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Introduction
Over the past decades, understanding how genomes are orga-
nized in the limited space of nuclei has become a major goal in 
cell biology, as it is becoming apparent that this organization  
affects genome expression, stability, and replication. It is strik-
ing that in all eukaryotic species analyzed so far, spatial genome 
arrangements are nonrandom: chromosomes or genomic loci 
occupy preferential positions with respect to each other and/or 
to nuclear landmarks (Parada and Misteli, 2002).

On a much smaller scale, the chromatin fiber, which results 
from the wrapping of the DNA double helix around nucleo-
somes, is usually described as a compact structure 30 nm in di-
ameter. The 30-nm fiber is based on in vitro experiments, but its 
relevance in vivo is currently being challenged (Maeshima et al., 
2010). How the chromatin fiber is organized at larger scales in 
order to fit into the limited volume of the nucleus is even less 
well known.

A small unicellular eukaryote, the budding yeast Saccharo­
myces cerevisiae, has played a major role in understanding chro-
mosome organization in interphase. S. cerevisiae was the first  
eukaryote to have its entire genome sequenced (Goffeau et al.,  
1996). Each nucleus contains 16 relatively small chromosomes,  

comprising between 230 and 1,500 kb of DNA, plus 100–200 
copies of ribosomal genes (rDNA) encompassing 1–2 Mb. Un-
like most eukaryotes, budding yeast has several unique nuclear 
features: its nuclear envelope does not break down during mito-
sis, the nucleolus has a crescent shape abutting the nuclear en-
velope, the spindle pole body (SPB; the microtubule organizing 
center) is located opposite to the nucleolus and remains embed-
ded in the nuclear envelope throughout the cell cycle, and the 
centromere has a fixed genomic location and is wrapped around 
a single nucleosome containing a specific histone variant not 
found in other nucleosomes.

An apparent limitation of S. cerevisiae for studies of chro-
matin organization is the small size of its nucleus, 1 µm radius 
in haploids, which is only a few times larger than the diffrac-
tion-limited resolution of conventional light microscopy. How-
ever, the recent progress in imaging techniques, including the 
development of novel computational analysis methods, have 
enabled mapping of yeast nuclear organization with subdiffrac-
tion resolution. Combined with new genome-wide biochemical 
techniques, S. cerevisiae is now providing important clues to 
fundamental questions regarding the structural and functional 
states of chromosomes.

Topology of 3D chromosomal architecture
Centromere clustering, telomere positioning, and 

the Rabl-like configuration. Centromeres were initially 
shown to cluster in a rosette-like structure around the SPB by 
FISH (Guacci et al., 1997; Jin et al., 1998; Jin et al., 2000; 
Bystricky et al., 2004). Studies using the Cre/lox system (in 
which expression of bacterially derived Cre recombinase medi-
ates the recombination between exogenously inserted loxP sites, 
thereby allowing the measurement of recombination frequency; 
Hoess and Abremski, 1984) indicated increased rates of recom-
bination for loci close to the centromeres (Burgess and Kleckner, 
1999). Centromere clustering was recently confirmed using 
chromosome conformation capture (3C) combined with mas-
sive sequencing performed on the yeast genome (Duan et al.,  
2010). The 3C technique relies on the capture by mild cross-linking 

The spatial organization of genes and chromosomes plays 
an important role in the regulation of several DNA pro-
cesses. However, the principles and forces underlying this 
nonrandom organization are mostly unknown. Despite its 
small dimension, and thanks to new imaging and bio-
chemical techniques, studies of the budding yeast nucleus 
have led to significant insights into chromosome arrange-
ment and dynamics. The dynamic organization of the 
yeast genome during interphase argues for both the phys-
ical properties of the chromatin fiber and specific molecu-
lar interactions as drivers of nuclear order.
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directly or indirectly with telomeres and subtelomeres and are 
enriched at the nuclear periphery. For example, Sir4 (silent in-
formation regulator), which is part of the Sir2–Sir4 complex, is 
recruited to subtelomeres by the telomeric binding protein Rap1 
(Hecht et al., 1995); Sir4 also interacts with Esc1, a protein 
located at the nuclear envelope (Andrulis et al., 2002; Taddei  
et al., 2004), and with Mps3, an integral SUN domain– 
containing protein of the nuclear membrane that is enriched at 
the SPB (Antoniacci et al., 2007; Bupp et al., 2007). Likewise, the 
protein Ku70, which together with Ku80 binds double-stranded 
telomeric DNA, interacts directly or indirectly with members 

of interacting chromatin segments in large populations of cells, 
followed by intramolecular ligation in diluted conditions. PCR 
or sequencing then identifies chimeric sequences, the abun-
dance of which allows determination of the probabilities of inter
actions between pairs of chromatin loci. Initially restricted to 
the analysis of cis interactions on selected loci (Dekker et al., 
2002), the technique has been extended to genome-wide inter-
action maps (Simonis et al., 2006; Lieberman-Aiden et al., 
2009). This technique confirmed centromere clustering in a  
rosette-like structure, with the majority of interchromosomal 
contacts being concentrated in a 20-kb window around centro-
meres (Fig. 1; Rodley et al., 2009; Duan et al., 2010). Whether 
there is a preferential ordering of centromeres within the rosette 
remains to be determined.

The mechanisms for centromere clustering have been well 
elucidated. Each centromere directs the assembly of the kineto-
chore, a protein complex of 70 subunits that binds the plus 
end of a single microtubule (Joglekar et al., 2009). During inter-
phase, the 16 microtubules maintain the attachment between the 
centromeres and the SPB (Furuyama and Biggins, 2007). By 
fluorescent tagging of an SPB component and insertion of a 
specific bacterial operator sequence (recognized by a fluores-
cently tagged repressor) near the centromere, the distance be-
tween the SPB and a centromere has been measured with high 
resolution in living cells (Dorn et al., 2005). Although micro
tubules grow and shrink continuously, the SPB and centromere 
were never closer than 200 nm in G1 phase (Dorn et al., 
2005). Importantly, disruption of the kinetochore–microtubule 
link leads to a perturbation of centromere clustering (Jin et al., 
2000). One major driving force for chromosome organization in 
yeast thus appears to be the microtubule-dependent anchorage 
of centromeres to the SPB, and by extension the nuclear enve-
lope, throughout the cell cycle.

An additional important feature of yeast nuclear organiza-
tion is the positioning of chromosome extremities, i.e., telo-
meres and subtelomeres. In most eukaryotes, telomeres are 
stretches of repetitive DNA motifs. In S. cerevisiae, these re-
peats are roughly 250 bp long with repeating units of TG1–3. 
Subtelomeres are 30-kb regions of DNA upstream of telo-
meres, which include few nonessential genes. A highly con-
served 500-bp core X sequence is shared by all subtelomeres, 
and 17 out of 32 subtelomeres contain Y elements, sequences 
with unknown function, which have variable lengths (4–8 kb) 
and numbers among chromosome arms and Saccharomyces 
species (Louis et al., 1994; Liti and Louis, 2005).

Telomeres and subtelomeres were initially observed by 
FISH to be located at the nuclear periphery. Furthermore, a rela-
tively small number (3–8) of bright fluorescent spots was ob-
served, which suggests that several chromosome ends are clustered 
in close proximity to each other (Gotta et al., 1996; Hediger et al., 
2002). When subtelomeres were observed in a population of liv-
ing cells, they were consistently found to be located preferentially 
near the nuclear periphery (Fig. 1; Hediger et al., 2002; Bystricky 
et al., 2005; Schober et al., 2008; Therizols et al., 2010). This 
holds true for 20 out of 32 yeast subtelomeres observed so far.

What keeps yeast chromosome ends in the vicinity of the 
nuclear edge? Several studies implicate proteins that interact 

Figure 1.  General configuration of yeast chromosomes in interphase 
yeast. (top) Subnuclear territories occupied by three loci and the SPB, 
obtained using the methodology and data described previously (Berger  
et al., 2008; Therizols et al., 2010). Thousands of nuclei were detected in 
3D microscopy images and computationally oriented along a central axis 
(broken line in the bottom panel) defined by the nuclear center and the 
nucleolus center of mass (X, bottom), allowing the determination of both 
the radial distance of loci relative to the nuclear center and an elevation 
angle above the central axis. Each color represents a locus or the SPB; dark 
and light shades indicate high and low probabilities, respectively. Green, 
rDNA; blue, the SPB; red, subtelomere of the short (85 kb) chromosome arm 
9R; cyan, subtelomere of the long (440 kb) chromosome arm 11L. Note 
how the rDNA, the site of nucleolar protein assembly, occupies a pole of 
the nucleus opposite the microtubule organization center (SPB). Bar, 1 µm. 
(bottom) Sketch of a Rabl-like chromosome configuration hypothesized on 
the basis of observed subnuclear positions (Therizols et al., 2010). Enlarge-
ments depict possible chromosome arrangements at smaller scales. The 
rightmost enlargement shows an array of nucleosomes in a loose chromatin 
fiber (Dekker, 2008), with a segment of nucleosome-free DNA looping out. 
The bottom panel is adapted from Therizols et al. (2010).
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modifications and variations in the length of the linker DNA  
between consecutive nucleosomes, which are expected to mod-
ulate nucleosome occupancy and chromatin compaction (Routh 
et al., 2008). For instance, the number of molecules of Hho1, 
the histone H1 in yeast, is low and variable, and estimated as 
1/37 nucleosomes to 1/4 nucleosomes (Freidkin and Katcoff, 
2001; Downs et al., 2003). New insights on chromatin structure 
are likely to come through the combination of higher resolution 
microscopy methods and 3C approaches.

Beyond the fine scale arrangement of chromatin, what is 
the higher order structure of chromosomes? Chromosome paint-
ing studies in many metazoans systems showed that individual 
chromosomes occupy distinct, nonoverlapping subnuclear re-
gions named chromosome territories (Cremer and Cremer, 2001; 
Branco and Pombo, 2006), but in yeast, the relative disposition 
and internal organization of potential chromosome territories  
is still largely unknown. In hybrids between two species of 
Saccharomyces—S. cerevisiae and S. paradoxus, whose genomes 
diverge by 8–20%—in situ hybridization with probes discriminat-
ing between chromosomes from either species revealed two non-
overlapping sets of chromosomes, which supports the existence of 
chromosome territories in yeast nuclei (Lorenz et al., 2002; Liti  
et al., 2009). On the contrary, experiments based on recombina-
tion after induction of a double-strand break (DSB) between se-
quences inserted at different positions in the genome showed a 
lack of territoriality (Haber and Leung, 1996). In this study, simi-
lar rates of recombination were obtained irrespective of the posi-
tion of the break. In contrast, genome-wide 3C provided support 
for the existence of chromosome domains and chromosome terri-
tories in budding yeast (Duan et al., 2010). Imaging studies in 
which the positions of several loci were mapped with high resolu-
tion in a 2D coordinate system can be used to make additional 
predictions about chromosome organization (Berger et al., 2008). 
These maps showed a strong statistical confinement of most loci 
into “gene territories,” and revealed that loci on internal positions 
along different chromosomes were close to the SPB at small ge-
nomic distances from the centromere, and closer to the nucleolus 
at larger genomic distances (Berger et al., 2008). Further support 
for a close link between spatial positioning and genomic location 
came from the observation, with this method, of the angular posi-
tion at the nuclear periphery of 12 subtelomeres. This angle, de-
fined between the subtelomere and the axis joining the nuclear 
and nucleolar centers, increased as a function of chromosome 
arm length (Fig. 1; Therizols et al., 2010). Thus, the ends of short 
chromosome arms cannot explore the entire nuclear periphery, 
but are limited to a small region opposite the nucleolus, an obser-
vation consistent with the high frequency of interactions found 
between short chromosome arms (Duan et al., 2010; Therizols  
et al., 2010). Similarly, the observation that the end of long arms 
extends away from the SPB is compatible with the less frequent 
interactions observed between long chromosomes and any other 
chromosome (except the long chromosome arms 12R and 4R; 
Duan et al., 2010; Therizols et al., 2010). These data support a 
model in which the large-scale configuration of chromosomes is 
dictated by the length of the sequence, an arrangement that seems 
consistent with the generic behavior expected from a semiflexible 
polymer (Rosa and Everaers, 2008).

of the nuclear envelope and/or the nuclear pore complex (NPC; 
Galy et al., 2000; Therizols et al., 2006). Ku80 can also bind 
telomerase subunits, which in turn require Mps3 to target a telomere 
at the envelope (Schober et al., 2009). These interactions, medi-
ated by Sir4/Mps3 for subtelomeres and Ku70/80 for telomeres, 
have been proposed to be two partially redundant pathways that 
target chromosomal ends to the nuclear envelope, despite some 
variations depending on the chromosome arm and the phase of 
the cell cycle (Hediger et al., 2002; Taddei et al., 2004).

Centromere clustering near the SPB and telomere posi-
tioning close to the nuclear periphery imply a nonrandom and 
polarized arrangement of chromosomes in interphase yeast nu-
clei. Such a configuration was observed initially in epithelial 
salamander larvae cells by Carl Rabl and subsequently in rap-
idly dividing nuclei like in Drosophila melanogaster embryos 
and in many cereal species (Rabl, 1885; Cowan et al., 2001). 
The Rabl configuration observed in interphase is thought to re-
sult from the chromosome arrangement in anaphase, established 
in the preceding mitosis. In S. cerevisiae, centromere clustering 
does not necessarily require passage through anaphase, and 
telomeres are not strictly located at the opposite pole of the 
SPB; because of these differences, the chromosome configura-
tion in interphase yeast has been named Rabl-like (Jin et al., 
2000). Consistent with a Rabl configuration, subtelomeres of 
small arms (<300 kb) from distinct chromosomes are found in 
closer proximity than subtelomeres on arms of different sizes 
(Jin et al., 2000; Bystricky et al., 2005; Schober et al., 2008; 
Therizols et al., 2010). In addition, the observation that opposite 
ends of chromosomes are closer in space than ends of distinct 
chromosomes (at least for arms up to 435 kb) is consistent with 
a rosette configuration in which centromeres are at a finite dis-
tance from each other (Fig. 1; Therizols et al., 2010).

It is worth noting that although the Rabl configuration is 
not commonly found in human cells, other nuclear anchoring 
points exist. For example, the nucleolus interacts with many 
specific chromatin domains of human chromosomes (Németh  
et al., 2010; van Koningsbruggen et al., 2010). It has been  
hypothesized that these anchoring regions might play a similar 
role in establishing polarized chromosome configurations (van 
Koningsbruggen et al., 2010).

Chromosome configuration: between centro-

meres and telomeres. In eukaryotes, DNA is wrapped 
around nucleosomes 10 nm in size. How and whether fur-
ther compaction into the 30-nm chromatin fiber occurs in vivo 
is not well known. In yeast, some information on chromatin  
compaction has been derived from FISH experiments, in which 
spatial distances were measured between loci located at vari-
ous genomic intervals along chromosomes (Guacci et al., 1994; 
Bystricky et al., 2004). By fitting a semiflexible polymer model 
to these distances, compaction and persistence lengths of  
110–150 bp/nm (7–10 nucleosomes per 11 nm) and 170–220 nm  
have been determined, respectively (Bystricky et al., 2004). 
Although these compaction values are consistent with the ca-
nonical 30-nm fiber, a recent re-analysis of in vivo measure-
ments in combination with 3C data for chromosome 3 supports 
a much looser structure, with 1.2–3.6 nucleosomes per 11 nm 
(Dekker, 2008). This variability might be explained by histone 
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have also revealed a dramatic dearth of interactions between 
DNA sequences located at opposite sides of the rDNA (Duan  
et al., 2010). The nucleolus thus appears to play a central role in 
the spatial organization of the genome by sequestering repeated 
arrays away from the rest of the genome.

Chromosomes in motion. 3C techniques, FISH, or 
static live cell imaging data provide a snapshot view of chromo-
somes that ignores the dynamic nature of chromatin. The first 
evidence for chromatin movements in interphase yeast nuclei 
came from pioneering studies using GFP-tagged loci tracked 
in vivo over time periods of 150–600 s (Robinett et al., 1996; 
Marshall et al., 1997; Heun et al., 2001). These studies used 
mean square displacement (MSD) analyses, a standard tool to 
characterize the nature and quantitative properties of stochastic 
motions from particle trajectories. For normal diffusion, such as 
the random (Brownian) motion of small particles in a liquid, the 
MSD is proportional to the time interval, and the proportionality 
coefficient provides the diffusion coefficient (within a scaling 
factor). Assuming normal diffusion, these initial studies used 
the measured MSD at small time intervals to estimate diffu-
sion coefficients ranging from 0.5 to 3 × 103 µm2/s, depend-
ing on the locus, with subtelomeres and centromeres exhibiting 
slower diffusion than more internal loci. Because chromatin is 
restricted to the nuclear volume, the MSD cannot grow indefi-
nitely as function of time, and must plateau at a value slightly 
smaller than the squared nuclear radius. Measured MSD curves 
indeed exhibited a plateau, though at smaller values, which sug-
gests that chromatin loci are confined to regions smaller than the 
nucleus itself. Confinement radii estimated from these plateaus  
ranged from 0.3 to 0.7 µm, with subtelomeres and centro-
meres apparently more confined than internal loci (Marshall  
et al., 1997; Heun et al., 2001; Bystricky et al., 2005). Not sur-
prisingly, centromere confinement can in part be explained by 
microtubule attachment because a centromere was less confined 
if microtubules were depolymerized (Marshall et al., 1997; 
Heun et al., 2001; Bystricky et al., 2005). In a more recent 
analysis, the dynamics of the GAL1 locus at smaller time scales 
(<60s) was characterized by an MSD curve proportional to 
the time interval at the power 0.4 (instead of 1 for Brownian  
motions), which instead suggests subdiffusive motion. This  
behavior was observed independently of the gene’s transcrip-
tional status (Cabal et al., 2006). Interestingly, subdiffusion with 
a similar power law has been recently reported in bacterial loci 
(Weber et al., 2010), which suggests that the underlying mecha-
nism is general. It seems likely that movements previously de-
scribed as confined diffusion might in fact also obey subdiffusive 
behavior at similar time scales. Subdiffusion can arise as a result 
of several physical effects, including nuclear crowding, caging, 
viscoelasticity of the nucleoplasm, or polymer effects caused by 
the dynamic properties of the chromatin fiber. Recent theoreti-
cal studies have proposed that the observed subdiffusion arises 
from polymer physics rather than crowding or caging (Rosa and 
Everaers, 2008; Weber et al., 2010). Despite these average sub-
diffusive motions, occasional abrupt (≥0.5 µm) and rapid (≤10 s)  
jumps have also been observed (Heun et al., 2001). Because  
they were ATP dependent, these sudden motions appear to be 
powered by active mechanisms rather than by passive subdiffusion 

It may seem difficult to reconcile this apparent separation 
between short and long chromosome arms with the finding that 
five transfer RNA (tRNA) gene families (each containing 9–14 
different members), scattered throughout the genome, were 
found clustered close to the nucleolus (Thompson et al., 2003). 
Such clustering would certainly imply significant constraints to 
the 3D organization of the chromosomes. However, hierarchical 
clustering analyses on interchromosomal contacts determined 
by 3C identified two clusters of colocalized tRNA genes: one 
close to the rDNA and one clustered with centromeres (Duan  
et al., 2010). It would be interesting to determine whether 
tRNAs identified at the nucleolus are preferentially close to the 
end of long chromosome arms, which would be consistent with 
the expectation that spatial proximity to the nucleolus requires 
large genomic distances from the centromere (Therizols et al., 
2010). The fact that tRNA clustering in the nucleolus persists in 
the absence of microtubules further suggests that it is indepen-
dent from centromeric clustering, which is in agreement with 
the observation that the relative positions of long arm subtelo-
meres are not affected by a defect in microtubule attachment 
(Haeusler et al., 2008; Therizols et al., 2010). Similarly, the  
recent identification in the promoters of many genes of “gene 
recruitment sequences” that are sufficient to confer physical inter
actions with the NPCs may impose other important constrains 
on chromosome configuration (Ahmed et al., 2010). It will be 
particularly interesting to precisely define gene recruitment se-
quence positions in nuclear space to understand how they may 
participate in certain chromosome configurations.

The special rDNA array on chromosome 12 

and the nucleolus. In S. cerevisiae, unlike in other yeasts 
and most other species, the tandem array of genes encoding  
ribosomal subunits (rDNA) is confined to a single genomic locus, 
on the right arm of chromosome 12 (12R). Under normal con-
ditions, the S. cerevisiae nucleolus occupies roughly one third 
of the nuclear volume at one pole of the cell, opposite the SPB 
(Yang et al., 1989; Léger-Silvestre et al., 1999). Studies in many 
organisms, including yeast, have established that the nucleolus 
is assembled at the site of ribosomal RNA (rRNA) synthesis, 
which suggests that the nucleolus originates from rDNA by 
self-organization (for reviews see Misteli, 2001; Hernandez-
Verdun, 2006). Chromatin immunoprecipitation assays with the 
inner nuclear membrane protein Heh1 (or Src1) have revealed 
an enrichment with rDNA repeated sequences and subtelo-
meres (Grund et al., 2008; Mekhail et al., 2008). The inferred 
association of the rDNA with the nuclear envelope has been 
proposed as a means to limit recombination between arrays by 
sequestering the rDNA repeats away from the recombination 
machinery (Mekhail et al., 2008). In fact, rDNA is transiently 
delocalized outside the nucleolus for repair when a DSB is in-
duced in the arrays (Torres-Rosell et al., 2007). Imaging studies 
of 20 non-rDNA loci showed that all of these were excluded 
from the nucleolar volume, and that a reduction of this volume 
allowed subtelomeres on long chromosome arms to occupy a 
larger nucleoplasmic space (Berger et al., 2008; Therizols et al., 
2010). In the case of arm 12R, the distal part, from the telomere 
to the rDNA, has been found to emerge from the inward face of 
the nucleolus (Fuchs and Loidl, 2004). Recent 3C-derived data 
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expression of some but not all genes (Finlan et al., 2008; Guelen 
et al., 2008; Kumaran and Spector, 2008).

In fact, an environment favoring transcriptional activation 
is provided by a key constituent of the nuclear envelope, namely 
the NPC. Several inducible genes, including GAL1-10, GAL2, 
INO1, HSP104, and HKX1, are relocated from the nucleoplasm 
to the NPC when activated (Brickner and Walter, 2004; Cabal  
et al., 2006; Dieppois et al., 2006; Schmid et al., 2006; Taddei  
et al., 2006). In agreement with these observations, chromatin 
immunoprecipitation analyses showed an interaction between 
components of the NPC and a subset of highly transcribed genes 
(Casolari et al., 2004; Luthra et al., 2007). Again, transcription 
and positioning can be decoupled because mutations of the 
SAGA histone acetyltransferase complex abrogate perinuclear 
positioning without affecting transcription, and the rpb1-1 mu-
tant of the largest RNA polII subunit still recruits GAL1 or INO1 
genes to the NPC. These data further suggest that peripheral 
targeting is caused by the signal regulating transcriptional acti-
vation rather than transcription per se (Cabal et al., 2006; Dieppois 
et al., 2006; Schmid et al., 2006; Brickner et al., 2007).

The region close to the nuclear envelope thus emerges as 
a mosaic, with the vicinity of NPCs representing zones favor-
able to transcription, whereas the zones between NPCs are more 
repressive. Alternatively, one can speculate that in yeast, as re-
cently reported for Drosophila cells, nucleoporins present in the 
nuclear interior could bind chromatin and regulate gene expres-
sion without requiring chromatin positioning at the periphery, 
or physical interactions with the NPCs (Capelson et al., 2010).

The observed relocation of inducible genes upon activa-
tion raises several questions. What are the mechanisms causing 
this repositioning? Do they involve molecular motors or do they 
result from a decondensation of the chromatin fiber? How are 
neighboring genes affected? Although the mechanism initiating 
these chromatin movements is still unknown, it is likely that 
changes in chromosomal conformation are stabilized and main-
tained through interaction with nuclear envelope proteins, such as 
NPC components. In fact, it has been shown for INO1 and GAL1 
that the interaction of these genes with the NPC is regulated during 
the cell cycle; NPC interaction is lost during S phase because of 
Cdk1-dependent phosphorylation of Nup1 (Brickner and Brickner, 
2010). Furthermore a link between nuclear positioning and changes 
in chromatin conformation is provided by the study of inducible 
genes such as GAL1. Upon activation, the 3 and 5 ends of this 
gene interact, thus forming a chromatin loop. This loop is required 
for rapid re-expression of the gene after a period of repression, 
thereby conferring a transcriptional memory that lasts for several 
generations (Brickner et al., 2007; Lainé et al., 2009; Tan-Wong  
et al., 2009; Light et al., 2010). A plausible explanation for this  
observation is that these loops may create a structure that favors  
recruitment or recycling of the transcription machinery at the NPC, 
even though polII has until now not been detected at the NPCs.

Chromosome configuration and DNA repair. 
How does chromosome configuration impact DNA repair? 
DNA is constantly being damaged because of light-induced/ 
oxidative stresses or as a result of replication fork stalling. The 
most deleterious form of DNA damage is a DSB. In haploid yeast 
cells, DSBs can be repaired by homologous recombination either 

(Heun et al., 2001). Mechanisms for potential active motions 
are unknown in yeast, but in mammalian cells, nuclear actin, 
and myosin motors have been shown to play a role in move-
ments that accompany transcriptional activation (Chuang et al., 
2006; Dundr et al., 2007). In addition, it is possible that the me-
chanical coupling between the cytoskeleton and chromosomes 
recently evidenced in meiosis may also apply to the mitotic cycle 
and thus provide a force that originates outside the nucleus 
to move interphase chromosomes (King et al., 2008; Koszul  
et al., 2008). Further insights into the nature and mechanisms of 
chromatin dynamics are likely to result from the application of 
recent advances in high-speed and high-resolution microscopy 
combined with theoretical modeling (Manley et al., 2008; 
Hajjoul et al., 2009; Wombacher et al., 2010).

Functional relevance of  
chromosome organization
Chromosome organization and DNA metabolism are linked, as 
alterations of this organization are often associated with pertur-
bations of replication, transcription, or DNA repair. Here, we 
will concentrate on the latter two functions. For a recent review 
on replication see Raghuraman and Brewer (2010).

Chromosome configuration and transcription. 
Repression of polII transcription often occurs at genes near the 
ends of chromosomes, which, as discussed in the section on 
telomere positioning, are preferentially found at the nuclear pe-
riphery. For example, the HML and HMR cassettes, which are 
required for S. cerevisiae mating type switch, are both subtelo-
meric and must be silent for cell-type identity to be maintained; 
polII-driven reporters close to telomeres, with or without some 
subtelomeric elements, generally display variegated expression 
(Gottschling et al., 1990; Renauld et al., 1993; Pryde and Louis, 
1999; Bi, 2002; Halme et al., 2004). The view that the region 
close to the nuclear envelope is a key player in the repression of 
polII transcription is further based on the observation that artifi-
cial retention at the nuclear periphery of a locus deficient for si-
lencing facilitates its transcriptional repression. This effect is 
related to the enrichment at the nuclear periphery of silencing 
Sir proteins, which are otherwise present in limiting amounts in 
the nucleus (Fig. 2; Maillet et al., 1996; Andrulis et al., 1998).

To understand whether silencing is restricted to the nu-
clear envelope, situations were investigated where peripheral 
targeting and expression can be uncoupled. When a DNA ring 
containing the HMR silent mating type cassette is excised from 
the chromosome and its position is tracked in the nuclei of ku70 
or esc1 mutants, in which telomeric anchoring is defective, tran-
scriptional repression of HMR can still occur in the nucleo-
plasm, away from the periphery, as long as silencing proteins 
are present (Gartenberg et al., 2004). Furthermore, some trun-
cated subtelomeres can be found silenced in the nuclear interior, 
and some native subtelomeres, despite their peripheral location, 
can be transcriptionally active (Enomoto and Berman, 1998; 
Pryde and Louis, 1999; Tham et al., 2001; Mondoux et al., 
2007). Thus, although constituting a generally repressive envi-
ronment for polII transcription, the nuclear periphery, in some 
cases, appears to be permissive for expression. Likewise, in 
mammals, a position close to the nuclear edge can influence the 



JCB • VOLUME 192 • NUMBER 5 • 2011� 728

interaction with the nucleoporin Nup84 subcomplex to be ef-
ficiently repaired (Therizols et al., 2006). Furthermore, a persis-
tent DSB induced on the small chromosome arm 3R by the HO 
endonuclease (in the absence of HM homologous cassettes) mi-
grates to and remains at the nuclear periphery by a process that 
requires the checkpoint protein Mec1 (ATR in humans) and the 
nuclear envelope protein Mps3 (Nagai et al., 2008; Kalocsay et al., 
2009; Oza et al., 2009; Schober et al., 2009). Specific chroma-
tin marks additionally come into play because the sumoylated 
histone variant H2AZ is required for persistent break relocation 
(Kalocsay et al., 2009).

The ends of chromosomes also exemplify the role played 
by chromosome architecture in recombination. Recombination 
can occur at subtelomeres but not at telomeres (Louis et al., 
1994). Repression of homologous recombination at telomeres 
involves yKu and the core X sequence by a mechanism that 
does not require tethering at the nuclear periphery or silencing 
(Stavenhagen and Zakian, 1998; Marvin et al., 2009). It has 
been proposed that telomeres fold back on themselves, creating 

with the sister chromatid once the genome has been replicated 
or with ectopic nonallelic homologous, and often repeated, re-
gions. Another mechanism to repair DSBs is nonhomologous 
end joining, in which the broken DNA ends are religated. The 
latter process is used preferentially during G1, but is more prone 
to errors (Krogh and Symington, 2004).

Because DNA repair requires a physical contact between 
broken ends or homologous regions, one can expect a nonran-
dom organization of chromosomes in interphase to be reflected 
by variable repair efficiencies. Indeed, a lower efficiency of re-
pair between spatially distant regions was observed in mam-
malian nuclei (Parada et al., 2002). A similar result is expected 
in yeast, based on recent work on yeast chromosome organiza-
tion (Duan et al., 2010; Therizols et al., 2010). A connection 
between chromosome positioning at the nuclear periphery and 
genome stability has recently been revealed (Fig. 2; Therizols 
et al., 2006; Nagai et al., 2008; Kalocsay et al., 2009; Oza et al., 
2009; Schober et al., 2009). It was first observed that a DSB in-
duced by the I-SceI endonuclease on subtelomere 11L required 

Figure 2.  Functional compartmentalization of the yeast nucleus. (top) PolII transcription domains. The nucleolus, where polI and polIII transcription occur, is 
shown in green. The nucleoplasm is partitioned between polII transcriptionally repressive domains (dark gray), where silencing proteins (black circles) are 
found, and domains permissive for transcription (light gray), in the nuclear interior and in the proximity of NPCs (red). Chromatin loops (black line) accom-
pany the activation of inducible genes. Large black dot, chromosome end. The inset on the right shows molecular determinants of transcriptional silencing 
acting at telomeric repeats and the upstream subtelomere. (bottom) DNA repair domains. Permanent breaks induced either by HO or I-SceI endonucleases 
(lightning bolt symbol) are displaced (arrows) to the nuclear periphery through the action of the Nup84 subcomplex or the Mps3 protein (Therizols et al., 
2006; Nagai et al., 2008; Oza et al., 2009). This displacement requires Mec1 and modification of the histone H2AZ. At the NPC, modification of repair 
proteins by SUMO ubiquitin ligases modifying enzymes Slx5 and Slx8 or the desumoylase Ulp1 might be important to ensure efficient repair (not depicted; 
Palancade et al., 2007; Nagai et al., 2008). In the nucleolus, recombination between rDNA repeats is prevented by their association with Heh1 and 
Nur1, proteins of the inner nuclear membrane (Mekhail et al., 2008). The inset on the right shows a permanent break induced at subtelomeres displaced 
toward the NPC or Mps3.
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assembly are potential candidates for mediating interactions be-
tween subtelomeres (Miele et al., 2009). Alternatively, we asked 
if the FISH foci could arise in the absence of any interactions 
between telomeric sequences. Because yeast nuclei have a radius 
of only 1 µm and the resolution of conventional light micro
scopes is typically limited to 200 nm laterally and 500 nm  
or more axially, the fluorescence signals from two distinct  
Y sequences may frequently overlap and appear as a single spot 
or cluster even in the absence of actual interactions. To test this, 
we simulated wide-field microscopy images of 32 fluorescent 
telomeres located randomly and independently of each other 
in the nucleus. The telomeres were positioned at the nuclear 
periphery and excluded from the nucleolus, as previously ob-
served (Therizols et al., 2010). The simulated images display a 
relatively small number of bright fluorescent spots reminiscent 
of Y FISH foci, which suggests that interactions may not be re-
quired to account for these observations (Fig. 3, left, top). If the 
32 simulated telomeres are randomly located within the nuclear 
interior rather than positioned only at the nuclear periphery, the 
number of foci increases significantly, implying a smaller mean 
number of telomeres per focus (Fig. 3, left, bottom). This may 
agree with the observation that Y foci are more dispersed and 
numerous in mutants such as ku70, where telomere tethering 
to the nuclear envelope is perturbed (Laroche et al., 1998). An 
increase in the number of foci is also predicted for telomeres 
in a larger nucleus (not depicted). Hence, the observation of a 
smaller number of nuclear foci than individual loci may arise as 
a consequence of limited imaging resolution and confinement 
to a nuclear territory, in this case the nuclear periphery. Physical 
interactions between such loci may nevertheless exist but need 
not necessarily be invoked to explain visualization of nuclear 
foci with conventional microscopy. Long-lasting interactions 
may also be necessary to explain functions like repair or silenc-
ing, which could be initiated by transient interactions.

Conclusions
Budding yeast has been useful as a model system to understand 
many aspects of 3D chromosomal architecture, chromosome 
dynamics, and functional compartmentalization. Yet, many open 
questions remain, especially regarding the links between spatial 
chromosome organization and DNA-related processes. Given 
the implications for fundamental genome functions, a major ob-
jective is obviously to identify or better characterize the princi-
ples that drive nonrandom chromosome organization.

We would like to distinguish two types of organizing 
principles. Specific processes depend on the chemical identity 
of molecules involved in biochemical or genetic interactions, 
whereas generic principles do not depend on the exact com-
pound, but on more general physical laws. For example, a specific  
mechanism is the tethering of chromosome ends to the nuclear  
envelope through the Ku/Sir/Mps3 protein pathways (Gotta et al., 
1996; Laroche et al., 1998; Bupp et al., 2007) or the nucleo-
lar clustering of tRNA genes (Thompson et al., 2003). These  
examples indicate sequence-specific interactions of loci with 
each other and a nuclear landmark, with potentially dramatic 
consequences on nuclear organization. Identifying such specific 
processes requires nailing down their molecular determinants in 

a loop structure that prevents recombination (Stavenhagen and 
Zakian, 1998; Marvin et al., 2009). This is in agreement with 
the observation that chromosome ends rarely associate with 
each other and that interactions between telomeres are, at most, 
transient (Therizols et al., 2010).

The repair of broken ends raises several questions. What 
forces underlie the observed peripheral repositioning? Can chro-
matin modifications such as H2AZ sumoylation or H2A phos-
phorylation initiate chromatin movements ending with a capture 
by nucleoporins or Mps3? Do broken ends remain in close prox-
imity, as in mammalian cells in which a tagged DSB remains 
immobile for at least 24 h (Soutoglou et al., 2007)? Or do these 
ends freely diffuse in the nucleoplasm to search for potential 
homologous regions, as also observed in mammalian cells (Aten  
et al., 2004)? In the latter case, damaged chromosome loci must 
travel through the nucleus toward the repair center.

Nuclear foci versus chromatin interactions.
An important aspect of nuclear organization is the possible exis-
tence of preferred interactions between specific regions of chro-
matin or between chromatin-bound proteins. These features are 
functionally attractive, as they may offer a means to increase the  
local concentration of functional proteins and to prevent un
desirable action of these proteins elsewhere in the nucleus. Visual-
ization of chromatin regions by light microscopy does not allow 
detection of direct interactions, but, given the limited resolution 
of microscopy, only of their spatial proximity. Labeled regions 
located within the resolution limit lead to the appearance of  
aggregates, often named “nuclear foci.” An example of a nuclear 
focus in yeast is provided by the discovery that two, otherwise 
spatially distinct loci on different chromosomes colocalize to 
form a focus with proteins of the repair machinery upon induc-
tion of DSB at these two sites (Lisby et al., 2003). These repair 
foci may facilitate the rejoining of broken extremities and re-
duce aberrant or illegitimate rejoining. Similarly, concentration 
of yeast silencing proteins at the nuclear periphery in nuclear 
foci may prevent unwanted repression at other parts of the ge-
nome, thereby acting as a genetic control mechanism (Gartenberg 
et al., 2004).

A well-studied case of nuclear foci in yeast originated 
from the observation that Y subtelomeric sequences cluster into 
3–8 foci at the nuclear envelope (Gotta et al., 1996; Enomoto 
et al., 1997; Galy et al., 2000; Feuerbach et al., 2002). In many 
mutants of subtelomeric silencing, including sir3, sir4, or rlf2, 
the transcriptional state of reporter genes close to telomeres is 
affected, and staining by telomeric Rap1 is more diffuse than 
in wild-type cells (Palladino et al., 1993; Gotta et al., 1996; 
Enomoto et al., 1997; Mondoux et al., 2007). However, the num-
ber of subtelomeric foci detected by Y probes remains almost 
unchanged in these mutants (Gotta et al., 1996; Enomoto et al., 
1997; Mondoux et al., 2007). These observations suggest that 
subtelomeric chromatin might be affected without perturbation 
of Y-labeled subtelomeric foci, and imply that factors required 
for Y associations are distinct from the silencing factors of  
telomere-adjacent genes. What, then, causes the Y sequence 
clusters seen in FISH data? Do these clusters reflect actual 
physical interactions? If so, proteins involved in nucleosome 
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organization, e.g., in the repositioning of inducible genes upon 
transcriptional activation (Cabal et al., 2006; Berger et al., 2008; 
Brickner and Brickner, 2010).

Despite impressive recent advances in microscopy, genetics, 
and genomic technologies, further improvements in the resolution 
of imaging techniques and 3C-based maps of genomic contacts 
will likely be required to dissect the processes driving chromo-
some configuration at all scales. Although 3C methods can pro-
vide genome-wide interaction frequencies, these are averaged 
over large populations of fixed cells. Distinguishing between 
interactions that occur at high probability in a small fraction of 
cells from those occurring at a low probability in a large ma-
jority of cells, and determining which interactions occur in the 
same cells, is difficult, if not impossible. Imaging, in contrast, 
allows tracking locus positions in individual live cells and can 
be scaled up to analyze position distributions in populations 
of thousands of cells, but is limited to a small number of loci 
per experiment. Thus, these very different techniques should 
be used in combination to determine chromosome configura-
tion and dynamics, and their variability within cell populations. 
In addition, further development of physics-based models and 
analysis techniques will be important to make full use of these 
data and to better understand the mechanisms underlying nu-
clear organization.

Understanding nuclear organization will be essential to 
address how nuclear processes are controlled and, potentially, 
how they evolved. In budding yeast, chromosome ends are spa-
tially confined in a region that appears as a mosaic of repressive 
and permissive compartments for transcriptional regulation. 
Evolution may have taken advantage of this 3D organization by 

wild-type and mutant contexts. Generic processes include self-
organization by macromolecular crowding, an attractive scenario 
to explain the existence of protein-based nuclear compartments, 
and polymer effects (Munkel and Langowski, 1998; Misteli, 
2001; Rosa and Everaers, 2008). Polymer physics makes simple 
and robust predictions about chromosome configuration: for a 
given chromatin compaction and persistence length, the mean 
distance between the extremities of chromosomes containing 
a longer DNA sequence is predicted to be larger than for chro-
mosomes with less DNA (Gehlen et al., 2006). In contrast, if 
chromosome configuration is mainly constrained by sequence- 
or nuclear landmark–specific interactions such as reported for 
tRNA, then such a simple relationship is expected to break down 
(Thompson et al., 2003). Our high-throughput subtelomere po-
sition analysis fits qualitatively with the simple prediction from 
polymer physics, as the ends of short arm chromosomes are 
closer to the SPB than the ends of longer chromosome arms 
(Therizols et al., 2010). The Rabl-like configuration can thus 
be understood as a result of the mitotic spindle forces and the 
basic properties of polymers. These simple effects can account 
for the nonrandom organization of chromosomes in the nucleus, 
reflected by differences in subnuclear territories of chromosome 
ends, despite stochastic motions of the chromatin. Such exclu-
sively generic principles may give rise to features that do not 
necessarily require specific interactions, such as the apparent 
clustering of simulated independent telomeres. These consider-
ations do not rule out specific interactions because fundamental 
DNA processes may be initiated by transient contacts that are 
the result of random dynamics. Specific interactions are also  
clearly involved in previously identified alterations of chromosome 

Figure 3.  Nuclear foci can occur in absence of interactions. Simulated microscopy images of fluorescently tagged telomeres (green) in a yeast nucleus (left)  
and quantification of the distribution of simulated foci number (right). (left, top) Telomeres are confined to a portion of the nuclear periphery. (left, bottom) 
telomeres are randomly distributed in the nucleoplasm. In each simulation, 32 telomeres were randomly positioned independently of each other within a 
subvolume of a 1-µm-radius spherical nucleus. In the top row, this subvolume represents the “nuclear periphery” and is a spherical shell of inner and outer 
radii of 0.8 µm and 1 µm, respectively. In the bottom row, this subvolume consists of the entire nuclear sphere with the exception of a region represent-
ing the nucleolus. The 3D orientation of the nucleus was chosen randomly for each panel. Red, nucleoplasm. To account for limited resolution, the point 
spread function was defined according to typical microscopy parameters, with full width at half maximum of 0.2 µm and 0.6 µm along the lateral and 
axial directions, respectively. The simulated images were corrupted by a mixture of Poisson and additive Gaussian noise. Each panel shows maximum 
intensity projections along the axial direction of a 3D image stack. Histograms of the number of foci were obtained from 2,000 independent simulations 
each (counts are on the y axis). Two telomeres located at a distance <0.3 µm were considered to be part of the same focus. Some foci contained only 
one telomere. The number of foci increases when telomeres are allowed to explore most of the nuclear volume. The histograms indicate substantially more 
distinct foci than are visible in the images, partly because the projection images merge spatially separated foci and because the signal of single isolated 
telomeres is difficult to detect visually.
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moving the genes that need to be switched on or off near chromo
some ends. Consistent with this hypothesis, genes present in 
subtelomeric regions are often involved in adaptation of yeast to 
environmental changes (Halme et al., 2004; Fabre et al., 2005). 
More generally, it would be interesting to determine whether 
families of homologous genes found at genomic positions pre-
dicted to share a common nuclear space also share common 
transcriptional regulation.

The nucleus is a crowded environment of macromole-
cules and chromatin, and yet order exists. This is probably 
dictated in part by simple physical constraints, allowing nu-
clear functions to be harmoniously performed and conserved 
during evolution.
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