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Insecticide resistance has been reported to impact the interactions between

mosquitoes and the pathogens they transmit. However, the effect on

vector competence for arboviruses still remained to be investigated. We

examined the influence of two insecticide resistance mechanisms on vector

competence of the mosquito Culex quinquefasciatus for two arboviruses,

Rift Valley Fever virus (RVFV) and West Nile virus (WNV). Three Cx. quin-
quefasciatus lines sharing a common genetic background were used: two

insecticide-resistant lines, one homozygous for amplification of the Ester2

locus (SA2), the other homozygous for the acetylcholinesterase ace-1 G119S
mutation (SR) and the insecticide-susceptible reference line Slab. Statistical

analyses revealed no significant effect of insecticide-resistant mechanisms

on vector competence for RVFV. However, both insecticide resistance mech-

anisms significantly influenced the outcome of WNV infections by

increasing the dissemination of WNV in the mosquito body therefore lead-

ing to an increase in transmission efficiency by resistant mosquitoes. These

results showed that insecticide resistance mechanisms enhanced vector com-

petence for WNV and may have a significant impact on transmission

dynamics of arboviruses. Our findings highlight the importance of under-

standing the impacts of insecticide resistance on the vectorial capacity

parameters to assess the overall consequence on transmission.

1. Introduction
Over the last decades, arthropod-borne viruses (arboviruses) have taken the

centre stage due to reemergence in endemic regions and new epidemic out-

breaks in naive countries. There are numerous arboviruses spanning different

viral families and genera such as Dengue, West Nile and Zika viruses (family

Flaviviridae, genus Flavivirus), Chikungunya virus (family Togaviridae, genus

Alphavirus) and Rift Valley Fever virus (RVFV) (family Phenuiviridae; genus

Phlebovirus) that affect human health worldwide [1]. In the absence of vaccines

and specific treatments, the control of mosquito populations is the only afford-

able measure to disrupt the transmission of arboviruses. For this concern,

insecticide treatments have been and are still highly used to control mosquito

populations. However, the overuse of these insecticides for public health and

agricultural concerns increases selective pressures, leading to the selection

and spread of resistance genes in mosquito populations [2–4].

Two main mechanisms are responsible for high level of resistance to insec-

ticides in mosquitoes: overproduction of metabolic enzymes (i.e. metabolic

resistance) and the modification of the insecticide target (i.e. target-site
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resistance) [5]. Metabolic resistance regroups the various

defense mechanisms against xenobiotics that sequestrate

and degrade the insecticide in less or non-toxic products,

thus decreasing the quantity of toxic molecules likely to

reach the target. Three major families of enzymes are

involved in this type of resistance: Glutathione S-transferases,

Cytochrome P450 monooxygenases and Carboxylesterases

[5]. Resistance by target-site modification is due to point

mutations in the gene coding of the insecticide target that

limits the insecticide binding. Three essential target proteins,

all of them being expressed in the nervous system, are the

target of insecticides of distinct families: the acetylcholinesterase

(target of carbamates and organophosphates), the g-aminobuty-

ric acid receptor (organochlorine) and the voltage-gated sodium

channels (pyrethroids and DDT [6–8]). The selection of one of

these mechanisms leads to increased vector survival in treated

environments and to a greater population size, which could

increase vectorial capacity.

Insecticide resistance genes are often associated with nega-

tive pleiotropic effects that lead to fitness disadvantage or cost.

In insecticide-resistant Culex quinquefasciatus mosquitoes,

numerous life-history traits can be modified including

increased larval development time, reduced predation avoid-

ance and reduced male reproductive success [9–14]. Such

negative impacts lead to the reduction of resistant allele fre-

quency in the mosquito population when the insecticide

selective pressure is absent or very low [15,16]. Insecticide

resistance and their associated costs may interfere with the

development and the diversity of symbionts hosted by mos-

quito vectors. In Cx. quinquefasciatus, the density of the

endosymbiotic bacteria Wolbachia was found to be significantly

higher in resistant mosquitoes compared to susceptible ones

[13,17], although this interaction is very dynamic [18]. Pyre-

throid-resistant Anopheles gambiae carrying the kdr mutation

were shown to be more susceptible to infection by the fungi

Metharhizium anisopliae and Beauveria bassiana [19]. Lastly, a

recent study on Anopheles albimanus showed a higher bacterial

diversity in resistant compared with susceptible specimens

[20]. Insecticide resistance may also affect interactions between

mosquito vectors and pathogens they transmit, which may

have an impact on vectorial capacity. In Cx. quinquefasciatus,
insecticide-resistant mosquitoes with higher carboxylesterase

activity were less parasitized by the filaria parasite Wuchereria
bancrofti than their insecticide-susceptible counterparts [21]. In

An. gambiae, the main malaria vector, target-site mutations

responsible for insecticide resistance (ace-1 G119S and kdr
L1014F) increased the prevalence of Plasmodium falciparum
infections in the mosquito salivary glands, which could lead

to increased parasite transmission [22,23]. Consistently, pyre-

throid-resistant An. gambiae from Tanzania (kdr-east, L1014S)

was found to be more competent for malaria than susceptible

vectors [24]. However, to our knowledge, there is no study

describing the potential effects of insecticide resistance on

arbovirus transmission.

Here, we aimed at characterizing the impact of the two

main organophosphate (OP) insecticide resistance mechan-

isms (carboxylesterase overproduction and insensitive

acetylcholinesterase) on the vector competence of Cx. quinque-
fasciatus mosquitoes for two arboviruses RVFV and West Nile

virus (WNV). For this purpose, four parameters (infection

rate (IR), dissemination rate (DR), transmission rate (TR)

and transmission efficiency (TE)) were compared between

resistant and susceptible mosquito lines sharing a common

genetic background to determine the influence of insecticide

resistance allele. We determined the respective contributions

of insecticide resistance mechanism, the arbovirus, the time

from blood feeding and the interactions between these

variables in the dissemination and transmission of RVFV

and WNV.

2. Material and methods
(a) Mosquito lines
We used three isogenic lines of Cx. quinquefasciatus; one susceptible

(named Slab) and two lines resistant to OP insecticides. The OP

resistant lines were: SA2 homozygous for the amplification of

the Ester2 locus (leading to overproduction of carboxylesterase)

[25] and SR homozygous for the ace-1 G119S mutation [26]. The

two resistant lines share a common genetic background with

Slab. Each line was backcrossed for at least 14 generations with

Slab with the recurrent selection with OP insecticides [9]. Eggs of

the three mosquito lines were obtained from the Institut des

Sciences de l’Evolution de Montpellier (ISEM) and set up to

hatch under standard insectary conditions (27+18C, 70+8%

RH and 12 L : 12 D photoperiod). Just after hatching, larvae were

randomly seeded into plastic trays containing 1 l of tap water at

a constant density of about 500 individuals per tray. Larvae were

fed ad libitum with a mixture of rabbit and fish food while adults

were fed with 10% sucrose solution [w/v].

(b) Viral strains
We used the RVFV SH172805 strain from the lineage East/

Central Africa isolated from a human case in Mauritania in

2003 [27] and a WNV strain belonging to the lineage 1a and iso-

lated from a horse in France (Camargue) in 2000 [28]. All virus

stocks were produced on Aedes albopictus C6/36 cells, after four

passages for RVFV and after three passages for WNV. For all

virus stocks, supernatants were harvested and stored at 2808C
until experimental infections.

(c) Oral infections of mosquitoes
Seven to 10-day-old females were fed on an infectious blood

meal containing 1.4 ml of washed rabbit erythrocytes and

700 ml of viral suspension supplemented with a phagostimulant

(ATP) at a final concentration of 5 mM. The titres of infectious

blood meals were 107 PFU ml21 for both RVFV and WNV. Mos-

quitoes were allowed to feed for 1 h. Afterwards, fully engorged

females were transferred in cardboard containers and main-

tained with 10% sucrose at 27+18C for 21 days. The three

mosquito lines were infected once with the RVFV while three

experimental infections were performed with the WNV (three

with the Slab and SR lines and two with the SA2 line).

(d) Vector competence analysis
At 3, 7, 14 and 21 days post-infection (dpi), saliva was collected

from individual mosquitoes (15–51 per mosquito line and per

experimental infection) by forced salivation as previously

described [29]. Briefly, legs and wings of each mosquito were

removed and the mosquito’s proboscis was inserted into a micropip-

ette tip containing 5 ml of foetal bovine serum (FBS). After 45 min,

the saliva-containing FBS was expelled into 45 ml of Dulbecco’s

MEM (DMEM). Following salivation, the head and the body of

each mosquito were separated and individually homogenized in

300 ml of DMEM that was supplemented with 2% FBS.

Vector competence was assessed based on four parameters:

IR, DR, TR and TE. The IR corresponds to the proportion of mos-

quitoes with a body (abdomen and thorax) containing infectious
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Proc.R.Soc.B

20182273

264

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

ARTICLE IN PRESS

RSPB20182273—20/12/18—15:27–Copy Edited by: Not Mentioned



viral particles among fully engorged mosquitoes; the DR was cal-

culated as the proportion of females with infected head tissues

(i.e. in which the virus successfully disseminated from the

midgut) among mosquitoes presenting infection in their bodies;

the TR represents the proportion of mosquitoes with infectious

saliva among mosquitoes able to disseminate the virus and the

TE corresponds to the proportion of mosquitoes whose saliva

contains infectious viral particles among all blood-fed

mosquitoes.

(e) Virus titration
The detection of infectious viral particles in bodies, heads and

saliva extracts was performed by titration on Vero cells. For

this, six-well plates containing confluent monolayers of Vero

cells were infected with serial 10-fold dilutions of body, head

homogenates or saliva and incubated for 1 h at 378C. Thereafter,

cells were covered with an overlay consisting of DMEM, 2% FBS,

1% antibiotic-antimycotic mix (Invitrogen, Gibco) and 1% agar-

ose and incubated at 378C. Cells were incubated 4 days for

samples infected with WNV or 5 days for those infected with

RVFV. Lytic plaques were then counted after staining with a

solution of crystal violet (0.2% in 10% formaldehyde and 20%

ethanol).

( f ) Statistical analyses
We analysed the RVFV and WNV infection outcome on Cx. quin-
quefasciatus using four parameters as response variables: the IR,

the DR, the TR and the TE. To this aim, we examined the effects

of three explanatory variables: ‘mosquito line’ (a three-level categ-

orical variable: Slab, SA2 and SR), ‘arbovirus’ (a two-level

categorical variable: RVFV and WNV) and ‘dpi’ the day post-

infection (a numerical variable). All statistical analyses were

performed with R software 3.4.0 [30] using a generalized linear

model with a binomial error structure. Maximal models included

the variables ‘mosquito line’, ‘arbovirus’ and ‘dpi’ and all their

interactions. Significance of variables and selection of the mini-

mal model has been assessed using the ‘Anova’ procedure

within the package ‘car’ [31], which performs a type III hypoth-

esis. Estimates of each three parameters were computed and post
hoc tests (package ‘lsmeans’, [32]) were carried out to assess the

differences between estimates, and Bonferroni corrections were

applied for multiple comparisons. For each mosquito tissue

(body, head and saliva), the viral loads were compared between

mosquito lines using Kruskal–Wallis test.

3. Results
(a) Comparing vector competence for RVFV and WNV
We examined the effects of two insecticide resistance mech-

anisms on the transmission of two arboviruses, RVFV and

WNV, by comparing vector competence of three Cx. quinque-
fasciatus lines sharing a similar genetic background: two

insecticide-resistant lines (SA2 and SR) and the insecticide-

susceptible reference line Slab. Overall 801 blood-fed females

(383 with RVFV-infected blood and 418 with WNV-infected

blood) were analysed to compare RVFV and WNV infection

dynamic in mosquitoes over time. This analysis includes

mosquitoes infected only once with one of the two viruses.

(i) Infection rate
The IR was significantly influenced by the mosquito line (x2 ¼

59.80, p , 0.0001; table 1), by the mosquito lin � arbovirus
interaction (x2 ¼ 11.47, p ¼ 0.003; table 1) and by the

arbovirus � dpi interaction (x2 ¼ 5.45, p ¼ 0.019; table 1). Ta
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These significant two-way interactions revealed that the effect

of insecticide resistance was different according to the tested

arbovirus and that the kinetic of midgut infection was dis-

tinct for RVFV and WNV. When mosquitoes were infected

with RVFV, IRs ranged from 76% to 100% (figure 1a). Regard-

less of dpi, a significant decrease in IR was observed in SR

compared to Slab and SA2 ( p , 0.0001 and p , 0.0001 for

pairwise comparisons between SR/Slab and SR/SA2,

respectively) but no significant difference was observed

between Slab and SA2 ( p ¼ 0.96). By contrast, the three mos-

quito lines showed similar IRs when challenged with the

WNV (IRs . 95%, all p . 0.99; figure 1b).

(ii) Dissemination rate
We then investigated whether insecticide resistance mechan-

isms affect the viral dissemination beyond the midgut barrier
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meal containing RVFV or WNV (titre of 107 PFU ml21 for both RVFV and WNV), mosquitoes were examined for the presence of infectious viral particles detected by
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after infectious blood meals through the estimation of the DR.

The effects of mosquito line and arbovirus were significant

(x2 ¼ 6.32, p ¼ 0.042 and x2 ¼ 4.13, p ¼ 0.042, respectively;

table 1). The mosquito line by arbovirus interaction (x2 ¼ 8.54,

p ¼ 0.014; table 1), the arbovirus by dpi interaction (x2 ¼

27.83, p , 0.0001; table 1) and the three-way interaction mos-
quito line � arbovirus � dpi (x2 ¼ 15.25, p ¼ 0.0005; table 1)

influenced significantly the DR. This shows that insecticide

resistance affected the level and the kinetic of dissemination

of WNV compared to susceptible mosquitoes but no differ-

ence was observed between the resistant lines SR and SA2

( p ¼ 0.0001, p ¼ 0.0004 and p ¼ 0.86 for pairwise compari-

sons between Slab/SA2, Slab/SR and SA2/SR, respectively;

figure 1d ). By contrast, there was no significant difference

in the DR of RVFV between the three lines (pairwise

comparisons, all p . 0.84; figure 1c).

(iii) Transmission rate and transmission efficiency
We then evaluated the TR and the TE. The statistical analysis

showed that both the TR and the TE were dependent on the

three-way interaction mosquito line � arbovirus � dpi (x2 ¼

4.2, p ¼ 0.04 and x2 ¼ 11.37, p ¼ 0.003; respectively, for TR

and TE; table 1). For TR, the mosquito line by arbovirus inter-

action was also significant (x2 ¼ 4.93, p ¼ 0.026; table 1).

Concerning TE, the mosquito line � arbovirus (x2 ¼ 6.96, p ¼
0.031; table 1) and arbovirus � dpi (x2 ¼ 15.9, p , 0.0001;

table 1) interactions were significant but not the mosquito
line � dpi (x2 ¼ 1.6, p ¼ 0.448; table 1). The significant mos-
quito line � arbovirus � dpi interaction suggests that the

insecticide-resistant lines influenced viral transmission. The

significant interaction mosquito line � arbovirus showed that

insecticide resistance impacted the transmission of both arbo-

viruses differently as observed in figure 1e,f. The significant

arbovirus � dpi interaction indicated that the kinetic of viral

propagation was arbovirus-specific.

Very low TEs were observed with the RVFV regardless of

the dpi (all TEs less than 14%; figure 1e). Moreover, no signifi-

cant difference was found between the three mosquito lines

(pairwise comparisons, all p . 0.94). By contrast, TEs of

WNV were very low at 3 and 7 dpi for the three mosquito

lines; and, a significant increase was observed from 14 to

21 dpi for both resistant lines: from 54% (+0.07) to 94%

(+0.04) in SA2 and from 60% (+0.07) to 90% (+0.04) in

SR. While for the Slab line, TE increased at day 14 and then

was found steady between 14 and 21 dpi with 27% (+0.06)

at 14 dpi and 29% (+0.07) at 21 dpi (figure 1f ). Overall,

the insecticide-resistant lines SA2 and SR were significantly

more competent to transmit the WNV, but not RVFV, than

their susceptible counterpart ( p ¼ 0.01, p ¼ 0.038 and p ¼
0.9 for pairwise comparisons between Slab/SA2, Slab/SR

and SA2/SR respectively).

(b) Influence of insecticide resistance on WNV vector
competence

To confirm the higher capacity of insecticide-resistant mos-

quitoes to transmit WNV compared to their susceptible

counterparts, we analysed data of three independent exper-

imental assays where Slab, SA2 and SR were infected with

the WNV and the mosquitoes examined only at 14 dpi. A

total of 324 mosquitoes (124, 86 and 114 from the Slab, SA2

and SR lines, respectively) were examined and we

determined the effects of mosquito line, experimental assay
and the interactions between the two variables on IR, DR,

TR and TE. On the four vector competence parameters exam-

ined, the experimental assay had a significant effect on three

parameters (x2 ¼ 91.85, p , 0.0001; x2 ¼ 17.47, p ¼ 0.00016

and x2 ¼ 12.31, p ¼ 0.002 for IR, DR and TE, respectively;

table 2).

(i) Infection and dissemination rates
When analysing the IR, no significant difference was

observed between the three mosquito lines (all p . 0.99;

figure 2a) while for the DR, the main variable mosquito line
had a significant influence (x2 ¼ 18.38, p ¼ 0.0001; table 2).

The two insecticide-resistant lines were more permissive for

WNV dissemination than susceptible mosquitoes ( p ¼
0.0008, p ¼ 0.022 and p ¼ 0.63 for pairwise comparisons

between Slab/SA2, Slab/SR and SA2/SR, respectively;

figure 2b).

(ii) Transmission rate and transmission efficiency
Both the TR and the TE were dependent on the mosquito line
by experimental assay interaction (x2 ¼ 7.81, p ¼ 0.05 and x2 ¼

12.89, p ¼ 0.005 for TR and TE, respectively; table 2) indicat-

ing that the difference between mosquito lines varied

according to the experimental assay. In addition, a significant

effect of mosquito line on TE was observed (x2 ¼ 12.15, p ¼
0.0023; table 2). Overall, TEs of SA2 and SR lines were signifi-

cantly higher than that of Slab ( p ¼ 0.03, p ¼ 0.02 and p ¼ 0.6

for pairwise comparisons between Slab/SA2, Slab/SR and

SA2/SR, respectively; figure 2c).

(iii) West Nile virus load
Finally, we compared the viral loads measured in bodies,

heads and saliva of mosquitoes from Slab, SA2 and SR

infected with WNV and examined at 14 dpi. Among the

mosquito lines, Slab individuals had the lowest viral loads

in their bodies (mean viral load of 5.09+ 1.32, 6.63+ 0.97

and 6.02+ 1.10 log10PFU for Slab, SA2 and SR, respectively;

Kruskal–Wallis rank sum test ¼ 23.91, p , 0.0001,

figure 2d ) and saliva (mean viral load of 2.90+ 1.50,

4.48+ 0.72 and 3.64+ 1.36 log10PFU for Slab, SA2 and SR,

respectively; Kruskal–Wallis rank sum test ¼ 16.28, p ¼
0.0003; figure 2f ) compared to SA2 and SR. However, no

significant difference of viral loads in heads was noted

between the three mosquito lines (mean viral load of

5.57+ 1.4, 6.29+ 1.23 and 5.52+ 1.46 log10PFU for Slab,

SA2 and SR, respectively; Kruskal–Wallis rank sum test ¼

2.27, p ¼ 0.32; figure 2e).

4. Discussion
Insecticide resistance has been shown to affect vector compe-

tence for pathogens such as the filarial parasite W. bancrofti
[21] and the malaria parasite P. falciparum [22–24]. Here, we

provide the first evidence of the impact of insecticide resistance

mechanisms on the transmission of arboviruses. Using exper-

imental infections, we compared four vector competence

parameters (IR, DR, TR and TE) of insecticide-resistant (SA2

and SR) and -susceptible (Slab) Cx. quinquefasciatus lines for

RVFV and WNV. These mosquito lines shared a common gen-

etic background through introgression of the Slab genome and
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differed only by the insecticide selected loci which include the

insecticide resistance alleles [9]. Therefore, any phenotypic

changes between the insecticide-resistant and the susceptible

specimens could be associated with the presence of insecticide

resistance loci or with any linked loci hitchhiked during intro-

gression. Moreover, Cx. quinquefasciatus is among the main

vectors of WNV (reviewed in [33]) and can also transmit

RVFV [34], both arboviruses with an increasing risk of emer-

gence and extending geographical range [35]. The findings

presented here show that insecticide resistance mechanisms

did not affect vector competence for RVFV probably because

the Cx. quinquefasciatus lines tested were poorly competent

for this arbovirus [36]. However, both insecticide resistance

mechanisms significantly impacted vector competence for

WNV by increasing the DR, the TE and the viral loads in

bodies and saliva of insecticide-resistant mosquitoes compared

to their susceptible counterparts.

When infected with RVFV, very low transmission efficien-

cies were observed for the three mosquito lines (all values less

than 14%) and no significant difference was found between

the insecticide-resistant and -susceptible lines. To be trans-

mitted by mosquitoes, arboviruses must overcome several

tissue barriers associated with the midgut and the salivary

glands [37]. So, we asked whether the observed low trans-

mission of RVFV was the result of low IR and/or DR.

Infection rates were high and quite similar between the

three mosquito lines (all values greater than 76%). However,

dissemination rates were very low (all values less than 17%)

even for longer incubation periods (i.e. at 14 and 21 dpi).

Thus, RVFV was able to infect and replicate in the midgut

epithelial cells but showed low ability to disseminate in the

mosquito general cavity and then, to infect salivary glands

for subsequent transmission. The observed low dissemina-

tion and transmission of RVFV are consistent with previous

investigations showing that the mosquito Cx. quinquefasciatus
was less able to disseminate and to transmit RVFV compared

to other mosquito species such as Aedes vexans [27,38,39].

Therefore, the presence of insecticide resistance mechanisms

did not appear to change the interactions between the

RVFV and Cx. quinquefasciatus mosquitoes in our conditions.

Unlike RVFV, WNV dissemination was significantly

affected by insecticide resistance mechanisms. At days 14

and 21 post-infection, higher dissemination rates and trans-

mission efficiencies were noted for SA2 and SR compared

to Slab. Variations among the experimental replicates were

observed highlighting the importance of performing several

experimental replicates to better estimate the factors influen-

cing arbovirus transmission. Collectively, insecticide-resistant

mosquitoes showed higher transmission potentials due to a

higher DR compared with their susceptible counterparts. In

addition, viral loads in saliva and bodies of resistant individ-

uals were also higher than in Slab individuals. Interestingly,

both insecticide-resistant mechanisms (i.e. the esterase over-

production in SA2 and a modified acetylcholinesterase in

SR) showed similar effects on WNV vector competence.

Different insecticide resistance mechanisms were also found

to increase the vector competence of mosquitoes for human

and rodents malaria parasites [22,24,40] but not for avian

malaria parasites vectored by Cx. quinquefasciatus and Culex
pipiens [41,42].

Several non-exclusive mechanisms that could explain the

observed impact of the carboxylesterases overproduction and

the insensitive acetylcholinesterase on vector competence forTa
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WNV were thus explored. There are no data indicating that

these overproduced/mutated proteins could affect directly

vector competence but it is likely that other loci in linkage

disequilibrium could modulate directly vector competence,

as demonstrated in pyrethroid-resistant An. gambiae [43].

Further work is ongoing to identify the resistance-linked

loci and to characterize them functionally. Among these

resistant mechanisms, indirect effects of insecticide resistance

loci (and/or linked loci) on (i) energetic resources, (ii)

immune genes and (iii) microbiota may modulate the infec-

tion and dissemination of WNV. Concerning energetic

resources, the overproduction of carboxylesterase enzymes

in the SA2 line may deplete the energy reserves, thus redu-

cing the resources available to cover other biological

functions. The energetic resources hypothesis is consistent

with a previous study in Cx. quinquefasciatus where
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Figure 2. Vector competence parameters and viral loads in bodies (thorax and abdomen), heads and saliva of mosquitoes from the Slab, SA2 and SR lines infected
with the WNV (titre of 107 PFU ml21). Three different experiments were performed independently and infected mosquitoes were analysed at 14 days post-infection.
The presence of infectious viral particles was detected by titration on Vero cells. (a) corresponds to the infection rate, (b) to the dissemination rate (c) to the
transmission efficiency, (d ) to viral load in the bodies, (e) to viral load in the heads and ( f ) to viral loads the saliva. The number of mosquitoes analysed is
indicated in brackets. Error bars represent the 95% confidence interval. Tests of significance were corrected for multiple testing using the Bonferroni procedure.
Asterisks indicate the significance level: *p , 0.05; **p , 0.01; ***p , 0.001. n.s.: no significant difference.
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insecticide-resistant mosquitoes carrying carboxylesterase

overproduction alleles have been found to contain less ener-

getic reserves (lipids, glycogen and glucose) than their

susceptible counterparts [44]. This carboxylesterases overpro-

duction may also lead to unbalanced redox equilibrium and

to oxidative stress, which could affect immunity [45,46]. Con-

cerning immunity, gene expression analysis in insecticide-

resistant and -susceptible An. gambiae revealed upregulation

of Defensin and Cecropin genes [47,48], two anti-microbial

peptides involved in the anti-Plasmodium [49] and antiviral

[50] immune responses. Ultimately, the higher competence

of SA2 and SR to transmit the WNV compared with Slab

could be the difference in the composition of their microbiota.

Indeed, there is an important bacterial diversity in mosquito

midgut that can modulate vector competence (reviewed in

[51]). Moreover, in the mosquito An. albimanus, insecticide-

resistant specimens were found to harbour lower bacterial

diversity compared with susceptible mosquitoes [20].

In conclusion, we showed that the two main insecticide

resistance mechanisms affect the vector competence of Cx.
quinquefasciatus for WNV. The selection of resistance mechan-

isms resulting from the widespread use of insecticides (in

vector and pest control) may thus influence the epidemiology

of arboviruses. Such information is crucial because it can help

evaluating the impact of insecticide resistance and vector

control on the risk of emergence and on the spread of arbo-

viruses. Further studies using diverse mosquito field

populations should help understanding the effects of insecti-

cide resistance on vector competence under different

environmental contexts.
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