
HAL Id: pasteur-02076664
https://pasteur.hal.science/pasteur-02076664v1

Submitted on 22 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Exhaustive, Non-Euclidean, Non-Parametric Data
Mining Tool for Unraveling the Complexity of Biological

Systems – Novel Insights into Malaria
Cheikh Loucoubar, Richard Paul, Avner Bar-Hen, Augustin Huret, Adama

Tall, Cheikh Sokhna, Jean-Francois Trape, Alioune Badara Ly, Joseph Faye,
Abdoulaye Badiane, et al.

To cite this version:
Cheikh Loucoubar, Richard Paul, Avner Bar-Hen, Augustin Huret, Adama Tall, et al.. An Ex-
haustive, Non-Euclidean, Non-Parametric Data Mining Tool for Unraveling the Complexity of Bio-
logical Systems – Novel Insights into Malaria. PLoS ONE, 2011, 6 (9), pp.e24085. �10.1371/jour-
nal.pone.0024085�. �pasteur-02076664�

https://pasteur.hal.science/pasteur-02076664v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


An Exhaustive, Non-Euclidean, Non-Parametric Data
Mining Tool for Unraveling the Complexity of Biological
Systems – Novel Insights into Malaria
Cheikh Loucoubar1,2,3, Richard Paul1, Avner Bar-Hen2,4, Augustin Huret5, Adama Tall3, Cheikh Sokhna6,

Jean-François Trape6, Alioune Badara Ly3, Joseph Faye3, Abdoulaye Badiane3, Gaoussou Diakhaby3,

Fatoumata Diène Sarr3, Aliou Diop7, Anavaj Sakuntabhai1,8*, Jean-François Bureau1
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Abstract

Complex, high-dimensional data sets pose significant analytical challenges in the post-genomic era. Such data sets are not
exclusive to genetic analyses and are also pertinent to epidemiology. There has been considerable effort to develop
hypothesis-free data mining and machine learning methodologies. However, current methodologies lack exhaustivity and
general applicability. Here we use a novel non-parametric, non-euclidean data mining tool, HyperCubeH, to explore
exhaustively a complex epidemiological malaria data set by searching for over density of events in m-dimensional space.
Hotspots of over density correspond to strings of variables, rules, that determine, in this case, the occurrence of Plasmodium
falciparum clinical malaria episodes. The data set contained 46,837 outcome events from 1,653 individuals and 34
explanatory variables. The best predictive rule contained 1,689 events from 148 individuals and was defined as: individuals
present during 1992–2003, aged 1–5 years old, having hemoglobin AA, and having had previous Plasmodium malariae
malaria parasite infection #10 times. These individuals had 3.71 times more P. falciparum clinical malaria episodes than the
general population. We validated the rule in two different cohorts. We compared and contrasted the HyperCubeH rule with
the rules using variables identified by both traditional statistical methods and non-parametric regression tree methods. In
addition, we tried all possible sub-stratified quantitative variables. No other model with equal or greater representativity
gave a higher Relative Risk. Although three of the four variables in the rule were intuitive, the effect of number of P.
malariae episodes was not. HyperCubeH efficiently sub-stratified quantitative variables to optimize the rule and was able to
identify interactions among the variables, tasks not easy to perform using standard data mining methods. Search of local
over density in m-dimensional space, explained by easily interpretable rules, is thus seemingly ideal for generating
hypotheses for large datasets to unravel the complexity inherent in biological systems.
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and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: anavaj@pasteur.fr

Introduction

Identifying the key variables of a biological system that

determine the outcome of interest is difficult. Not only are there

potentially many factors involved, but they also do not work

independently. Testing for all possible interactions is almost

impossible both with respect to statistical validation and biological

interpretation. There is a need for data mining tools to explore

large and complex biological data sets to identify combinations of

factors that optimally explain the outcome of interest. Hypothesis-

free data exploration can potentially generate novel hypotheses

that emerge from the data and which are beyond our imagination.

These novel hypotheses can subsequently be tested using standard

statistical methods.

To date, data mining tools have been primarily developed for

data retrieval through search engines. In biology, this has been

essentially focused on sequence alignment algorithms to manage

the ever-increasing amount of genetic data. More recently, data

mining technology has been proposed as an alternative to

traditional statistics to deal with high dimensional data generated

by Genome Wide Association studies, in the knowledge that

accounting for gene-gene and gene-environment is crucial to

understand human genetic susceptibility to disease [1,2,3,4]. In

addition to such methods in the field of genetic data analyses,

several new heuristic tools have been developed, notably non-

parametric modeling techniques such as Classification And

Regression Trees (CART) [5] and Random Forests [6]. These

methods present several advantages: models have the capacity to
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provide accurate fits of the response in a wide variety of situations,

enabling fitting of non-linear relationships between explanatory

variables and the dependant variable, with no assumption that

explanatory variables are independent. CART is a rule-based

method that generates a binary tree through recursive partitioning.

This splits a subset (called a node) of the data set into two subsets

(called sub-nodes) according to minimization of a heterogeneity

criterion computed on the resulting sub-nodes. Random forests is a

procedure that generates a large number of tree predictors and

then selects the most popular class. Despite the analytical advances

of all of these techniques, none perform exhaustive exploration of

the data [4] and to date, there is no algorithm that can search for

all possible stratifications and identify the best combination of

variables to explain a specified outcome.

Complementary to these non-parametric methods and to

traditional statistical methods, a new approach, HyperCubeH
(Institute of Health & Science, Paris, France) is based on the latest

research in artificial intelligence, using least general generalized

algorithms and genetic algorithms. The underlying idea is to

describe a dataset by a group of « local over densities » of a specific

outcome with no a priori hypothesis or notion of distance, each «

over density » being completely independent from every other.

The breakthrough is the ability to deal with points in a space with

absolutely no assumptions, including those concerning metric and

distance or nature of neighborhood. Indeed, working with a

distance or a defined topology is already an assumption and either

is not true or introduces bias into the model.

This method has been applied to various topics, mainly in the

financial and business sectors, but remains unvalidated in the field

of biology [7]. Through exhaustive exploration of m-dimensional

space, HyperCubeH will classify subsets of the study population

into high and low risk groups and pinpoint not only the key

explanatory variables and their interactions, but also the key range

of values within each explanatory variable. Whilst this approach

has evident value for risk factor analysis critical for clinical decision

making, it also offers a tool with which to explore complexity,

potentially revealing unimaginable combinations of explanatory

variables underpinning the observed outcome.

We report here a rigorous assessment of the performance of this

novel HyperCubeH method. The aim of the study is to test

whether the rules identified by HyperCubeH give the best

predictive value. We use HyperCubeH to explore a large

longitudinal epidemiological data set of malaria. We compare

the predictive value of the rules identified by HyperCubeH with

models generated using classical statistical methods, binomial

regression and CART. We demonstrate that HyperCubeH can

identify the best combination of factors predicting the outcome of

malaria infection in our dataset.

Results

Populations, outcome and explanatory variables
We studied a large dataset from a long-term epidemiological

study of two family-based cohorts in Senegal, followed for 19 years

(1990–2008) in Dielmo and for 16 years (1993–2008) in Ndiop

[8,9]. Time period of observation was classified as a trimester. The

dependant variable was defined as a binary trait: individuals with

at least one clinical Plasmodium falciparum malaria attack (PFA)

during that trimester or without PFA. In total, there were 46,837

outcome events of person-trimesters from 1,653 individuals.

Almost 20% of the events were PFA in both villages. Thirty-four

explanatory variables for association with the occurrence of PFA

were considered. Twenty one variables were qualitative (eight

nominal and 13 ordered) and 13 were quantitative (Table 1 and 2).

HyperCubeH analysis
We first analyzed the data using HyperCubeH. We divided our

dataset into 3 phases: Learning, Validation and Replication. We

analyzed the two cohorts separately. A random variable was

created dividing the data of each cohort into two groups of equal

size (in and out samples). The learning phase was carried out using

the ‘‘in sample’’ from the first studied cohort. In the validation

phase, rules defined in the learning phase were validated in the

‘‘out sample’’ of the same cohort. The learning set contained

11,893 events and the validation set had 11,939 in Dielmo, while

in Ndiop there were 11,530 events in the learning set and 11,475

in the validation set. The effect of each validated rule from the first

cohort was studied in the second cohort in the replication phase.

We defined three parameters for running the learning process,

‘‘Lift’’, ‘‘Size’’ and ‘‘Complexity’’. ‘‘Lift’’ is the ratio of the

prevalence of positive PFA events within a rule over the prevalence

of positive PFA events in the entire population; this is equivalent to

relative risk (RR). ‘‘Size’’ is the minimum number of events

described by the rule. ‘‘Complexity’’ describes the maximum

number of variables in a rule. Choice of ‘‘Lift’’ and ‘‘Size’’

parameters are optimized using the ‘‘Signal Intensity Graph’’ (see

Material and Method). The ‘‘Complexity’’ parameter is here fixed

to six factors, of which two are forced, the ‘‘in sample’’ and the

cohort. Table 3 summarizes the parameters used and results

obtained from the HyperCubeH analyses.

After 27 and 23 hours of analyses, we obtained 4,853 and 6,860

rules in Dielmo and Ndiop, respectively. We calculated the

probability for the occurrence of a rule with identical ‘‘Lift’’ and

‘‘Size’’ parameters from randomization of the entire dataset to

obtain an empirical P value (empP). We selected minimized rules

(see materials and methods) with empP less than 10280 in Dielmo

and Ndiop, for the validation phase (Table 3). We used this high

threshold empP for selection to minimize the risk of over-fitting.

We were able to validate 51 of 52 minimized rules (98%) and 36 of

36 (100%) in Dielmo and Ndiop respectively. Of these, all 51

(100%) rules from Dielmo were replicated in Ndiop and all 36

(100%) rules from Ndiop were replicated in Dielmo with empP less

than 1023. We selected the best predicted rule for further statistical

study (Figure 1). The best predictive rule contained 1,689 events

from 148 individuals and was defined as: individuals who lived in

Dielmo during 1992 to 2003, were of an age between 1 to 5 years

old, having hemoglobin type AA, and having had previous

Plasmodium malariae infection (PMI) less than or equal to 10 times.

These individuals had 3.71 (95%CI: 3.58–3.84) times more PFA

than the general population; and this sub-population was the most

representative (i.e. containing the maximum number of events)

among those with a RR of at least equal to 3.71.

Confirmation of the HyperCubeH rule with traditional
statistical methods

We sought to replicate the HyperCubeH rule using logistic

regression. We redefined continuous variables as binary variables

according to the HyperCubeH rule: The ‘‘Year’’ variable was

defined as after 1991 and before 2004 or else; Age variable as

between 1 and 5 years old or else; Hemoglobin type AA or else

and cumulative number of previous PMIs as #10 times or else. By

multivariate analysis, we tested all possible interactions between

two variables and dropped interaction terms with P.0.05 until all

had P#0.05. The variables showed highly significant marginal

effect (P,0.0001) except age (Table 4). Age was highly significant

(P,1024) when taking into account other criteria including year

(between 1992 and 2003) and previous PMIs (#10). Analysis

incorporating all possible interaction terms (i.e. with more than 2

variables) generated considerable over-dispersion and was difficult

Exhaustive Data Mining in Malaria Epidemiology

PLoS ONE | www.plosone.org 2 September 2011 | Volume 6 | Issue 9 | e24085



to interpret. This result demonstrates that even though age is a

major factor influencing development of PFA, without considering

other variables, this effect would have been missed.

In order to replicate precisely the HyperCubeH rule and

determine the relative risk for comparison with other models/

rules, we estimated the overall effect of the four key variables and

all their possible interactions by defining a dummy variable X to

represent the two sub groups of the population: X = 1 for a sub-

population defined by the observations in the rule (i.e. living in

Dielmo during 1992 to 2003, age 1 to 5 years old, having

hemoglobin type ‘‘AA’’ and having had previous PMIs#10);

X = 0, otherwise (Table 5). Table 5 shows 1,232 PFA+457 not

PFA in the rule = 1,689 events via HyperCubeH. The Pearson chi-

square test confirmed the strongly significant probability to

develop PFA (x2 = 2740.55, DF = 1, P,10216), yielding a RR of

3.71 (95%CI: 3.58–3.84) and odds ratio (OR) of 11.02 (95%CI:

9.87–12.29). Using logistic regression, we confirmed the results of

HyperCubeH.

Replication of the rule in the 2nd cohort
In order to validate the biological and epidemiological aspect of

this HyperCubeH rule, it was replicated in Ndiop where a sub-

population defined as above for Dielmo presented a higher risk to

develop PFA compared to the general population: (x2 = 665.96,

DF = 1, P,10216), RR of 2.35 (95%CI: 2.22–2.48) and OR of

3.50 (95%CI: 3.16–3.87). The result was optimal in Dielmo and

replicated in Ndiop. The four variables identified above to be risk

factors in Dielmo were thus also risk factors in Ndiop. Keeping the

same settings as in Dielmo for time period (from 1992 to 2003),

previous PMIs (#10) and hemoglobin (‘‘AA’’), risk was maximum

when age was re-set to 3 to 7 years old, with a RR of 2.53 (95%CI:

2.41–2.66) and OR of 4.04 (95%CI: 3.67–4.45) with more events

(size = 1,761 events from 181 individuals) and more strongly

significant (x2 = 933.93, DF = 1, P,10216) than when using the

Dielmo age range of 1–5 years old (Size of 1,607 events from 158

individuals). This risk in Ndiop was, however, still lower than in

Dielmo.

The two cohorts differ in one very pertinent manner: in Dielmo

malaria transmission occurs all year round because of the presence

of a small stream that enables mosquitoes to breed. In Ndiop,

transmission is highly seasonal and occurs during the rainy season

(July–December). Hence, we calculated the risk in Ndiop using

only the period of year between July to December, a period when

environmental factors are similar in the two villages. We obtained

the same relative risk, RR = 3.78 (95%CI: 3.62–3.94), OR of

11.80 (95%CI: 10.11–13.77), with a highly significant Pearson chi-

square test (x2 = 1542.50, DF = 1, P,10216). Furthermore, this

risk was maximum when using age 3 to 7 years old (RR = 4.11,

95%CI: 3.97–4.27 and OR = 17.31, 95%CI: 14.68–20.41) with

more events (Size = 932 events from 179 individuals vs. of Size of

863 from 157 when using age 1 to 5) and higher significance

(x2 = 2076.17, DF = 1, P,10216).

Comparison with other models
We examined whether a classical statistical method could

identify the same or better rules. We performed logistic regression

Table 1. List of explanatory categorical variables.

Categorical (nominal) Variables No of levels

House 67 (36 in Dielmo and 31 in Ndiop)

Independent Family 36 (12 in Dielmo and 24 in Ndiop)

Sex 2

Hemoglobin Type 7 (5 in Dielmo and 7 in Ndiop)

ABO blood group 4

G6PD Haplotype (on 4 SNPs: G6PD-376*, G6PD-202*, G6PD-968* and G6PD-542*) 11

PMI 2

POI 2

Categorical (ordered) Variables No of levels

Drug treatment period 4

Year 19 (19 in Dielmo and 16 in Ndiop)

Trimester 4

ABO-261*: rs8176719 3

ABO-297*: rs8176720 3

ABO-467*: rs1053878 3

ABO-526*: rs7853989 3

ABO-771*: rs8176745 3

Alpha globin-3.7deletion 3

G6PD-202*: rs1050828 3

G6PD-376*: rs1050829 3

G6PD-542*: rs5030872 3

G6PD-968*: rs76723693 3

G6PD: Glucose-6-phosphate dehydrogenase, PMI: Plasmodium malariae infection, POI: Plasmodium ovale infection.
*: Position on the gene.
doi:10.1371/journal.pone.0024085.t001
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analysis and CART using the Dielmo data. We first tested the

effect of each variable on PFA by univariate analysis. When two or

more variables were correlated, the most explicative variable was

chosen. Continuous explanatory variables were categorized to

enable comparison with HyperCubeH, by grouping the range of

values having similar values for the dependant variable. Searching

for the cut-off values for continuous variables was guided by

Classification and Regression Trees (CART) methods [5]. CART

identified cut-off values to categorize Age and Exposure variables,

but did not find significant cut-off values for previous PMIs or any

other continuous variable. Therefore, median was chosen as the

cut-off value for each of these other variables. We then selected

variables that showed #0.10 type I error for multivariate analysis

(Table 6 and 7). As HyperCubeH dichotomizes any variable, being

in or out of the rule; we redefined each variable in a similar way.

Categorical, ordinal and interval variables that had more than 2

levels were redefined by regrouping levels for which their partial

effects were in the same direction. Trimester variable was

redefined as semester (January–June and July–December) since

the first two trimesters had decreasing effects and the last two had

increasing effects on PFA when we adjusted on the other variables.

Year variable was redefined in two levels (period 1: ‘‘year#2003’’

and period 2: ‘‘year$2004’’) according to the effect of each year.

Age variable was classified into two levels (having between 0.4 and

8.1 years-old or else) according to CART analysis, ABO blood

group in two levels (O or not O). Table 8 shows the result of

univariate analysis after redefinition. For multivariate analysis we

used the binary explanatory variables from Tables 6–8 and

analyzed by logistic regression using several model selection

methods: (1) selection based on an exhaustive screening of

candidate models in each subset of explanatory variables, selecting

the best one in terms of Information Criterion (lowest Akaike

Information Criterion (AIC)); (2) forward selection and backward

elimination. Model selection was computed using Package

Table 2. List of explanatory continuous variables.

Continuous Variables Mean Median Min Max

Age 21.35 (23.14 in Dielmo and
19.46 in Ndiop)

15.90 (17.06 in Dielmo and
14.97 in Ndiop)

0 97.88 (97.88 in Dielmo and 83.25 in
Ndiop)

Mean genetic relatedness
(Pedigree-based)

0.012 (0.012 in Dielmo and
0.012 in Ndiop)

0.011 (0.012 in Dielmo and
0.008 in Ndiop)

0.001 0.041 (0.028 in Dielmo and 0.041 in
Ndiop)

Mean genetic relatedness
IBD*-based)

0.008 (0.008 in Dielmo and
0.007 in Ndiop)

0.007 (0.008 in Dielmo and
0.007 in Ndiop)

0.002 0.029 (0.025 in Dielmo and 0.029 in
Ndiop)

No. of previous PMI 2.53 (4.10 in Dielmo and
0.82 in Ndiop)

1 (1 in Dielmo and 0 in Ndiop) 0 44 (44 in Dielmo and 9 in Ndiop)

Time since first PMI (year) 6.07 (6.67 in Dielmo and
5.03 in Ndiop)

5.25 (5.95 in Dielmo and4.32
in Ndiop)

0 18.51 (18.51 in Dielmo and 15.25 in
Ndiop)

No. of previous POI 1.09 (1.33 in Dielmo and
0.83 in Ndiop)

0 0 11 (11 in Dielmo and 10 in Ndiop)

Time since first POI (year) 5.52 (6.20 in Dielmo and
4.72 in Ndiop)

4.88 (5.55 in Dielmo and
4.25 in Ndiop)

0 18.51 (18.51 in Dielmo and 15 in
Ndiop)

Exposure (number of days
present in the village) per trimester

80.76 (81.65 in Dielmo and
79.87 in Ndiop)

91 (91 in Dielmo and 90
in Ndiop)

1 92

Distance to animal enclosure
(meters)

322 in Dielmo and 147 in
Ndiop

271 in Dielmo and 139
in Ndiop

1 in Dielmo
and 2 in Ndiop

765 in Dielmo and 393 in Ndiop

Distance to toilets (meters) 326 in Dielmo and 149
in Ndiop

280 in Dielmo and 143
in Ndiop

1 in Dielmo
and 2 in Ndiop

774 in Dielmo and 401 in Ndiop

Distance to house’s tree (meters) 344 in Dielmo and 152
in Ndiop

311 in Dielmo and 149
in Ndiop

1 in Dielmo
and 1 in Ndiop

759 in Dielmo and 386 in Ndiop

Distance to wells (meters) 365 in Dielmo and 195
in Ndiop

453 in Dielmo and 174
in Ndiop

17 in Dielmo
and 17 in Ndiop

719 in Dielmo and 483 in Ndiop

Distance to all (animals, toilets,
house’s tree, wells) together (meters)

329 in Dielmo and 150
in Ndiop

288 in Dielmo and 143
in Ndiop

1 in Dielmo
and 1 in Ndiop

774 in Dielmo and 483 in Ndiop

*IBD: Identity-By-Descent.
doi:10.1371/journal.pone.0024085.t002

Table 3. Parameters used and rules obtained from the HyperCubeH analyses.

Cohort

Total
number of
events

Learning
Set Validation Set Purity Lift Size

Time of
run Coverage

Number of
Total rules

Number of
minimized
rules

Number of
validated
rules

Number of
replicated
rules

Dielmo 23,832 11,893 11,939 0.73 4.00 400 27 h 67% 4,853 52 51 51

Ndiop 23,005 11,530 11,475 0.74 3.49 400 23 h 72% 6,860 36 36 36

Purity: prevalence of events {PFA = 1} in the rule; Lift: Relative Risk of belonging to the rule compared to the total population; Size: number of events in the rule;
Coverage: percentage of events {PFA = 1} in all rules found by HyperCubeH compared to the total number of events {PFA = 1} in the whole dataset.
doi:10.1371/journal.pone.0024085.t003
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‘‘glmulti’’ of R software [10]. The results obtained are presented in

Table 9.

According to the results of the multivariate regression model

selection (Table 9), we defined for each selected model a sub-group

X = 1 when all risk factors are present, otherwise X = 0. For each

model, we gave RR, p-value, and number of events for the sub-group

having all identified risk factors. All sub-groups identified using model

selection techniques had lower predictive values for developing PFA

than the HyperCubeH rule (Table 9). For sub-groups explaining the

same or a greater number of events than the one found by

HyperCubeH, the RR was lower and the 95% confidential intervals

of RR did not overlap with those for the HyperCubeH rule (Table 9).

Figure 1. Typical result from HyperCubeH. A) Table ‘‘Key Indicators’’ shows Lift: 1.39; Size: 1,689; Purity: 0.73. B) Graph showing comparative
proportion of events within the rule and events in the entire population, pink: affected (PFA positive), green unaffected (PFA negative). Both pink and
green bars would reach the horizontal red line if there was same proportion of positive PFA in the rule and in the entire population. C) Table ‘‘Rule
space’’ shows marginal contribution of each variable to the lift. Loss: gives partial decreases of lift when removing each variable (or risk factor) from
the rule; Coverage: percentage of events {PFA = 1} defined by the corresponding variable alone compared to the total number of events {PFA = 1} in
the whole dataset; Size: increase of events in a rule when the constraint defined within a variable is cancelled or by dropping the variable. D) Graphs
showing distribution (in blue) of each variable, and the range of values (in green) within the rule.
doi:10.1371/journal.pone.0024085.g001

Table 4. Multivariate analysis of risk factors associated with clinical P. falciparum malaria attacks in Dielmo using the HyperCubeH
rule.

Parameters DF Estimate SE x2 Pr.x2 OR Wald 95%CL

Intercept 1 23.43 0.16 483.4 ,.0001 - - -

Age group (years) 1 to 5 1 0.38 0.28 1.8 0.178 1.46 [0.84 2.53]

Type of hemoglobin AA 1 0.38 0.07 27.8 ,.0001 1.46 [1.27 1.68]

Year After 1991 and Before 2004 1 1.80 0.15 139.4 ,.0001 6.07 [4.50 8.19]

Number of previous P. malariae infections #10 1 0.80 0.15 29.4 ,.0001 2.23 [1.67 2.97]

Age group *P. malariae infections 1 to 5 #10 1 1.62 0.27 36.5 ,.0001 5.06 [2.99 8.56]

Age group* Year 1 to 5 Before 2004 1 0.77 0.10 55.8 ,.0001 2.15 [1.76 2.63]

P. malariae infections*Year #10 Before 2004 1 21.38 0.16 72.2 ,.0001 0.25 [0.18 0.35]

DF: degree of freedom; Estimate: effect of explanatory variable’s levels on logit(Probability of {PFA = 1}); SE: standard error; x2: chi-square DF = 1; OR: Odds ratio; CL:
confidential level.
doi:10.1371/journal.pone.0024085.t004
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We tested whether the HyperCubeH rule predicted the highest

risk of developing PFA. We used the HyperCubeH model as a

reference. We modified the reference HyperCubeH rule by either

removing one of the variables or adding in variables identified by

multivariate analysis. Using the same method to define subsets of

the population and construct contingency tables, we calculated

RR, OR and P values for each model. As shown in Table 10, there

was no other model that gave higher RR and/or OR than the one

identified by HyperCubeH with equal or greater size.

In contrast to the regression analyses, CART found that age

(between 0.22 and 5.48) and year (from 1990 to 2003) defined the

high risk group for having PFA (RR = 3.26 [95CI: 3.16–3.38],

OR = 7.34 [95CI: 6.80–7.93] and size = 3,041 with x2 = 3268.85,

DF = 1 [P,10216]) (Figure 2). No other variable or combination

of variables yielded a higher Relative Risk.

Optimality of HyperCubeH choice
We then tested whether the cut-off values delimiting the range

of values in the HyperCubeH rule (defined as the reference rule) for

each variable were the optimal ones. Hemoglobin type was fixed

as AA or not. We modified the range of continuous variables of the

reference rule. As the cut-off values for continuous variables were

considered at integer values, there were a finite number of subsets

that we could try for modifying a rule. We tested all possible

ranges of the continuous variables (Age, previous PMIs and Year)

with constraint of minimum ‘‘Size’’ of $400 events in the rules.

We first fixed 2 variables and changed one variable at a time. The

variable to change was first defined as the range of integer values

Table 5. Number of positive/negative PFA events (P.
falciparum malaria attacks) in subgroups of individuals in and
out of the HyperCubeH rule.

PFA positive No PFA

In the rule 1232 457

Out of the rule 7977 37171

Total population 9209 37628

doi:10.1371/journal.pone.0024085.t005

Table 6. Univariate logistic regression analysis of each categorical risk factor for clinical falciparum malaria (PFA) attacks in Dielmo.

No of Person-trimesters

N = 23832

PFA = 0 PFA = 1
Estimate
(Std. Error) Crude OR Wald 95%CL P-values Global P

N(%) = 19475 N (%) = 4357

Age group (years) [0–0.4] 303 (84.17) 57 (15.83) Ref. 1

[0.4–6.7] 2344 (46.72) 2673 (53.28) 1.80 (0.15) 6.06 [4.54–8.09] ,.0001

[6.7–8.12] 692 (67.13) 338 (32.82) 0.95 (0.16) 2.6 [1.9–3.55] ,.0001 ,.0001

[8.12–13.6] 2943 (81.28) 678 (18.72) 0.20 (0.15) 1.22 [0.91–1.65] 0.1782

$13.6 13138 (95.58) 608 4.42) 21.40 (0.15) 0.25 [0.18–0.33] ,.0001

Missing data 55 3 - - - -

Sex Male 9663 (80.77) 2301 (19.23) Ref. 1

Female 9812 (82.68) 2056 (17.32) 20.13 (0.03) 0.88 [0.82–0.94] - ,.0001

Blood group O 7597 (79.56) 1952 (20.44) Ref. 1

A 5131 (83.65) 1003 (16.35) 20.27 (0.04) 0.76 [0.70–0.83] ,.0001

AB 920 (90.20) 100 (9.80) 20.86 (0.11) 0.42 [0.34–0.52] ,.0001 ,.0001

B 4496 (82.40) 960 (17.60) 20.19 (0.04) 0.83 [0.76–0.91] ,.0001

Missing data 1331 342 - - - -

Type of hemoglobin AA 16304 (81.28) 3756 (18.72) Ref. 1

AC/AS/SS 2007 (87.53) 286 (12.47) 20.48 (0.07) 0.62 [0.54–0.70] ,.0001

Missing data 5196 1438 - - - -

G6PD Normal alleles 6448 (84.0) 1228 (16.0) Ref. 1

Mutated allele 7865 (82.30) 1691 (17.70) 20.12 (0.04) 0.89 [0.82–0.96] 0.0032

Missing data 5162 1438 - - - -

P. malariae infections #1 (median) 9348 (81.99) 2099 (18.34) Ref. 1

.1 8983 (79.91) 2258 (20.09) 0.11 (0.03) 1.12 [1.04–1.20] - 0.0008

missing 1144 0 - - -

P. ovale infections #0 (median) 9946 (81.54) 2251 (18.46) Ref. 1

.0 8385 (79.93) 2106 (20.07) 0.10 (0.03) 1.11 [1.04–1.19] - 0.002

missing 1144 0 - - -

Estimate: effect of explanatory variable’s levels on logit(Probability of {PFA = 1}); SE: standard error; OR: Odds ratio; CL: confidential level; Ref.: reference level.
Age and Exposure were categorized using CART and previous PMIs and previous POIs using median since CART did not find significant cut-off values.
doi:10.1371/journal.pone.0024085.t006
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between its minimum and maximum values, and then reduced from

the maximum to smaller integer values covering an ever-decreasing

total age range until the minimum. This was repeated step by step

until each integer value of the variable was set as the minimum for a

step. Therefore, the total number of choices for a variable is

1+2+3+…+maximum = sum of a finite arithmetic sequence = (first

value+last value)*(number of values)*(1/2). Each choice corre-

sponds to a specific modification of the reference rule (i.e. a specific

interval of values defining the modified rule). Then, for Age,

previous PMIs and Year, there are (1+98)*98*0.5 = 4851,

(1+45)*45*0.5 = 1035 and (1+19)*19*0.5 = 190 possible choices

respectively. We then fixed 1 variable and changed 2 variables

simultaneously. When Year is fixed and the couple (Age, previous

PMIs) changed simultaneously, there are 4851*1035 = 5,020,785

possible choices. For previous PMIs fixed and (Age, Year) changed

and Age fixed and (previous PMIs, Year) changed there are

4851*190 = 921,690 and 1035*190 = 196,650 possible choices.

When we selected choices with at least same size as the reference

rule, the resulting RR was always lower than the reference RR.

Figure 3 shows the effects of the modified ranges (i.e. the effect of

other choices different from the one found by HyperCubeH) on RR.

If all 3 variables were allowed to vary simultaneously there would be

4,851(Age) *190(Year) *1035(previous PMIs) = 953,949,150 possi-

ble choices. The time for running such an analysis on one computer

with 2 central processor units (Duo CPU 2.00 GHz 2.00 GHz),

Memory (RAM) of 3.00 GB) is estimated at ,5678 days (,1.94

choices analyzed per second) using function ‘‘system.time(.)’’ of R-

software, and thus not possible to analyze.

Discussion

We describe here a new data mining algorithm that can identify

the combinations of variables that give the optimal prediction of

the outcome of interest. We demonstrate that the model identified

by HyperCubeH has better predictive value than any other model

tested. HyperCubeH was able to identify the best cut-off value and

range for continuous variables. It classified the population into

high and low risk groups and made the results easier to interpret in

Table 7. Univariate logistic regression analysis of each temporal risk factor for clinical falciparum malaria (PFA) attacks in Dielmo.

No of Person-trimesters

N = 23832

PFA = 0 PFA = 1
Estimate
(Std. Error) Crude OR Wald 95%CL P-values Global P

N(%) = 19475 N (%) = 4357

Year 1990 587 (82.21) 127 (17.79) Ref. 1

1991 740 (81.59) 167 (18.41) 0.04 (0.13) 1.04 [0.81–1.35] 0.7457

1992 717 (77.18) 212 (22.82) 0.31 (0.13) 1.37 [1.07–1.75] 0.0126

1993 790 (78.61) 215 (21.39) 0.23 (0.12) 1.26 [0.99–1.61] 0.0653

1994 774 (75.44) 252 (24.56) 0.41 (0.12) 1.50 [1.19–1.91] 0.0008

1995 796 (77.06) 237 (22.94) 0.32 (0.12) 1.38 [1.08–1.75] 0.0093

1996 853 (72.23) 328 (27.77) 0.58 (0.12) 1.78 [1.41–2.24] ,.0001

1997 818 (73.3) 298 (26.7) 0.52 (0.12) 1.68 [1.33–2.13] ,.0001

1998 1179 (80.2) 291 (19.8) 0.13 (0.12) 1.14 [0.91–1.44] 0.2632

1999 1137 (78.09) 319 (21.91) 0.26 (0.12) 1.30 [1.03–1.63] 0.0258 ,.0001

2000 1151 (76.84) 347 (23.16) 0.33 (0.12) 1.39 [1.11–1.75] 0.0041

2001 1019 (77.91) 289 (22.09) 0.27 (0.12) 1.31 [1.04–1.65] 0.0222

2002 1061 (80.75) 253 (19.25) 0.1 (0.12) 1.10 [0.87–1.40] 0.4188

2003 1055 (80.47) 256 (19.53) 0.11 (0.12) 1.12 [0.89–1.42] 0.3396

2004 1153 (87.81) 160 (12.19) 20.44 (0.13) 0.64 [0.50–0.83] 0.0006

2005 1312 (91.11) 128 (8.89) 20.8 (0.13) 0.45 [0.35–0.59] ,.0001

2006 1228 (83.2) 248 (16.8) 20.07 (0.12) 0.93 [0.74–1.18] 0.5663

2007 1495 (90.44) 158 (9.56) 20.72 (0.13) 0.49 [0.38–0.63] ,.0001

2008 1610 (95.72) 72 (4.28) 21.58 (0.16) 0.21 [0.15–0.28] ,.0001

Season Jan–Mar 4749 (82.62) 999 (17.38) Ref. 1

April–June 4912 (82.03) 1076 (17.97) 0.04 (0.05) 1.04 [0.95–1.14] 0.4029

July–Sept 4841 (80.38) 1182 (19.62) 0.15 (0.05) 1.16 [1.06–1.27] 0.0017 0.0128

Oct–Dec 4973 (81.89) 1100 (18.11) 0.05 (0.05) 1.05 [0.96–1.16] 0.2973

Exposure #66.5 days 2978 (94.33) 179 (5.67) Ref. 1

.66.5 days 15745 (81.57) 3558 (18.43) 1.32 (0.08) 3.76 [3.22–4.39] - ,.0001

752 620 - - -

Estimate: effect of explanatory variable’s levels on logit(Probability of {PFA = 1}); SE: standard error; OR: Odds ratio; CL: confidential level; Ref.: reference level.
Age and Exposure were categorized using CART and previous PMIs and previous POIs using median since CART did not find significant cut-off values.
doi:10.1371/journal.pone.0024085.t007
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terms of biology than the probability estimates generated by most

statistical methods.

The principle of this method is to explore all possible

combinations of predictor variables and to find, through stochastic

parallel computing exploration, the optimal hypercubes (or sub-

spaces) defined by a combination of these variables, without making

any assumptions. This method allows generation of rules, sets of

variables and ranges of variable values that define subpopulations

with high risk for the outcome of interest and that best predict the

outcome. Inspired from latest research in artificial intelligence,

Least General Generalized algorithms and Genetic Algorithms,

HyperCubeH SaaS software generates local hypercubes and

stabilizes each local hypercube to a local optimum, each optimum

being new and independent. By doing so, it is possible to describe

and understand local configurations without there being necessarily

any global effect, i.e. some specific combination of factors that are

only found in a sub-set of the population may increase the risk of

outcome for that sub-population, but which are not detectable when

averaged across the entire population. HyperCubeH enables us to

describe the range of values and the combination of variables that

can trigger the events. Although the statistics aims to reject, or not, a

predefined assumption according to given risks, these complex event

intelligence techniques allow us to generate assumptions on rules

without any prerequisite. A hypercube is expressed in a simple

formal way as a rule, directly readable and comprehensible.

As correction for multiple testing is not possible when using

HyperCubeH, statistical validation and replication in independent

cohorts are crucial, even prior to biological validation. We

randomly divided the population in one cohort into the learning

set and the validation set. We used the other cohort for replication.

In addition, we calculated an empirical P value from whole

randomized data. We demonstrated that using a high threshold of

empirical P value (10280), 98–100% of the rules could be validated

and 100% of validated rules could be replicated in another cohort

despite their differences in human ethnicity and malaria

endemicity [11].

Biological validation of the rule is most important. Here three of

the variables are known a priori to increase the risk of developing

PFA: young children (i.e. lack of clinical immunity), normal

hemoglobin Hb AA, and living during a period of intense malaria

transmission. However, HyperCubeH allowed us to identify the

range of continuous variables, such as age and year, which enable

us to define high and low risk groups. In addition, the effect of

these three variables alone did not reach our stringent acceptance

threshold. Identifying an additional variable using classical

techniques would be a big challenge due to the number of

possible choices. HyperCubeH added a fourth one ‘‘number of

previous PMIs at ranges less than or equal to 10’’ to define a rule

containing 1,232 events with PFA and 457 events without PFA

(prevalence = 72.9%) compared to 19.7% prevalence of the whole

population (RR 3.71 (95%CI: 3.58–3.84). This RR is the highest

of all models containing this number of events. This rule explained

28.28% of total events with PFA in the dataset.

The effect size of each variable was estimated by removing each

variable and calculating the loss in ‘‘Lift’’ (Figure 1c). The

strongest effect is age (68%), then village (18%), followed by year

(7.3%). Hemoglobin type explained 3% of the ‘‘Lift’’ while

previous PMIs had only 1.6% effect. There was 1.8% of the ‘‘Lift’’

that could not be explained by each of these variables individually

(Table 11) and thus reflects interaction among the variables. In

Dielmo, malaria transmission is holoendemic with an average of

more than 200 infectious bites per person per year, 10 times more

than Ndiop [12]. Therefore, individuals living in Dielmo have

more chance to develop PFA. Age is a well known factor of PFA

due to rapid development of clinical immunity in high malaria

transmission regions. Using variance component analysis, age

explained 29.8% of total variation in number of PFA in Dielmo

[11]. The year effect is almost certainly yearly variation in

transmission intensity. Indeed in 2003, the HyperCubeH rule

threshold for year, a new drug for PFA treatment was introduced

and malaria transmission decreased in following years. Hemoglo-

bin type is one of the best known genetic factors protecting against

malaria. In our and other studies, sickle cell mutation explained 2–

5% of risk in development of severe and clinical falciparum malaria

[13], similar to that estimated by HyperCubeH (Table 11). The

new variable that HyperCubeH identified is previous P. malariae

Table 8. Univariate analysis of each risk factor (redefined in only two levels) for clinical P. falciparum malaria attacks (PFA) in
Dielmo.

No of Person-trimesters

N = 23832

PFA = 0 PFA = 1 Estimate (Std. Error) Crude OR Wald 95%CL P-values

N (%) = 19475 N (%) = 4357

(81.72) (18.28)

Age group (years) ,0.4 or $8.12 16384 (92.42) 1343 (7.58) Ref. 1

[0.4–8.12] 3036 (50.21) 3011 (49.79) 2.49 (0.04) 12.1 [11.22–13.04] ,.0001

Missing data 55 3 - - -

Blood group A or B or AB 10547 (83.64) 2063 (16.36) Ref. 1

O 7597 (79.56) 1952 (20.44) 0.27 (0.04) 1.31 [1.23–1.41] ,.0001

Missing data 1331 342 - - -

Year $2004 6798 (89.87) 766 (10.13) Ref. 1

,2004 12677 (77.93) 3591 (22.07) 0.92 (0.04) 2.51 [2.31–2.73] ,.0001

Semester Jan–Jun 9661 (82.32) 2075 (17.68) Ref. 1

Jul–Dec 9814 (81.13) 2282 (18.87) 0.08 (0.03) 1.08 [1.16–1.16] 0.0179

Estimate: effect of explanatory variable’s levels on logit(Probability of {PFA = 1}); SE: standard error; OR: Odds ratio; CL: confidential level; Ref.: reference level.
doi:10.1371/journal.pone.0024085.t008
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Table 10. Predictive values of modified HyperCubeH rule.

Variable Size RR 95%CL OR 95%CL x2 DF Pr.x2

M.ref: 3.71 3.58 3.84 11.02 9.87 12.29 2741 1 ,.0001

P. malariae infections+Year+Age+Hemoglobin 1689

M.ref2P. malariae infections 1752 3.65 3.52 3.77 10.35 9.30 11.51 2705 1 ,.0001

M.ref2Year 2197 3.44 3.33 3.56 8.58 7.82 9.40 2843 1 ,.0001

M.ref2Age 10824 1.18 1.14 1.23 1.24 1.18 1.30 71 1 ,.0001

M.ref2Hemoglobin 1957 3.60 3.48 3.73 9.94 9.00 10.99 2898 1 ,.0001

M.ref+Sex2P. malariae infections 879 3.69 3.53 3.86 10.82 9.31 12.57 1475 1 ,.0001

M.ref+Sex2Year 1031 3.59 3.44 3.75 9.82 8.57 11.25 1592 1 ,.0001

M.ref+Sex2Age 5377 1.16 1.10 1.22 1.20 1.13 1.29 29 1 ,.0001

M.ref+Sex2Hemoglobin 990 3.62 3.46 3.78 10.06 8.75 11.56 1562 1 ,.0001

M.ref+Blood Type2P. malariae infections 784 3.61 3.44 3.79 10.03 8.58 11.72 1249 1 ,.0001

M.ref+Blood Type2Year 966 3.46 3.30 3.63 8.69 7.57 9.96 1351 1 ,.0001

M.ref+Blood Type2Age 4312 1.29 1.22 1.36 1.38 1.29 1.49 78 1 ,.0001

M.ref+Blood Type2Hemoglobin 852 3.66 3.50 3.83 10.48 9.01 12.19 1399 1 ,.0001

M.ref+G6PD2P. malariae infections 651 3.76 3.58 3.95 11.56 9.69 13.79 1162 1 ,.0001

M.ref+G6PD2Year 717 3.72 3.55 3.91 11.17 9.46 13.20 1244 1 ,.0001

M.ref+G6PD2Age 4840 1.17 1.11 1.23 1.22 1.13 1.31 30 1 ,.0001

M.ref+G6PD2Hemoglobin 661 3.84 3.66 4.02 12.59 10.53 15.05 1249 1 ,.0001

M.ref+Semester2P. malariae infections 884 3.77 3.62 3.94 11.76 10.09 13.69 1574 1 ,.0001

M.ref+Semester2Year 1117 3.56 3.41 3.72 9.54 8.38 10.86 1677 1 ,.0001

M.ref+Semester2Age 5458 1.23 1.17 1.30 1.31 1.23 1.40 64 1 ,.0001

M.ref+Semester2Hemoglobin 988 3.76 3.61 3.92 11.62 10.06 13.42 1734 1 ,.0001

M.ref+Exposure2P. malariae infections 1403 3.66 3.25 3.80 10.46 9.29 11.78 2228 1 ,.0001

M.ref+Exposure2Year 1804 3.44 3.31 3.57 8.51 7.69 9.42 2367 1 ,.0001

M.ref+Exposure2Age 8729 1.15 1.11 1.20 1.20 1.14 1.27 42 1 ,.0001

M.ref+Exposure2Hemoglobin 1535 3.62 3.49 3.76 10.14 9.05 11.35 2361 1 ,.0001

M.ref+P. ovale infections2P. malariae infections 729 3.88 3.71 4.06 13.13 11.06 15.60 1410 1 ,.0001

M.ref+P. ovale infections2Year 759 3.87 3.71 4.05 13.05 11.02 15.44 1459 1 ,.0001

M.ref+P. ovale infections2Age 4256 1.52 1.44 1.59 1.73 1.62 1.86 246 1 ,.0001

M.ref+P. ovale infections2Hemoglobin 768 3.85 3.69 4.03 12.79 10.82 15.10 1456 1 ,.0001

M.ref: reference model; Size: number of events; RR: risk ratio; OR: Odds ratio; x2: chi-square DF = 1; CL: confidential level.
doi:10.1371/journal.pone.0024085.t010

Figure 2. Decision tree generated by Classification and Regression Tree (CART) analysis of risk factors determining the occurrence
of P. falciparum malaria attacks (PFA) per trimester. Figure shows the cut-off values identified by CART that divide the dataset into two. At each
leaf are given the Relative Risk (RR) and the number of events associated with that leaf.
doi:10.1371/journal.pone.0024085.g002
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infection - PMI. Although CART did not identify any significant

threshold for previous PMI, using the median as the cut-off value

gave a significant effect for previous PMI is the univariate logistic

regression, whereby above median previous PMI increased risk of

PFA (P = 0.0008, Table 6). Interestingly in the HyperCubeH rule

the reverse was found and this is because of the interaction of

previous PMI with age: being young and having previous PMI

decreased risk.

Cross-species immunity among different Plasmodium species has

long been suspected and there is evidence of among-species

negative interactions during concomitant infection [14,15]. An

influence of P. malariae carriage on subsequent P. falciparum

infection has been observed before. In Gabon, children infected

with P. malariae presented more often with a P. falciparum infection

and at higher parasite densities [16]. During the follow-up,

subjects who were infected by P. malariae were reinfected by P.

falciparum more rapidly. Such a relationship was also observed in

the Garki project [15,17,18]. Although small scale variation in

mosquito biting rate could generate similar levels of exposure to

each parasite spp., the species infection association was found to be

related to differences in acquired immunity and not to differences

in exposure, suggesting that the levels of immunity to P. falciparum

and to P. malariae were inter-related [18]. More recently, a family-

based study found a strong relationship between P. falciparum

parasite density and frequency of P. malariae infections [19]. P.

falciparum parasite density has previously been shown to be under

human genetic control and linked to the chromosomal region

5q31 in four independent studies [11,20,21,22]. These results

suggest that individuals genetically susceptible to P. falciparum are

also genetically pre-disposed to P. malariae [19]. Little is known on

the impact of infection by one species on the incidence of disease

of another. The relationships between parasite density and risk of

attributable disease were found to be similar for P. falciparum, P.

vivax and P. malariae in Papua New Guinea, compatible with the

Table 11. Effect size of each variable in the rule.

DIELMO NDIOP

All year July December

Loss % Loss Loss % Loss Loss % Loss

Initial Lift 3.71 100% 2.35 100% 3.78 100%

Age 22.53 268.2% 20.82 234.9% 21.26 233.3%

Village 20.67 218.1% 20.7 229.8% 0.05 1.3%

Year 20.27 27.3% 20.07 23.0% 20.06 21.6%

Hb 20.11 23.0% 27.0% 23.0% 20.09 22.4%

Previous PMIs 20.06 21.6% 20.13 25.5% 20.12 23.2%

Semester - - - - 21.43 237.8%

Total Loss 23.64 298% 21.79 276% 22.91 277%

Residual Lift 0.07 1.9% 0.56 23.8% 0.87 23.0%

Loss: partial decreases of lift when removing each variable from the rule.
doi:10.1371/journal.pone.0024085.t011

Figure 3. Effect on relative risk (RR) of modifying the ranges of continuous variables. Graphs show RR for all other possible definitions of
risk group on the explanatory variables, with equal or greater size than the HyperCubeH rule. Y-axis indicates the RR. A) Only ranges of Age are
modified: 102 choices among 4,851 possible choices had size equal or greater than 1,689 (size of the HyperCubeH rule) and are plotted; B) Only
ranges of previous PMIs are modified: 35 choices among 1,035 possible; C) Only ranges of Year are modified: 25 choices among 190 possible; D)
Ranges of both Age and previous PMIs are modified simultaneously: 25,040 choices among 5,020,785 possible; E) Ranges of both Age and Year are
modified simultaneously: 8,912 choices among 921,690 possible; F) Ranges of both previous PMIs and Year are modified simultaneously: 1,110
choices among 196,650 possible. Filled red triangle represents the RR of HyperCubeH’s rule (HyperCubeH’s risk group), empty black circles represent
the RR of other choices of risk groups.
doi:10.1371/journal.pone.0024085.g003
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hypothesis that pan-specific mechanisms may regulate tolerance to

different Plasmodium spp. [23]. Pertinent to our finding here, Black

et al. found that children with symptomatic episodes not only

presented with fewer mixed species infections, but also had fewer

previous P. malariae infections than symptom-free children, as

demonstrated by serology [24]. The induced infection experiments

also provide evidence of the development of some cross-protective

immunity [25]. Interestingly, previous infection with P. malariae has

been previously shown to impact upon a P. falciparum infection, but

with respect to the production of transmission stages and not

clinical presentation [26,27].

Many other rules used this variable confirming that previous

infection by P. malariae is associated with protection against

development of PFA. It is presently impossible to conclude if this

association is a causal one or is due to a correlation to an unknown

factor affecting the risk to develop PFA. As both parasites are

transmitted by the same mosquito species, increased exposure to

one species (P. malariae) might be expected to correlate with

increased exposure to the other (P. falciparum). Hence, spatial

heterogeneity in the exposure to infection could simultaneously

result in increase risk of infection by both parasite spp. Our analysis

did not take into account ‘‘number of previous P. falciparum

attacks’’ (nbpPFA) and so it is possible that the variable previous

PMIs replaces this information. However, in another HyperCubeH
analysis, we found that both previous PMIs and nbpPFA are used

in different rules (data not shown), indicating that the previous

infection by the two parasite species is not perfectly correlated.

Thus, it seems probable that the parasite species effect reflects

some impact of P. malariae infection on the development of

immunity against P. falciparum. In our study, there were from 0 to

44 P. malariae infections per person prior to a clinical P. falciparum

episode. HypercubeH identified that having few P. malariae

infections (less than 10) was a potent risk factor, which excluded

about 10% of events from those individuals who were often

infected with P. malariae. The fact that a threshold of ten infections

was identified as eliminating this risk factor is clearly not an exact

threshold, but generally reflects the weakly immunising effect of P.

malariae infection, reminiscent of that induced by P. falciparum

infection. Furthermore, whereas eighteen out of 51 rules used the

number of previous P. malariae infections, none used the number of

previous P. ovale infections, illustrating that infection by the two

Plasmodium species differently affects susceptibility to P. falciparum

attacks. However, it should be noted that the absence of an effect

of P. ovale on clinical P. falciparum attacks does not mean that P.

ovale definitively has no effect. It may be the case that additional

variables may be required to be taken into account. Indeed, in the

multivariate model selection analysis (Table 9), previous P. ovale

infection is significantly as a risk factor when a minimum of 6

explanatory variables are used. In our HyperCubeH analyses, we

limited the number of variables in a single rule to four. This

differential species effect is currently under investigation.

We compared the rule with the model identified by classical

logistic regression method. Although we aimed to include all

possible interaction terms among variables studied in multivariate

analysis, over-dispersion of the data made this unstable. In

addition, the running time would have been unacceptably long,

taking ,5678 days for one a common computer to analyze about

109 models (3 variables with around 103 cases for each). With

HyperCubeH, it took 23 to 27 hours to analyze 35 variables. In

addition, the results of testing interaction among more than 2

variables by classical methods are difficult to interpret. We

demonstrated that by omitting or adding other variables identified

by other statistical methods or varying the cut-off value of

continuous variables, the rule still performed best. Although some

rules had higher RR, they have lower ‘‘Size’’ or more complexity

and less significant P value. Among rules with ‘‘Size’’ equal to or

greater than 1,689, the same as the reference rule, the reference

rule gave the highest RR.

Interestingly, the rule identified by classical method covered

0.67% of total positive events whereas one HyperCubeH rule

explained 13.4%. When considering the minimized rules, we

could identify risk factors that could explain 67% of total positive

events, a percentage of coverage that would never be achieved by

classical methods. While the classical method looked at events in 2

dimensions, HyperCubeH identified rules in multi-dimensional

space. Although all factors identified by the classical method are

risk factors for development of PFA, different groups of people

developed PFA for different reasons. The rule identified by the

classical method involved only individuals who had all the risk

factors. We could only separate groups of individuals with different

risk factors when looking at the events in multi-dimensional space.

Analysis by CART identified a combination of variables, Age

and Year, that increased risk of PFA. Both of these variables and

the range of these variables were very similar to those identified by

HyperCubeH. That CART failed to detect Hemoglobin or

previous PMIs likely reflects the differences in methodologies of

the two techniques. CART uses a sequential approach first

splitting the data set according to the most significant variable and

identifying the threshold value of that variable that maximizes the

discrimination in the two subsets of data (i.e. least PFA vs. most

PFA). Then, CART will further sub-divide each subset by the next

most significant variable that leads to maximum discrimination.

This approach thus leads to canalization of the data along different

pathways, resulting in a decreased sample size for comparison. In

addition, optimization by maximum discrimination at each level

may paradoxically lead to an erroneous sub-optimal end-point

many levels down. HyperCubeH, by contrast, analyses all variables

simultaneously with no sequential selection that leads to such loss

of power or canalization along a potentially eventual sub-optimal

pathway.

One limitation arises when studying qualitative variables with

more than two levels. It is not possible for HyperCubeH to

combine levels having a similar effect in the same rule. One

alternative would be to use analysis of variance, as we previously

did in our classical analysis for qualitative variables with more than

2 levels, to detect modalities having a similar effect on the

dependant variable and group them a priori.

Another more practical problem comes from the efficiency of

the learning process. This process is more efficient in explaining

the minor outcome, which is sometimes not the standard way of

thinking. For instance, we could identify only factors increasing the

risk of PFA, but not those conferring protection against malaria,

which is the classical choice in malaria field. The positive events

for PFA made up ,15% of the total number of events. To identify

factors conferring protection (negative PFA), of which the

prevalence was 85%, would have presented a vastly increased

analytical challenge and yielded many, many more rules.

The choice of minimum group size for the outcome variable

can, however, generate problems for biological interpretation. For

example, here we observe that hemoglobin AA (normal hemoglo-

bin) increases risk for development of PFA compared to the

mutated sickle form, AS, which is known to confer protection.

Importantly, we cannot conclude from our analysis that AS

confers protection. In general, care must be taken in interpreting

the direction of the effect and further specific analyses should be

performed prior to establishing formal conclusions.

Repeated measures and potential pseudo-replication of events

from the same individual are difficult to take into account. Whilst

Exhaustive Data Mining in Malaria Epidemiology
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this can be accounted for a posteriori in confirmatory classical

analyses, this cannot be currently taken into account in

HyperCubeH. For the rules obtained, the full information on the

number of events and the number of people contributing to those

events can be provided, as done here. In addition, with regard to

use of human genetic factors as explanatory variables, bias due to

population stratification is difficult to take into account in

HyperCubeH. Such a bias needs to be secondarily tested on

validated rules using classical methods.

A final limitation is that HyperCubeH requires huge computa-

tional power and needs to use massive parallel processing. Today,

HyperCubeH is accessible as a web based software that requires no

specific learning skills, though it requires significant computing

power provided through SaaS architecture. Currently HyperCu-

beH is used on various complex problems [7]; we now report an

analysis of epidemiological data using this algorithm. HyperCubeH
classified events or individuals into high and low risk groups

defined by combinations of variables. It efficiently sub-stratified

quantitative variables to optimize the effect. In addition, it was

able to identify interactions among the variables. These tasks are

not easy to perform using standard data mining methods.

HyperCubeH is very useful in handling large datasets with

complexity of the dependant variable, such as found in large

epidemiological studies and genetic studies. We have proved that

the rules identified by HyperCubeH are the optimal in the dataset

and that no other methods can find them in a reasonable time.

Search of local over density in m-dimensional space, explained by

easily interpretable rules, is thus seemingly ideal for generating

hypotheses for large datasets to unravel the complexity inherent in

biological systems. Hypotheses generated by this data mining

program should be validated using classical statistical methods

and/or by biological experimentation. Further statistical analyses,

to provide adequate description and inference on the sub-

population identified in a rule, have to be performed by using

specific models (e.g. Generalized Estimating Equations [28] or

Generalized Linear Mixed Models [29] to take into account

repeated measures and/or genetic covariance between individuals,

or distribution of the dependent variable).

Materials and Methods

Ethics statement
The project protocol and objectives were carefully explained to

the assembled village population and informed consent was

individually obtained from all subjects either by signature or by

thumbprint on a voluntary consent form written in both French

and in Wolof, the local language. Consent was obtained in the

presence of the school director, an independent witness. For very

young children, parents or designated tutors signed on their

behalf. The protocol was approved by the Ethical Committee of

the Pasteur Institute of Dakar and the Ministry of Health of

Senegal. An agreement between Institut Pasteur de Dakar, Institut

de Recherche pour le Développement and the Ministère de la

Santé et de la Prévention of Senegal defines all research activities

in the study cohorts. Each year, the project was re-examined by

the Conseil de Perfectionnement de l’Institut Pasteur de Dakar

and the assembled village population; informed consent was

individually renewed from all subjects.

Populations
The populations studied come from two family-based village

cohorts, Dielmo and Ndiop, in Senegal. These populations have

been recruited for a long-term immunological and epidemiological

study [8]. Malaria transmission intensity differs between the 2

villages because of the presence of the river in one of them that

offers a mosquito breeding site all-year round.

Research stations have been installed in the villages with full-

time nurses and paramedical personnel. Almost all fever episodes

were reported to the clinics with blood smears checked for malaria

parasites. The outcome of interest is a Plasmodium falciparum

malaria attack (PFA). PFA was defined as a presentation with

measured fever (axillary temperature .37.5uC) or fever-related

symptoms (headache, vomiting, subjective sensation of fever)

associated with i) a P. falciparum parasite/leukocyte ratio higher

than an age-dependent pyrogenic threshold previously identified

in the patients from Dielmo [30], ii) a P. falciparum parasite/

leukocyte ratio higher than 0.3 parasite/leukocyte in Ndiop. The

threshold was used because of high prevalence of asymptomatic

infections in the populations, as occurs in regions endemic for

malaria.

Some explanatory variables are time-dependent and were

therefore evaluated for each trimester. These included current

age, experience of exposure to other Plasmodium spp. (Plasmodium

ovale and Plasmodium malariae) before the current trimester defined

by the cumulated number of previous infections, the correspond-

ing year and trimester, time spent in the village during the current

trimester. Other variables are individual-dependent including sex,

geographic location (e.g. village, house), and genetic profiles (e.g.

blood type, hemoglobin type, Glucose-6-phosphate dehydrogenase

(G6PD) deficiency status (genotype and Enzyme activity). All

variables are summarized in Table 1 and 2.

Mutation characterization
Sickle cell mutation and alpha-globin 3.7 deletion were typed as

described [31]. G6PD mutations and ABO polymorphisms were

typed by PCR-RFLP, SNaPshotH (Applied Biosystems, Foster

City, USA) or TaqMan SNP genotyping assays (ABI PrismH-7000

Sequence Detection System, Applied Biosystems, Foster City,

USA) according to the manufacturer recommendation. Primers,

probes and restriction enzymes used are shown in Table 12. PCR

conditions will be sent on request. ABO polymorphisms were

selected to differentiate the A, B and O alleles [32].

HyperCubeH data mining algorithm
The HyperCubeH technology is accessible as a web based

software that requires no specific learning skills, though it requires

a significant computing power provided through a SaaS

architecture (Institute of Health & Science, Paris, France). A

hypercube is a subspace defined by a combination of conditions,

each condition being either a range or a modality of a continuous

or discrete variable. A hypercube has various characteristics: its

dimension, the number of variables involved; the ‘‘Lift’’, the

measure of the over density compared to the whole database, the

‘‘Size’’, the number of points included in the hypercube.

After defining the dependent variable, HyperCubeH program

generates a series of rules by exhaustively exploring the space of

the random variables, generating optimal subspaces significantly

enriched with the occurrence of events, and defining for each

interesting subspace, its explicative variables and their corre-

sponding values. A rule is a set of a limited number of continuous

and/or categorical variables and their associated values. A search

by HyperCubeH program is divided in 3 steps:

(i) A stochastic exploration of the space of random variables: Subspaces

are exhaustively generated following this procedure: One

point is randomly chosen as a germ (a starting point) in the

m-dimensional space defined by the m explanatory variables;

after a 2nd point is randomly selected to form a segment.

Exhaustive Data Mining in Malaria Epidemiology
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These two points correspond to apical points of a starting

subspace having a hypercube design and represent the

diagonal of this hypercube. This diagonal (jointly the volume

of the hypercube) will be optimally increased. Each subspace

is selected depending on two constraints: its size, the number

of events included in the subspace, and its purity, the

percentage of positive events in the subspace. To define

explanatory variables, the corresponding axe for each

variable delimiting the subspace is suppressed, and the

subsequent subspace tested for satisfying the previous

constraints. The variables for which the corresponding axe

must be present to satisfy these constraints are the

explanatory variables. The subspace is cancelled if it does

not satisfy the constraints defined by the user and a new

subspace is generated.

(ii) An optimization of the characteristic of the hypercube: The volume of

each initial hypercube selected at the first step is locally

maximized depending on a Z score using genetic algorithms,

and always constrained to a minimum purity.

(iii) Validation of the rule using a non-parametric approach: The Z score

of the optimized hypercube is compared to those generated

by a random permutation of the dependant variable.

For exhaustiveness, these three steps are repeated until all points

have been used as starting point and all the events have been

studied; i.e. all the events in the learning dataset have been

included in at least one rule. The user can stop the learning

process at any time and know the coverage of his exploration. Due

to human limitations in understanding complex rules, the maximal

number of explanatory variables inside each rule can be fixed,

thereby defining complexity. HyperCubeH uses an exhaustive non-

parametric and non-Euclidean methodology, it does not use

proximity between events but only generates subspaces in which

events are present or not.

We have first to define variables to introduce into the learning

data set. If necessary, the outcome variable is transformed into a

dichotomous variable. In our case, the number of clinical P.

falciparum attacks by trimester was divided into two groups: ‘‘no

attack during the trimester’’, and ‘‘at least one attack during the

trimester’’. This is done on a local computer using MATRIX

program with two main functions: ‘‘Simple lift’’ and ‘‘Correla-

tion’’. ‘‘Simple lift’’ classifies variables according to their first order

effect and has 3 major roles: to verify consistency of the data, to

detect circular variables and to detect variables with pivot points

that define threshold values for the impact of a variable on the

outcome. ‘‘Spearman (or Pearson) Correlation’’ associated with

‘‘Simple lift’’ will help to define which variable to choose amongst

the correlated variables. Sometimes, a combined variable from

correlated variables is the best choice. The matrix is loaded onto

the supercomputer after defining on which part of the database the

learning process will be performed. In our case, we chose the

learning set of Dielmo cohort. We defined on which group of the

dichotomous variable the learning process would be carried out, in

our case ‘‘at least one attack during the trimester’’. First, we

constructed a Signal Intensity Graph (SIG), which defines the

relationship between the two main parameters of a learning

process, ‘‘purity’’ and ‘‘size’’. This graph shows the value of the

‘‘purity’’ for 5 different ‘‘sizes’’ defined from data of the database

and of a randomized database. This graph can be downloaded

onto the local computer. After defining the last parameter,

‘‘Complexity’’, which defines the maximum number of variables

per rule, the learning process is run. From the total number of

rules, a set of minimized rules is obtained from an iterative process.

In the first step, the rule explaining the most number of events is

chosen and at each of the following steps the rule explaining the

maximal number of events in the remaining event space not

included in the first rule is added. The iterative process is stopped

when all the events explained by the total number of rules are

explained by the set of minimized rules. The total number of rules

and/or the minimized rules can be downloaded onto the local

computer to perform further analysis.

Statistical analysis
We used Classification and Regression Trees (CART) methods

[5] to split continuous explanatory variables to categories. We

performed a Logistic Regression Model to estimate overall RR

and OR of combinations of factors [33,34].

Identity-by-descent (IBD)
We estimated multipoint IBD using genome wide microsatellite

genotypes by MERLIN [35]. We defined ‘‘IBD-based mean

genetic relatedness’’ for an individual to the rest of the population,

based on IBD probabilities, as the mean of his kinship coefficients

with all other individuals = (1/(N21))6(1/M)6gi gm

[0.56P1+P2]i,m, i = 1, …, N21 and m = 1, …, M where N is the

number of individuals genotyped for the microsatellite markers in

the population, M the number of microsatellite markers

P1 = probability of sharing 1 allele and P2 = probability of sharing

2 alleles.

Pedigree-based mean genetic relatedness
The genetic covariance is computed as r(A,B) = 26coancestry(A,B)

where the coancestry between A and B is calculated referring to this

following method (Falconer and Mackay 1996) [36]: coances-

try(A,B) =gp(1/2)n(p)6(1+ICommon Ancestor) where p is the number of

paths in the pedigree linking A and B, n(p) the number of

individuals (including A and B) for each path p and IX is the

coancestry between the two parents of X, which is set to 0 if X is a

founder. We defined the mean relatedness coefficient for an

individual to the rest of the population, based on the pedigree, as

the mean of his kinship coefficients with all other individuals. The

variable named ‘‘Pedigree-based mean genetic relatedness’’ was

defined by this measure.
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