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Marc Lecuit,7 Ken Forbes,8 Norval Strachan,5 Kathie Grant,1,2 Eva Møller-Nielsen3 and Timothy J. Dallman1,2,*

Abstract

We present the LiSEQ (Listeria SEQuencing) project, funded by the European Food Safety Agency (EFSA) to compare Listeria

monocytogenes isolates collected in the European Union from ready-to-eat foods, compartments along the food chain (e.g.

food-producing animals, food-processing environments) and humans. In this article, we report the molecular

characterization of a selection of this data set employing whole-genome sequencing analysis. We present an overview of the

strain diversity observed in different sampled sources, and characterize the isolates based on their virulence and resistance

profile. We integrate into our analysis the global L. monocytogenes genome collection described by Moura and colleagues in

2016 to assess the representativeness of the LiSEQ collection in the context of known L. monocytogenes strain diversity.

DATA SUMMARY

All FASTQ reads from this study have been deposited in the
National Center for Biotechnology Information short-read
archive (SRA) under the BioProject PRJNA475189.

INTRODUCTION

Listeria monocytogenes is an opportunistic pathogen that
causes a range of illnesses from mild febrile gastroenteritis
to more severe invasive infections, including bacteraemia
and meningitis (listeriosis) [1]. Whilst listeriosis is a rela-
tively rare disease, it has a high fatality rate of 20–30% and,
therefore, the burden of the disease is high [2]. Some popu-
lations have an increased susceptibility, including the
elderly, immunosuppressed patients, pregnant women, their
foetuses and neonates [1]. The majority of cases appear to
be sporadic, although outbreaks are not uncommon. In the
European Union (EU) in 2016, a total of 2536 confirmed
human cases were reported by 28 member states,

corresponding to an EU notification rate of 0.47 cases per
100 000 population. The highest notification rates were
observed in Finland, Belgium, Germany, Slovenia and Den-
mark, with 1.22, 0.92, 0.85, 0.73 and 0.70 cases per 100 000
population, respectively [3].

Cases of listeriosis are frequently associated with the con-
sumption of contaminated ready-to-eat (RTE) food prod-
ucts, with meat and fish products and soft and semi-soft
cheeses often identified as vehicles of infection [2]. L. mono-
cytogenes can be found in both raw foods and in processed
foods that are contaminated during and/or after processing.
L. monocytogenes can survive and replicate at low tempera-
tures (with a minimal growth temperature of �2

�

C) and
has the capacity to persist in food-processing environments,
sometimes for years [4]. Contamination of food-processing
environments is often the route by which RTE food
becomes contaminated [5] and those foods with a relatively
long shelf life are of particular public-health concern [6].
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Identifying potential food vehicles and understanding how
foods become contaminated is paramount to developing
and implementing effective control and preventative meas-
ures, and the typing of L. monocytogenes isolates plays a cru-
cial role in such investigations [7–9].

An EU-wide baseline survey (BLS) was conducted in 2010
and 2011 to estimate the prevalence of L. monocytogenes
contamination in three RTE food categories at retail in
accordance with EU decision 2010/678/EU: packaged (not
frozen) smoked or gravad fish (3053 samples), packaged
heat-treated meat products (3530 samples) and soft or
semi-soft cheeses (3452 samples). The prevalence estimates
were published in 2013 [10]. The percentage of fish in the
EU contaminated with L. monocytogenes at the time of sam-
pling was 10.4% and at the end of shelf-life 10.3%, whilst
the level for contaminated meat and cheese samples at the
end of shelf-life was 2.07 and 0.47%, respectively. In the
EU, the proportion of smoked or gravad fish samples with a
L. monocytogenes count exceeding the level of 100 c.f.u. g�1

was 1.7% at the end of shelf-life. For meat products, this
proportion was 0.43%, whilst for the cheese it was 0.06%.

Several phenotypic and genotypic methods have been used
worldwide for typing L. monocytogenes. Traditionally, sero-
typing, based on the agglutination of somatic (O) and flagel-
lar (H) antigens, classifying L. monocytogenes into at least
13 serotypes, has been the first level of subtype discrimina-
tion [11]. However, as only three serotypes cause over 95%
of invasive infection, molecular typing methods are
employed for greater strain discrimination with PFGE
being, until recently, the gold-standard method for L. mono-
cytogenes [12].

Multilocus sequence typing (MLST) has been used to study
and describe the population structure and phylogeny of
many bacterial pathogens, and has shown that L. monocyto-
genes forms a structured population consisting of four
divergent lineages (I– IV) [11, 13]. Each lineage comprises
specific serotypes: with lineage I containing serotypes 1/2b,
3b, 4b, 4e and 7; lineage II, serotypes 1/2a, 1/2 c, 3a and 3 c;
lineage III, serotypes 4b, 1/2a, 4a and 4 c; and lineage IV, 4a
and 4 c. The genetic lineages have different, although at
times overlapping, genetic, phenotypic and epidemiological
characteristics with the majority of human illness caused by
strains in lineages I and II [11].

With the advent of whole-genome sequencing (WGS) tech-
nologies, entire bacterial genomes are now readily available
for analysis affording the highest level of strain discrimina-
tion, the ability to infer phylogenetic relationships and
access to a wealth of additional information such as viru-
lence and resistance markers. A recently developed core
genome MLST scheme has been described for L. monocyto-
genes by Moura and colleagues [7] encompassing 1748 loci,
which has been used to describe the global population struc-
ture of the species. Furthermore, WGS has been used in sev-
eral national studies for outbreak detection and
investigations, e.g. in Austria [14], Australia [15], the USA

[16], Denmark [17] and France [18]. The improvements in
strain resolution obtained with WGS analyses provided
robust genetic evidence for linking cases and more accurate
case definitions than PFGE, enabling cases to be ruled in or
out of outbreaks.

We present results derived from a study funded by the
European Food Safety Agency (EFSA) to compare L. mono-
cytogenes isolates collected in the EU from RTE foods, com-
partments along the food chain (e.g. food-producing
animals, food-processing environments) and humans. In
this article, we report the molecular characterization of a
selection of L. monocytogenes isolates from the above sour-
ces, and human clinical cases employing WGS analysis.

METHODS

Strain selection

A total of 1143 L. monocytogenes isolates were selected to be
part of the LiSEQ (Listeria SEQuencing) study. These
encompassed and included those from the EU-wide RTE
BLS [10] and were collected from: different compartments
of the food-production chain (n=200); sporadic clinical
cases (n=262) that were temporally and geographically
matched to the RTE BLS (n=353); and isolates associated
with outbreaks (n=105). The selected BLS isolates consisted
of 353 strains originating from 22 member states and 1
non-member state with 297, 49 and 7 strains isolated,
respectively, from RTE fishery products, meat products, and
soft and semi-soft cheeses. To compensate for the excess of
BLS isolates from RTE fish products, additional isolates
(n=223) from RTE meat products and cheeses, collected
during the years 2010–2011, were obtained from eight dif-
ferent EU member states to ensure a more equal distribu-
tion of isolates across each of the three RTE food categories.
Clinical isolates from assumed sporadic human cases col-
lected during the BLS period 2010–2011 were also included.
Selection priority was according to availability of the isolate
and the complementary typing data and country disease
incidence. Additionally, isolates from raw food sampled at
fish, meat and milk-product production sites, as well as
environmental isolates from these sites, were also included.
Isolates associated with nine retrospective outbreaks,
including those from human cases and, where applicable,
the confirmed food source, were selected, representing

SIGNIFICANCE AS A BIORESOURCE TO THE

COMMUNITY

The LiSEQ (Listeria SEQuencing) genome collection rep-

resents a valuable resource of Listeria monocytogenes

for further study. It provides a framework to answer

questions on genetic diversity amongst different sources

assayed in this strain collection, as well as to explore

possible epidemiological links between isolates from

across Europe.
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outbreaks with different sources and occurring in different
geographical regions. A summary of the final set of strains
included in the project is given in Table 1 and a complete
table of meta data is provided in Table S1 (available with the
online version of this article).

To assess the representativeness of the genetic diversity
afforded by the isolates in this study, the LiSEQ results
were placed into a global context via comparison with the
L. monocytogenes collection of 1696 genomes from Moura
and colleagues [7], which represent a larger geographically
distributed data set.

Sequencing and bioinformatics analysis

Bacterial isolate growth was harvested into a 96-well proc-
essing plate and treated with lysozyme at 37

�

C for 1 h, fol-
lowed by proteinase K overnight at 56

�

C with gentle
shaking. Lysates were heated to 95–100

�

C for 10min to
ensure inactivation of any non-lysed bacterial cells. Samples
were then treated with ribonuclease A for 15min at 37

�

C,
centrifuged and the supernatants transferred to an auto-
mated nucleic acid extraction platform, Qiagen’s QiaSym-
phony. The yield and purity of extracted DNA was assessed
using the Life Technologies Quant-iT high sensitivity 96-
well assay and the GloMax Multi+Detection and LabChip
DX systems. DNA was diluted to 10–30 ng µl�1.

Paired-end libraries were generated using the Illumina Nex-
tera XT sample preparation kit. Assessment of fragment
sizes was performed on the Perkin Elmer LabChip GX after
fragmentation and clean-up. After normalization, samples
were pooled and library quantification was performed using
the KAPA library quantification kit for Illumina sequencing,
on an ABI ViiA7 system. Paired-end sequencing was per-
formed on the Illumina HiSeq 2500 instrument using the
TruSeq Rapid SBS kit (200 cycle) and TruSeq paired-end
rapid cluster kit. The following cycle parameters were used
for sequencing: read 1 : 101, index read 1 : 8, index read 2 : 8
and read 2 : 101. RTA version 1.17.21.3 was used for genera-
tion of base call files. FASTQ creation and de-multiplexing via
CASAVA was performed on a dedicated high performance
cluster (HPC). FASTQ reads were quality trimmed using
Trimmomatic [19] with bases removed from the trailing
end that fell below a PHRED score of 30. If the read length
post-trimming was less than 50, the read and its pair were
discarded. If the post-trimmed yield was less than 150 meg-
abases, the sample was discarded. A kmer (a short string of
DNA of length k) based approach was used (https://github.
com/phe-bioinformatics/kmerid) to confirm the identity of
the sample and to ensure the sequence was free from con-
tamination. If any non-Listeria kmers were identified in the
FASTQ reads, the sample was discarded. All FASTQ reads from

Table 1. Summary of the strains included in the LiSEQ study

Country BLS Other foods Food-production chain Clinical, sporadic Outbreak Total

A 7 29 35 71

B 4 28 68 31 43 174

C 35 83 32 35 25 210

D 4 20 24

E 6 6

F 15 8 23

G 4 4 8

H 5 5

J 10 10

K 14 14

L 54 54

M 2 2

N 9 9

P 3 4 7

Q 33 100 23 156

R 4 4

S 4 4

T 4 20 5 29

U 62 62

V 6 28 34

W 7 15 22

X 38 34 35 32 139

Y 8 20 28

Z 15 13 20 48

Total 353 223 200 262 105 1143
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this study can be found in the National Center for Biotech-
nology Information short-read archive under BioProject
PRJNA475189.

The MLST sequence type (ST) as defined by the Pasteur
scheme [13] was extracted from each sequence using MOST

(https://github.com/phe-bioinformatics/MOST) [20] and
assigned a clonal complex (CC) in accordance with the
Institut Pasteur international MLST database for L. monocy-
togenes designation (http://bigsdb.pasteur.fr/listeria). One
preselected isolate was found to be Listeria innocua; thus, it
was excluded from further analysis.

Short reads were assembled using Spades assembly (ver-
sion 3.5.0) run with Kmer 21, 33, 55, 77, 83, and the
‘only-assembler’ option [21]. Core genome SNP phyloge-
nies were constructed on the obtained assemblies using
Parsnp [22].

Resistance to tetracycline, penicillin, quaternary ammo-
nium sanitizers and antiseptics (such as benzalkonium
chloride) were assayed in silico from the genomes of the
isolates in this study. Tetracycline resistance was inferred

by the presence of tetM and tetS, and penicillin resis-
tance by the presence of penA. Resistance to quaternary
ammonium sanitizers and antiseptics was inferred by
the presence of the bcrABC locus, the Tn6188_qac trans-
poson, and/or the efflux pumps emrE [23] and qacA
[24]. For detection of gene presence, ‘paired-end’ reads
of each strain were mapped against the reference gene
sequences using Bowtie2 v.2.2.5. [25]. The resulting
alignment SAM files were then converted into BAM files
and sorted by using SAMtools [26]. Genes were defined
as detected if they covered greater than 80% of the
query sequence with greater than 80% nucleotide iden-
tity. Genes with coverage less than 100% were also clas-
sified as truncated.

A comprehensive set of 115 genes identified as putative or

confirmed virulence factors were used as described in two
previous studies [27; 28]. The gene sequences were extracted

from L. monocytogenes EGD-e (accession no.

NC_003210.1) except for the Listeria pathogenicity island
(LIPI)-3/LIPI-4 cluster of genes, which was extracted from

L. monocytogenes F2365. Genes were detected as above.

Fig. 1. (a) Core genome SNP maximum-likelihood phylogeny of L. monocytogenes genome sequences with the clades annotated by 7

loci MLST CC. (b) Minimum spanning tree of the isolates included in this study as described by 7 locus MLST. Each circle represents a

single ST that is numbered on the tree. Major CCs defined by single locus variants are shaded in grey. The number of loci that differ

between STs is labelled on the branches.
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RESULTS

Population structure

Of the 1143 isolates sequenced, 42 different CCs and 13 sin-
gleton STs (unassigned CCs) were identified. One isolate
was L. innocua; thus, it was excluded from further analysis.
One isolate could not be assigned to any ST or CC due to an
incomplete MLST profile. Ten CCs accounted for 70% of
the isolates (Table 2). The MLST population structure of the
isolates in this study is further described as a minimum
spanning tree (Fig. 1b). All isolates in the study clustered in
either lineage I or II and the population structure based on
whole-genome SNPs is displayed in the phylogenetic tree in
Fig. 1(a). From the phylogenetic analysis, it can be seen that
there is a clear delineation between lineages and the MLST
CCs within lineages.

There was an uneven distribution in terms of origin of
isolates (food, food-processing environment and clinical)
between the two lineages (Chi squared test, P value
5�10�29). Across the CCs, within each lineage there was
also an uneven distribution of food, food-processing
environment and clinical isolates (lineage I, Chi squared
test, P value 8.55�10�24; lineage II, Chi squared test, P
value 1.95�10�30).

A total of 51% of the isolates in lineage I were from
humans, compared to only 19% of the isolates from lineage
II. The proportion of food isolates in lineage I was 37% and
in lineage II it was 69%. Across the sampled population,
some CCs were significantly enriched with food isolates
(e.g. CC121) and others were more associated with human
cases (CC1, CC4) (Fig. 2). Some CCs were more representa-
tive of a food category, for example CC121 for fish/fishery
products and CC101 for milk/milk products (Fig. 3).

To assess how the sampled genetic diversity in this study
corresponded to that described in a global context, the 1696
genomes from the study by Moura et al. [7] were integrated
into the analysis. Fig. 4 shows a core SNP phylogeny of the
combined LiSEQ and global data set. The LiSEQ isolates
cluster within the global diversity and all major CCs are rep-
resented in the study data. A similar distribution of food
and clinical isolates are also observed in the data set, with a
predominance of clinical isolates found within lineage I and
an excess of food isolates found within lineage II (Figs S1
and S2).

Resistance and virulence

Table 3 shows the percentage of strains in the study
collection harbouring the assayed resistance genes. The

Table 2. The CCs identified and the number of isolates by isolation context and listed in the strain selection information

Minor CCs (i.e. CCs with less than 10 isolates) included CC398, CC11, CC193, CC224, CC403, CC54, CC177, CC19, CC220, CC29, CC77, CC217, CC26,

CC379, CC207, CC218, CC388, CC475, CC88, CC89, ST184, ST200, ST32, ST382, ST392, ST560, ST570, ST602, ST736, ST773 and ST839 (ordered

according to occurrence).

CC Lineage RTE food Food-chain processing Clinical, sporadic Outbreak related Total

CC121 II 144 37 6 0 187

CC9 II 81 15 14 0 110

CC8 II 69 5 24 0 98

CC1 I 10 4 50 8 72

CC2 I 19 29 20 0 68

CC101 II 10 41 16 0 67

CC6 I 30 3 28 0 61

CC155 II 32 1 8 13 54

CC7 II 16 4 16 8 44

CC14 II 13 2 9 13 37

CC4 I 1 1 10 24 36

CC87 I 10 0 4 19 33

CC31 II 24 7 1 0 32

CC3 I 18 7 6 0 31

CC37 II 9 15 5 0 29

CC204 II 17 3 1 0 21

CC59 I 10 0 4 4 18

CC5 I 7 6 4 0 17

CC21 II 13 0 2 0 15

CC20 II 8 2 2 0 12

CC415 II 0 2 0 9 11

CC18 II 0 6 4 0 10

Minor CCs LI=32

LII=47

35 9 28 7 79

Total 576 199 262 105 1142
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resistance profile for each strain is included in Table S2.
Less than 1% of isolates harboured tetracycline-resis-
tance genes (tetM) with no detection of tetS. Benzalko-
nium chloride-resistance genes were found with 18.5%
of isolates carrying the Tn6188_qac transposon and
approximately 5% of isolates carrying bcrABC loci. Less
than 1% of isolates harboured the efflux proteins emrE
and qacA, whilst the efflux protein qacE was found in
18.3% of isolates and generally found in conjunction
with Tn6188_qac. No isolates showed the presence of
penA, which is involved in resistance to penicillin.

The proportion of resistance determinants observed in the
LiSEQ data displays a high correlation with the Moura et al.
[7] data set. The highest percentage difference was observed
with the gene qacE and the transposon Tn6188_qac efflux
mediated benzalkonium chloride resistance, which is
approximately 3% higher in the LiSEQ data set.

Table S2 shows the presence and absence of 115 putative
virulence markers across the strain collection. Of the 115
markers, 2 were absent across all isolates, conversely 92
markers were present in greater than 95% of isolates. Fig. 5
shows for each virulence marker the proportion present in
linage I and lineage II isolates, and Fig. 6 shows for each vir-
ulence marker the proportion present in clinical and non-
clinical isolates.

In total, 21 putative virulence markers had significant vari-
ability in their detection across the strain collection. As
described by Maury et al. [28], the Listeria pathogenicity
island 3 (LIPI-3) was found in 60% of isolates from lineage
I (ubiquitous in CC1, CC3, CC4 and CC6), but completely
absent in lineage II isolates. LIPI-3 loci 1119 (IIsP gene
LMOf2365_1119) showed a different presence and absence
profile to the other LIPI-3 alleles, being found in a minority
of lineage II isolates (12/187 CC121, 11/54 CC155, 14/98
CC8 and 11/110 CC9) in the absence of the other LIPI-3
loci. Conversely, in lineage I some isolates do not possess
LIPI-3 loci 1119 (IIsP gene) and have an otherwise intact
LIPI-3. The Listeria pathogenicity island 4 (LIPI-4) was
found in only 81 strains (0.07% of the data set). It was
detected in all the CC4 isolates that were tested, in agree-
ment with the findings of Maury et al [28], and also in all
the CC87 isolates that were investigated.

The known virulence surface protein Vip [29] was found
across all isolates in lineage I, but only in 70% of lineage II
isolates (absent in CC204, CC21, CC31 and CC37, and 1/43
of CC7 isolates and 3/98 CC8 isolates). Several putative vir-
ulence factors were found in a greater proportion in lineage
II isolates compared to lineage I isolates. These included the
internalins lmo2026 (absent in lineage I and ubiquitous in
CC155, CC18, CC20, CC204, CC21, CC37, CC415, CC7

Fig. 2. Distribution of CCs in RTE food and from human clinical infections.

Painset et al., Microbial Genomics 2019;5

6



and CC9 lineage II isolates) and inlF (absent in lineage I
and only absent in CC121 and CC14 of lineage II), which
have previously been shown to be detected variably in dif-
ferent serotypes [30]. The five gene locus termed the stress

survival islet (SSI-1) [31, 32], which has previously been
associated with growth of L. monocytogenes under sub-
optimal conditions, contributing to survival of certain
strains in food environments, was over-represented in

Fig. 3. Distribution of CCs from the three major food-product categories, including isolates from food-processing environments.

Fig. 4. Core SNP tree built with Parsnp showing lineages for L. monocytogenes. (a) The external ring shows the source of isolates. (b)

The external ring describes the study origin of the isolates: orange, from the study by Moura et al. [7]; and blue, from LiSEQ.
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lineage II isolates. However, when we consider the number
of CCs, this association is less clear. SSI-1 is present in CC3
and CC5 of lineage I, and conversely absent in lineage II
CCs 101, 121, 14, 20, 21, 415 and 7.

Ubiquitous amongst lineage II isolates was the rmlACBD L-
rhamnose biosynthesis loci (lmo1081 and lmo182) [33] and
gtcA [34], both of which are involved in L. monocytogenes
cell wall teichoic acid production. The former involved in

providing protection against the activity of antimicrobial
peptides and the later in teichoic acid glycosylation. The
autolysin aut (lmo1076), which has a proposed role in entry
of L. monocytogenes into non-phagocytic mammalian cells
[35], was found across all lineage II isolates, but only in
CC3, CC5, CC59 and CC87 of lineage I; however, the
shorter variant LMOF2365_RS00075 was found across all
lineage I isolates. Finally, the surface adhesion lapB required
for entry into mammalian cells is present across all lineages,
but absent in all isolates of CC31.

Loss of function through partial gene deletion or miss-sense

mutations is also known to be important in virulence atten-

uation. To explore this, genes with less than 100% coverage

of the query sequence were designated as truncated (see

Table S2). Several genes had a loss of function truncation in

lineage II but were found intact in lineage I, these included

the already described inlA deletions [28], as well as

lmo0257, the terminal SSI loci lmo0478, the autolysin gene

ami and the actin-assembly inducing protein precursor

gene actA. Conversely several genes were disrupted in line-

age I, but intact in lineage II isolates. These included the

internalins inlH, inlJ, lmo1290, the stress protein clpB and

the flagellar motor switch protein lmo0698.

Table 3. Percentage of isolates in the study harbouring the assayed

resistance genes

Gene Moura et al. [718]

(% detection)

LiSEQ

(% detection)

tetM 0.3 0.6

tetS 0 0

bcrA 4.6 4.5

bcrB 4.5 4.5

bcrC 4.5 4.4

emrE 0.8 0.3

qacA 0.2 0.5

qacE 14.9 18.7

Tn6188_qac 15.0 18.9

penA 0 0

Fig. 5. Scatter plot showing the proportion of each of the 115 putative virulence markers found in lineage I or lineage II (only signifi-

cant results have been labelled).
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DISCUSSION

The main objective of this study was to compare L. monocy-
togenes isolates collected in the EU from RTE foods, com-
partments along the food chain and from human cases, and
highlights the value of revisiting well-structured surveys. A
total of 1142 L. monocytogenes isolates were analysed,
including 333 human clinical isolates and 809 isolates from
the food chain.

Phylogenetic analysis showed a clear delineation between
L. monocytogenes lineages and between CCs within lineages.
The association of isolate type was unevenly distributed
across the genetic diversity, with CCs within lineage I
strongly associated with clinical cases and lineage II strongly
associated with isolates from food. The diversity and distri-
bution observed in this study were consistent with those
previously described in a globally representative data set
[28, 36–38].

As well as affording high-resolution typing and phyloge-
netic context, WGS provides immediate access to a wealth
of additional data. Antimicrobial resistance in Listeria sp.
has been studied in various food, environmental and clinical
settings [39, 40, 41, 42]. L. monocytogenes has generally
been shown to be more susceptible to antimicrobial agents
than other species in the genus, such as L. innocua [31]. In
this study, we found remarkable low-prevalence genes

encoding resistances to tetracycline (<0.1%) and penicillin
(1%). Genes conferring resistance to detergents and anti-
septics via efflux activity were detected at a prevalence
approaching 20%. Whilst it is encouraging that the isolates
in this study show potentially low levels of antimicrobial
resistance, it is important to remain vigilant for emerging
resistance. WGS allows antimicrobial-resistance monitoring
to be done at no additional cost if WGS is part of routine
microbial surveillance and, therefore, allows this potential
threat to be monitored going forward.

WGS data were also assessed for the presence of 115 puta-
tive markers of virulence. More than 80% of markers were
present in more than 95% of the isolates suggesting that
most putative markers described in the literature are ubiqui-
tous across L. monocytogenes lineages I and II. The majority
of markers not present in all isolates were over-represented
in food and/or lineage II isolates, with markers associated
with stress survival or cell wall modification being particu-
larly enriched. Conversely, the recently discovered Listeria
pathogenicity island 3 and the surface protein VIP were
more likely to be found in clinical and/or lineage I isolates.
Although most virulence markers were present in all strains,
it is not known whether the genes are expressed. Further
work is needed, including the determination of truncation
and non-sense mutations that have been shown to be associ-
ated with changes in virulence in particular that associated

Fig. 6. Scatter plot showing the proportion of each of the 115 putative virulence markers found in clinical or non-clinical isolates (only

significant results have been labelled).
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with the internalin genes [28]. Several truncations were
identified in virulence genes across the data set, with some
having an increased propensity for truncation dependent on
lineage.

The WGS data generated represents a valuable resource for
further studies. The LiSEQ isolates have all been typed using
current molecular methods and, thus, can be used to dem-
onstrate the back compatibility of WGS with historical data
and also to assess bioinformatic programmes that are able
to predict such typing results from WGS data. WGS has
allowed us to define the population of L. monocytogenes
from this study to an unprecedented resolution. It has pro-
vided the framework to answer questions on genetic diver-
sity amongst different sources assayed in this strain
collection, as well as to explore possible epidemiological
links between isolates.

Another application of WGS data is related to the improve-
ment of quantitative microbial risk assessment [43, 44]. It
has been recently proposed that more targeted risk assess-
ments focused on subpopulations that pose the greatest risk
should be performed, e.g. those that have an enhanced abil-
ity to survive or grow in the food chain or those considered
to be more pathogenic [44–46]. The characterization of
CCs, and virulence, stress and antibiotic markers of strains
circulating in the EU in RTE foods, as described in this
study, provides the opportunity for improved risk assess-
ments for L. monocytogenes exposure [2].
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