sensi-599 

bility to bile and cholate (45) but not to DOC as observed for the C. difficile ∆prkC mutant. 600 

The inactivation of the PASTA-STKs in S. pneumoniae, S. pyogenes, E. faecalis, L. mono-601 

cytogenes and S. aureus results in an increased susceptibility toward ß-lactams but the extent 602 

and pattern of the effects vary among species and strains (18, 45, 58, 59). These specific 603 

patterns of sensitivity observed for the PASTA-STK mutant for each firmicute might be as-604 

sociated with differences in the targets phosphorylated by the PASTA-STK, in the penicil-605 

lin-binding proteins (PBPs) and in their affinity for the different ß-lactams. As observed in 606 

B. subtilis and S. aureus (18, 42), the PrkC kinase of C. difficile controls biofilm formation 607 

under cell-membrane stresses conditions. Several factors probably contribute to the in-608 

creased biofilm formation in the ∆prkC mutant in the presence of DOC or polymixin B. This 609 

may include a decreased motility, an increased sedimentation and changes in the amount of 610 

CWPs that modify adhesive properties of the cell surface. For example, the Cwp84 protein, 611 

which is less abundant in the ∆prkC mutant is known to negatively control biofilm formation 612 

(60). In addition, premature autolysis by the ∆prkC mutant probably releases eDNA earlier 613 

in presence of DOC resulting in the increased biofilm formation observed at 24 h for the 614 

mutant (29). By controlling cell lysis, PrkC seems able to affect biofilm formation in re-615 

sponse to cell membrane stresses. 616 

Changes in the homeostasis and the integrity of the cell envelop might explain most of the 617 

phenotypes of the C. difficile ∆prkC mutant including modification of cell shape that is de-618 

termined by the orderly processing and assembly of each cell wall component (53, 61, 62). 619 

The absence of PrkC probably modifies the abundance, composition and/or structure of 620 

component(s) of the cell envelop, including the PG, the glycopolymers (PSII and/or LTA-621 
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PSIII) and/or cell-wall associated proteins (56). In other Gram-positive bacteria, PASTA-622 

STK phosphorylates enzymes involved in PG and/or teichoic acid synthesis, modification, 623 

assembly and/or turnover. This includes enzymes of the Glm pathway, Mur enzymes, MviM, 624 

a flippase involved in the transport of the lipid II anchored compounds across the membrane, 625 

a penicillin-binding protein, LTA synthetases but also transcriptional regulators such as 626 

WalR-WalK and GraR that control cell wall metabolism (17, 18, 63). In C. difficile, we did 627 

not detect a transcriptional effect of the prkC deletion on genes encoding enzymes involved 628 

in the synthesis of envelop components (E. Cuenot, unpublished data). These results strongly 629 

suggest that PrkC does not act by modifying the activity of a transcriptional regulator but 630 

rather by phosphorylating one or several protein(s) directly or indirectly controlling the syn-631 

thesis, assembly or turnover of at least one component of the envelop.  632 

Teichoic acids play a role in protecting bacteria from stressful conditions by modifying 633 

the properties of the cell surface. Changes in teichoic acids resulted in phenotypes similar to 634 

those we observed in the ∆prkC mutant. This include increased ß-lactam susceptibility, au-635 

tolysis, modification of cell morphology and defect in septa positioning and numbers (53, 636 

64). In C. difficile, the biosynthesis of the PSII, its properties as well as the phenotypes asso-637 

ciated with defect in PSII are poorly studied (32, 34). Furthermore, less information is avail-638 

able on atypical LTA (32). However, we noted that the ∆prkC mutant shares common phe-639 

notypes with the lcpB mutant encoding a protein involved in tethering PSII (34) that includes 640 

elongated cell, presence of multiple septa and increased ability to form biofilms (34). While 641 

the structure of PSII is not altered in the ∆prkC mutant, we observed a slightly reduction in 642 

the amount of PSII anchored to the cell wall and an increased quantity in PSII released in the 643 

supernatant of the ∆prkC mutant. These changes in PSII localization might be caused by the 644 

dysregulation of PSII synthesis/anchorage or the production/assembly of another cell enve-645 

lope component such as PG in the absence of PrkC. Indeed, anchoring of the PSII to PG is 646 

probably affected by the reduced amount of PG detected in the ∆prkC mutant.  647 

As observed for L. monocytogenes and E. faecalis, C. difficile is inherently resistant to 648 

cephalosporin and PASTA-STK inactivation leads to a robust increase in sensitivity towards 649 

these antibiotics that target PG synthesis by inactivating PBPs (45, 65). In C. difficile, we 650 

showed that the kinase activity of PrkC is required for the high level of resistance to cepha-651 

losporin. The sensitivity of the ∆prkC mutant to teicoplanin, an antibiotic that affects trans-652 

glycosylation by PBPs and to bacitracin that interferes with PG synthesis through its role on 653 

lipid II recycling also suggests a possible role for this kinase in controlling PG metabolism 654 

(66). Other phenotypes such as lysozyme resistance or autolysis are also related to PG struc-655 
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ture or metabolism. However, we failed to detect any modification in the composition of PG, 656 

in reticulation of PG, 3-3 to 4-3 cross-link ratio or PG deacetylation under our experimental 657 

conditions. Changes to these would have offer, to a certain extent, an explanation for the 658 

increased sensitivity to cephalosporin and lysozyme. Nevertheless, it is possible that local-659 

ized and/or subtle changes in PG composition occur at the septum, which is where PrkC is 660 

localized during growth. These changes would be difficult to detect. The main difference 661 

between the ∆prkC and the WT is a decrease in the total amount of PG. This might be linked 662 

to a reduced size of the glycan chains formed. It is interesting to note that proteins potential-663 

ly involved in PG metabolism are also detected in different amount in the cell wall of the 664 

WT and ∆prkC mutant strains (Table 2). All these results suggest that PrkC has an effect 665 

directly or indirectly on PG synthesis or turnover in C. difficile. In L. monocytogenes, it has 666 

been suggested that the PASTA kinase might specifically regulate PBPs resulting in cepha-667 

losporin resistance(58). In Enterococcus faecium, mutants in class A PBPs are sensitive to 668 

cephalosporins and suppressor mutations that restore cephalosporin resistance are found in 669 

ireK and ireP encoding a STK and a STP, respectively (67). In E. faecalis, IreB negatively 670 

controls cephalosporin resistance  and IreB is a small protein of unknown function and the 671 

only substrate of IreK kinase identified to date (68). However, the molecular mechanisms 672 

linking IreB, IreK and maybe PBPs that could explain their role in the control of cephalo-673 

sporin resistance remain unknown. Interestingly, CD1283, the IreB-like protein of C. dif-674 

ficile, contains one threonine (T7) and this residue is phosphorylated in IreB of E. faecalis. 675 

CD1283 might contribute to the regulatory pathway downstream of PrkC. In addition, the 676 

PrkC-mediated phosphorylation of proteins controlling cell division and the synthesis of cell 677 

envelop components is another interesting hypothesis. Indeed, PrkC is localized at the sep-678 

tum and the deletion of the prkC gene affects C. difficile cell morphology with elongated 679 

cells, abnormal septum localization and defect in cell separation. In S. pneumoniae and other 680 

streptococci, ∆stkP mutants have longer cells than the WT and a modified shape and exhibits 681 

cell division and separation defects (69). Several proteins involved in cell division such as 682 

DivIVA, MapZ, GspB or FtsZ are phosphorylated by the PASTA-STKs in B. subtilis, S. 683 

pneumoniae or S. aureus (17, 18, 69). In S. pneumoniae, phosphorylation of DivIVA con-684 

trols cell shape and the localization of PG synthesis machinery required for cell elongation 685 

and cell constriction (69). The phosphorylation by PrkC of an orthologous of one of these 686 

proteins, especially DivIVA, could explain several cell morphology associated phenotypes 687 

observed for the prkC mutant. Altogether, our results indicate that the PASTA-STK of C. 688 
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difficile, PrkC, is probably involved in the control of the envelop biogenesis and/or cell divi-689 

sion.  690 

Finally, the virulence of the ∆prkC mutant is similar to that of the WT strain while a col-691 

onization delay of the hamster gut is observed for the mutant. This can be explained by a 692 

global increased in sensitivity of the ∆prkC mutant to antimicrobial compounds and the pos-693 

sible changes in its cell envelop properties. Our results highlight the involvement of PrkC in 694 

controlling several processes corresponding to critical steps of CDI including resistance  to 695 

DOC, known to inhibit growth of vegetative cells in the gastrointestinal tract (4), to lyso-696 

zyme, a critical component of the innate immune system and to CAMPs produced by the 697 

microbiota and/or by the host (3) that are compounds present in the hamster model. Fur-698 

thermore, dissecting the role of PrkC in controlling the resistance to antibiotics promoting 699 

CDI such as cephalosporins (1) could pave the way to new strategies for the prevention of 700 

these infections. 701 
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 711 

Table 1. MIC of the strain 630∆erm and of the ∆prkC mutant for antibiotics targeting 712 

cell wall and CAMPS 713 
Compound tested MIC (µg/ml) Median-fold 

sensitization 630∆erm ∆prkC 

Antibiotics targeting cell wall   

Vancomycin 1.5 0.75 2 

Teicoplanin 0.19 <0.016 >12 

Amoxicillin 4 1 4 

Imipenem 6 1.3 4 

Cefoxitine >256 44 >6 

Ceftazidime 60 3 20 

Cefepime 70 4 17.5 

Cefotaxime 128 16 8 

Antimicrobial peptides   

Polymixin B 340 55 6 

Bacitracin 550 25 22 

Nisin 140 30 4.5 

MICs for antibiotics were determined using E-test with the exception of cefotaxime. 714 
The MICs for cefotaxime and antimicrobial peptides were determined by the method of dilution. 715 

 716 
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Table 2. Change in cell wall associated proteins in C. difficile between the 630∆erm 717 

strain and the ∆prkC mutant. 718 

Gen ID name function Fold-change 

 630∆erm/ 

∆prkC* 

-Log 
(P-value) 

Detected in 

surface 

proteome 

Cell-wall associated proteins CWB2 motif    

Down in ∆prkC     

CD1233 cwp26 Cell wall binding protein of skin element 31.3 2.7  

CD1469 cwp20 Cell-wall penicillin-binding protein 6.7 6.5  

CD2518 cwp29 Cell-wall binding protein 6.4 4.6  

CD2795 cwp11 Cell-wall binding protein 6.1 6.5  

CD0440 cwp27 Cell-wall binding protein 5.1 4.3  

CD2735 # cwp14  Cell-wall binding protein (also SH3) 4.8 5.2  

CD2798 cwp9 Cell-wall binding protein 4.7 4.5  

CD2767 cwp19 Cell-wall binding protein, autolysin 4.6 5.9  

CD1803 cwp23 Cell-wall binding protein 4.4 4.9  

CD2786 cwp5 Cell-wall binding protein 4.4 5.4  

CD1751 cwp13 Cell-wall binding protein, protease 4.2 5.4  

CD2787 cwp84 Cell-wall binding protein, protease 4.0 5.4 + 

CD2193 cwp24 Cell-wall binding protein, glucosamini-

dase domain 
3.9 4.4 + 

CD0844 cwp25 Cell-wall binding protein 3.9 5.9 + 

CD3192 cwp21 Cell-wall binding protein 3.9 6.8  

CD2789 cwp66 Cell-wall binding protein 3.8 4.7  

CD2791 cwp2 Cell-wall binding protein 3.7 6.6 + 

CD2793 slpA Precursor of the S-layer proteins 3.6 4.90 + 

CD2713 # ldtcd2, 

cwp22 

Cell-wall binding protein, L,D-

transpeptidases 
3.6 5.1  

CD2794 cwp12 Cell-wall binding protein 3.6 5.6  

CD0514 cwpV Hemagglutinin/adhesin 3.4 4.8 + 

CD1987 cwp28 Cell-wall binding protein 3.1 1.5  

CD1035 cwp16 Cell-wall binding protein, amidase do-

main 
3.1 5.7  

CD1036 cwp17 Cell-wall binding protein, amidase do-

main 
2.9 3.3  

CD2796 cwp10 Cell-wall binding protein 2.8 4.8  

CD2784 cwp6 Cell-wall binding protein, amidase do-

main 
2.8 3.6 + 

CD1047 cwp18 Cell-wall binding protein 2.4 3.5  

CD2799 cwp8 Cell-wall binding protein 2.1 4.0  

Up in ∆prkC     

CD2782 cwp7 Cell-wall binding protein 0.2 2.1  

SH3_3 motif    

Down in ∆prkC     

CD0183 #  Putative cell-wall hydrolase 10.2 1  

CD2768 #  Putative cell-wall hydrolase 3.8 2.9  

CD1135 #  Putative endopeptidase  3 4.8  

CD2402 #  Putative cell wall hydrolase phospha-

tase-associated protein 
2.3 2.6  

PG4 motif    
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Up in ∆prkC     

CD1436  Putative hydrolase^  0.2 2.4  

CD2963# ldtcd1 L,D-transpeptidases^  0.3 2.5  

CD2149  Putative vancomycin resistance protein, 

VanW family^  
0.3 1.1  

# cell wall metabolism 719 
*FDR<0.05 720 
^protein containing one trans-membrane domain 721 
SH3 domain (PF08239), CWB 2 motif (PD04122) and PG4 motif (PF12229) 722 
 723 

Figure Legend 724 

 725 

Figure 1. Organization, localization and kinase activity of the PrkC protein.  726 

A. Organization of the domains of C. difficile CD2578-PrkC. PrkC contains a cytoplasmic 727 

kinase domain in N-terminal part (brown), a trans-membrane (TM) segment, two PASTA 728 

domains (green) and an atypical SGN (Ser, Gly, Asn) rich domain in C-terminal part (pink). 729 

The conserved lysine residue (K39) within the ATP-binding P loop of the kinase that is re-730 

quired for phosphotransfer is indicated. 731 

B. Localization of the PrkC-HA tagged protein. Cells expressing prkC fused to HA were 732 

grown in the presence of 15 ng/ml of ATc, and harvested during exponential growth. Sam-733 

ples were fractionated into membrane (Mb) and cytoplasm (Cy) fractions. Protein fractions 734 

were analyzed by western blot using an antibody raised against HA. 735 

C. Localization of the SNAP-PrkC fusion during growth. The SNAP-PrkC protein was pro-736 

duced during exponential growth phase in the presence of 50 ng/ml ATc. After labeling with 737 

the TMR-star substrate, PrkC-SNAP localization was analyzed by fluorescence microscopy. 738 

AF (autofluorescence). The scale bar represents 5 μm. 739 

D. Western blot performed after fractionation in a soluble fraction (1) and an insoluble frac-740 

tion (2) obtained from exponential phase cultures of the WT, the ∆prkC mutant, the com-741 

plemented strain and the ∆prkC mutant carrying pDIA6103-prkC-K39→A (K→A). An α-P-742 

Thr antibody was used to detect phosphorylated threonine. We indicated by red arrows the 743 

bands detected in the WT strain that disappeared in the ∆prkC mutant.  744 

 745 

Figure 2. Genetic organization of the prkC locus 746 

A. Schematic representation of the gene cluster present upstream of prkC. The locus between 747 

CD2590-dapF and prkC includes genes encoding proteins involved in translation, transcrip-748 

tion, DNA replication, metabolism and membrane proteins. The genome-wide TSS mapping 749 

(25) indicated the presence of a promoter upstream of dapF. The extended -10 box and the 750 

TSS are indicated in bold. 751 

B. PCR realized with primers annealing in prkC and stp (IMV936 and IMV908, line 1 and 2) 752 

or stp and rlmN (IMV935 and IMV907, line 3 and 4) either on RNA extracted from 753 

630∆erm (line 1 and 3) or on cDNA synthesized by reverse transcription from the same 754 

RNA using primer IMV843 (line 2 and 4). Smart Ladder (200-10,000 bp).  755 

 756 

Figure 3. Morphology of the ∆prkC mutant 757 

A. Fluorescence microscopy was carried out on the WT, the ∆prkC mutant and the comple-758 

mented (Comp) strains. Membranes and DNA were visualized with FM4-64 (red) and DAPI 759 

(blue), respectively. A blue arrow showed an elongated cell and green arrows non-separated 760 

cells. The white square indicates the presence of a septum with an aberrant structure. Scale 761 

bars represent 5 μm.  762 
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B. Cell size distribution for the WT, the ∆prkC mutant and the complemented (Comp) 763 

strains. The measurement was done on cells labeled with FM4-64 and DAPI. Means and 764 

errors of the means were calculated after the measurement of at least 600 cells for each 765 

strain. The analysis was performed with the software Imaje J. 766 

C. Presence of aberrant septation and anucleated minicells in ΔprkC mutant cells. Fluores-767 

cence microscopy of cells staining with FM4-64 and DAPI revealed the presence of aberrant 768 

septum (yellow arrows) and anucleate minicells (white arrows) in the ∆prkC mutant. Scale 769 

bars represent 5 μm. 770 

  771 

Figure 4. Presence of abnormal septa in the ∆prkC mutant cells 772 

A. TEM pictures showing normal septal structure in the 630∆erm (WT), the ∆prkC mutant 773 

and the complemented (Comp) strains. Scale bars represent 100 nm. 774 

B. TEM pictures showing aberrant septal structure in the ∆prkC mutant cells. In the right 775 

panel, we can distinguish the beginning of the synthesis of two septa (white arrows) has be-776 

gun near an apparent normal septum. Scale bars represent 200 nm. 777 

 778 

Figure 5. prkC deletion increases sensitivity to detergents and autolysis 779 

A. Resistance to SDS stress of the ∆prkC mutant, the 630∆erm (WT) and the complement 780 

strains (Comp) was tested on BHI plates containing 0.006 % of SDS. This experiment was 781 

performed in triplicate and this plate is representative of the results obtained. 782 

B. Growth of the WT strain (black circle), the ∆prkC mutant (white circle) and the comple-783 

mented strain (white square) in 24-well microplates containing TY medium in the presence 784 

of 0.03% DOC. A growth curve without DOC is presented in Fig S3. 4 independent cultures 785 

were done. 786 

C. Autolysis of the WT (black circle), ∆prkC (white circle) and complemented (black 787 

square) strains in the presence of 0.01% Triton X-100. The OD600nm of the samples incubated 788 

at 37°C was determined every 5 min until complete cell lysis was reached. 4 independent 789 

experiments were done. 790 
 791 

Figure 6. Sensitivity of the ∆prkC mutant to antibiotics targeting cell-wall and to lyso-792 

zyme. 793 

A. Sensitivity to antibiotics targeting the cell wall. Histograms representing the diameters of 794 

growth inhibition area after 24 h of incubation on BHI plates for the 630∆erm strain 795 

pDIA6103 (WT, black), the ∆prkC mutant pDIA6103 (medium grey), the complemented 796 

strain (Comp, dark grey) and the ∆prkC mutant expressing PrkC-K39A (pale grey). We used 797 

antibiogram disks containing Ticarcillin 75 μg, Amoxicillin 25 μg, Imipenem 10 μg, 798 

Ceftazidime 30 μg, Cefepime 30 μg or Erythromycin 15 μg. Cefoxitin was tested at 100 μg. 799 

The results presented correspond to 7 experiments (Ticarcillin, Amoxicillin, Imipenem) or 4 800 

experiments for cephalosporins. Data were analyzed by t test. * indicates P<0.05. 801 

B. Sensitivity to lysozyme was determined on Pep-M plates. 800 μg of lysozyme was added 802 

to a 6-mm disk. Histograms representing the diameter of growth inhibition measured for the 803 

630∆erm pDIA6103 (WT, black), the ∆prkC mutant pDIA6103 (medium grey), and the 804 

complemented strain (Comp, dark grey). The experiment was performed in quadruplicate. 805 

Data were analyzed by t test. * indicates P<0.05. 806 

 807 

Figure 7.  Sedimentation, biofilm formation and motility of the ∆prkC mutant  808 

A. Motility test on 0.3% agar BHI plates. The plates shown are representatives of 3 in-809 

dependent tests. 810 

B and C Mean values of the OD570nm measured after crystal violet staining of the mass of 811 

biofilm obtained after 24 h in presence of 20 μM polymixin B (B) or 0.01% DOC (C). Error 812 
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bars show standard deviation of three independent experiments performed in triplicate. Data 813 

were analyzed by t test. P values were 0.031 and 0.0045 for polymixin B (B) and DOC (C), 814 

respectively. On the picture, crystal violet staining revealing the amount of biofilm formed 815 

after 24 h corresponding to the values represented above.  816 

D. Detection of e-DNA in the matrix of 24 h and 48 h DOC-induced biofilms formed by the 817 

WT strain and the ∆prkC mutant. The experience was done in triplicate. We presented a gel 818 

representative of the results obtained. 819 

 820 

Figure 8. Impact of prkC deletion on PSII localization and PG and PSII production  821 

A. Immunoblot detection of PSII using a serum antibody raised against this glycopolymer 822 

(34) in supernatants of the WT, ∆prkC and complemented strains. For each sample, we nor-823 

malized by using the OD600nm of the corresponding culture. ND, not diluted.  All immunob-824 

lots are representative of at least four replicates. 825 

B and C. Quantification of the PG (B) and PSII (C) present at the surface of the WT and the 826 

∆prkC mutant strains. The values were normalized to the WT levels considered as 1. Error 827 

bars represents standard deviation of at least 4 independent experiments. 828 

 829 

Figure 9. prkC deletion affect gut establishment and not virulence 830 

A. Average survival time (h) post-infection for hamsters challenged with 630∆erm or ∆prkC 831 

spores. 832 

B and C. Average quantity of CFU per g of feces determined the day of animal death (B) or 833 

40 h post infection (C) for hamsters challenged with 630∆erm or ∆prkC spores. The average 834 

values (B) were calculated with 16 and 12 hamsters for the WT strain and the ∆prkC mutant, 835 

respectively due to the absence of feces at this time point for four hamsters. 836 

The average values (C) were calculated with the totality of hamsters for both groups. Data 837 

were analyzed by a Mann-Whitney test. * indicates P<0.05. The sensitivity threshold of the 838 

method is 103 g/feces. 839 
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