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ABSTRACT

The ability to introduce genetic modifications in the germ line of complex organisms has been a long-standing

goal of those who study developmental biology. In this regard, the mouse, a favorite model for the study of the

mammals, is unique: indeed not only is it possible since the late seventies, to add genes to the mouse genome

like in several other complex organisms but also to perform gene replacement and modification. This has

been made possible via two technological breakthroughs: 1) the isolation and culture of embryonic stem cells

(ES), which have the unique ability to colonize all the tissues of an host embryo including its germ line; 2)

the development of methods allowing homologous recombination between an incoming DNA and its cognate

chromosomal sequence (gene ‘‘targeting’’). As a result, it has become possible to create mice bearing null

mutations in any cloned gene (knock-out mice). Such a possibility has revolutionized the genetic approach of

almost all aspects of the biology of the mouse. In recent years, the scope of gene targeting has been widened

even more, due to the refinement of the knock-out technology: other types of genetic modifications may now

be created, including subtle mutations (point mutations, micro deletions or insertions, etc.) and chromosomal

rearrangements such as large deletions, duplications and translocations. Finally, methods have been devised

which permit the creation of conditional mutations, allowing the study of gene function throughout the life

of an animal, when gene inactivation entails embryonic lethality. In this paper, we present an overview of

the methods and scenarios used for the programmed modification of mouse genome, and we underline their

enormous interest for the study of mammalian biology.
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INTRODUCTION

For decades geneticists have understood the inter-

est of studying mutations that, through the geno-

type they generate, reveal the function of the genes

in which they are produced. However, in complex

organisms such as the mouse, which is a model of

choice for the study of mammals, for many years the
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mutations obtained were limited to those observed

randomly during breeding and were essentially vis-

ible modifications in phenotype (color of the fur,

morphology, behavior, etc.), and few developmen-

tal mutations were observed in this way. Therefore

the possibility of creating deliberate and controlled

genetic modifications was a dream anticipated by

Avery et al. (1944), more than fifty years ago. In

their seminal study using bacteria, these authors

demonstrated that DNA is the chemical support for
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hereditary characters: ‘‘Biologists have long

attempted by chemical means to induce in higher

organisms predictable and specific changes which

thereafter could be transmitted in series as heredi-

tary characters’’. The aim of our paper is to show

how this dream has become reality over the past

twenty years, through the development of methods

that modify the genetic make-up of the mouse (see

Table I). The creation of mice with genetic modifi-

cations programmed by the investigator has revolu-

tionized the study of almost all the biological aspects

of this animal and its various systems (immune, ner-

vous, hematopoietic, etc.) (for a review, see Capec-

chi 1989). Moreover, this could lead to the cre-

ation of murine models for human genetic diseases

(Smithies 1993), precious for studying their phys-

iopathology and eventually for the development of

appropriate therapies. As we will see later, this was

made possible by the breakthrough of two different

approaches: one led to the isolation in vitro of re-

markable cells: embryonic stem (ES) cells (Gardner

and Brook 1997); the other permitted identification,

in higher eukaryote cells, of the conditions required

for homologous recombination between incoming

DNA and the homologous sequence in the chromo-

some (Smithies et al. 1985, Wong and Capecchi

1986).

EMBRYONIC STEM CELLS: FABULOUS VEHICLES
FOR THE CREATION OF MUTANT MICE

In 1981, two laboratories reported the isola-

tion, from the culture of early mouse embryos, of

cell lines with the properties of pluripotent embry-

onic cells (Martin 1981, Evans and Kaufman 1981)

(see Table II). These cells, called Embryonic Stem

(ES) cells, after injection into a young embryo were

capable of colonizing all its tissues including the

germ line, thus giving birth to chimeras. The ES cell

genotype cells could then be ‘‘recycled’’ in vivo and

transmitted to future generations. Following this, it

was demonstrated that these cells could be geneti-

cally modified in vitro, by introduction of a trans-

gene, for example, but also that the corresponding

transgenic mice could be obtained (Gossler et al.

1986, Robertson et al. 1986) (see Fig. 1). Thus

a totally new method for obtaining transgenic mice

was born, considerably widening the possibility of

‘‘classical’’ transgenesis by microinjection of DNA

in the zygote. Indeed, it became possible for the

investigator to use procedures selecting rare genetic

modifications in the ES cells and to obtain the cor-

responding mutant mice.

HOMOLOGOUS RECOMBINATION IN ES CELLS:
CREATION OF ‘‘KNOCK OUT’’ MICE

Studies conducted in the eighties, particularly by the

groups of Smithies and Capecchi, had demonstrated

that mammalian cells have the enzymatic apparatus

necessary for recombination between an incoming

DNA and the homologous sequence present in situ

in the chromosomes, even if this was relatively rare

compared with the random integration of this same

DNA (Smithies et al. 1985, Wong and Capecchi

1986). At first, these results were used by these

authors to create – or correct – null mutations in

thehprt gene (Doetschman et al. 1987, Thomas and

Capecchi 1987): these mutations can be selected di-

rectly after transfection of the targeted vector carry-

ing the required mutation, through addition of drugs

in the culture medium. Despite the generally vari-

able and low frequency of homologous recombina-

tion events, these experiments were later extended

to genes the null mutations of which cannot be se-

lected, using various approaches based either on se-

lection or on screening techniques (see Fig. 2). To-

day, hundreds of genes have been invalidated in this

manner and corresponding mutant mice have been

created (Tbase 2001). Analysis of the phenotypes

generated by these mutations has cast light on the

function of the genes concerned. In certain cases,

analysis also allowed to reveal the influence of ge-

netic background on the expression of a given mu-

tation (for a review, see Banbury Conference 1997),

or to investigate the eventual genetic relationships

between genes of the same family (for reviews, see

Rudnicki and Jaenisch 1995, Horan et al. 1995).

An. Acad. Bras. Cienc., (2001)73 (3)
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TABLE I

A few milestones in the history of programmed mutagenesis in vivo in the mouse.*

1976** Transgenic mice by retroviral infection of embryos

during cleavage.

1980-1981** Transgenic mice by microinjection of DNA in the

pronucleus of the zygote.

1981 Establishment of ES cell lines.

1986 Transgenic mice via the generation of germline

chimeras with genetically modified ES cells.

1987 First experience of programmed mutagenesis:

ES cells carrying a null mutation in the HPRT gene

are obtained.

1989 First mutant mice obtained by homologous

recombination in ES cells.

1994 till today Creation of chromosomal rearrangements. Creation of

conditional mutations.

*Readers interested in the studies surrounding this history can consult the special

issue of the International Journal of Developmental Biology (vol. 42(7), 1998) for

the appropriate references. ** These transgenic mice result from gene addition

(microinjection of DNA in the zygote pronucleus and retroviral infection of cleav-

age stage embryos) and are not the subject of this paper. Interested readers can

consult the bookTransgenic Animals: generation and use, edited by Louis-Marie

Houdebine, Harwood Academic Publishers, 1997.

TABLE II

Mouse Embryonic Stem cells.

1. Properties
• Pluripotent

• Unlimited self-renewal in vitro with maintenance of the pluripotency.

Selection of rare genetic modifications possible.

• Differentiation in vitro into different cell types

• Colonization of the tissues of a host embryo including its germ line.

Transfer to the animal of the genetic modifications introduced

in the ES cells

2. Modifications created by homologous recombination
• Null mutations (knock-out)

• Subtle mutations (point mutations, microdeletions, microadditions, etc)

• Chromosomal rearrangements (deletions, inversions, translocations)

• Conditional mutations

AABC 73 3 b 3
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Fig. 1 – The different stages in the creation of genetically modified mice via ES cells.

A REFINEMENT OF THE KNOCK-OUT: THE .....
KNOCK-IN

An interesting variation of the targeting vectors for

obtaining null mutations can be obtained by the in-

troduction of a given cDNA in frame with the coding

sequence of the targeted gene, (Fig. 2). Following

homologous recombination with the chosen target

gene, the modified allele expresses the cDNA in-

serted in replacement of the endogenous gene. The

choice of the cDNA obviously depends on the aim

of the research. For example, this might be the cod-

ing sequence of a reporter gene such asE. coli LacZ

gene encodingβ-galactosidase, the activity of which

is easily traceable even at the single cell level. The

expression ofβ-galactosidase mimics the expres-

sion of the targeted gene. This is precious for spec-

ifying its expression pattern (Colucci-Guyon et al.

1994), but can also be useful for monitoring the fate

of cells that normally express the targeted gene, in

the context of an animal carrying the mutation in

An. Acad. Bras. Cienc., (2001)73 (3)
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Fig. 2 – General principle of homologous recombination. a) ‘‘Knock-out’’. The targeting vector includes a selection cassette inserted in

an exon (black rectangle: coding region; white rectangles: non coding regions) and surrounded by regions of homology with the target

gene. Recombination with the endogenous gene occurs within these homologous sequences and results in the creation of a null allele

in which disruption of the gene is induced by insertion of the selection cassette. b) ‘‘Knock-in’’. In this variant, besides invalidation

of the target gene, a gene of interest is introduced in the locus. Following homologous recombination, the gene of interest is placed

under the control of the promoter and regulatory sequences of the target gene and is therefore expressed in place of the target gene.

the homozygous state (Schneider-Maunoury et al.

1993, Tajbakhsh et al. 1996). Another particularly

interesting use of the knock-in strategy concerns the

genes belonging to a multigenic family, with dif-

fering expression patterns, and the invalidation of

which leads to contrasting phenotypes. Do the pro-

teins coded by the related genes have equivalent

function? A positive reply to this would indicate

that the change in expression profile is at the origin

of the phenotypes observed and not a differing func-

tion of the proteins coded by these genes. According

to studies published to date (Table III and Hanks et

al. 1995, 1998, Wang and Jaenisch 1997, Saga 1998,

Acampora et al. 1999, Geng et al. 1999, Suda et al.

1999), it is generally this type of situation that is ob-

served, which underlines the importance of the gene

regulating regions acting as targets for evolution and

functional diversification.

FROM NULL TO SUBTLE MUTATIONS

If null mutations are a potent instrument in genetic

analysis, it is clear that other more subtle types of

mutations (point mutations, small deletions or in-

sertions) may also be very useful. On the one hand,

they allow to refine the functional analysis of a gene

(by changing the amino acid in a particular domain

of the protein and observing the effects induced, for

example) and on the other hand they also permit cre-

ation of murine models of genetic diseases in man:

the latter are rarely generated by null mutations (for

example, 60% of mutations leading to cystic fibro-

sis in man are of�F 508 type (Kerem et al. 1989),

i.e., corresponding to the deletion of a single amino

acid, phenylalanine, in the CFTR (Cystic Fibrosis

Transmembrane Receptor) protein. When mutant

alleles of this type are created, it is essential to re-

move the selection sequences that might interfere

with the regulation of the expression of the targeted

gene or adjacent gene. Such an interference has

been demonstrated in several studies (Fiering et al.

1999) and, in some cases can lead to hypomorph mu-

tations by the introduction the selection sequence in

the 5’ region of a gene (Meyers et al. 1998). Several

strategies can be used to create what one could call

‘‘clean’’ mutations (mutant allele without foreign

sequences) (Moore et al. 1998, for a review see

Cohen-Tannoudji and Babinet 1998). We describe

two of these in Figure 3; however, the one which

uses the Cre/loxP system is particularly interest-

ing, because, as we will see, it is versatile over and
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TABLE III

Some examples of knock-in.

Gene inserted→ gene disrupted Knock-out phenotype Knock-in phenotype Ref.

Cyclin E→ Cyclin D1 Neurological defects Complete restoration of Gent et al.

(Proteins implicated in cell Abnormalities of the a normal phenotype 1999

cycle control) retina and mammary

tissue

Otx2→ Otx1 Epilepsy Suppression of epilepsy Suda et al.

(homeodomain transcription Dorsal telencephalic and defects of 1999

factors) cortex and vision and corticogenesis but

audition system internal ear abnormalities

abnormalities maintained

Otx1→ Otx2 Abnormal gastrulation Gastrulation normal Acampora et

At E6, absence of Forelimb structures al. 1999

forelimb structure normal at E7-E8, but

loss of regionalisation of

structures before E9*

Myogenin→ Myf5 Malformation of the Complete restoration of Wang and

(transcription factors thorax a normal phenotype Jaenisch 1997

implicated in myogenic Prenatal lethality

differentiation)

Mesp1→ Mesp2 Prenatal death Complete restoration of Saga 1998

(b-HLH type transcription Absence of somatic a normal phenotype

factor) segmentation

Skeletal defects

En2→ En1 Prenatal death Disappearance of brain Hanks et al.

(homeodomain transcription Absence of defects but maintenance 1995

factor) posterior/mid-brain of the limb Hanks et al.

region abnormalities 1998

Limb abnormalities

*This loss is due to the fact that the OTX2 protein appears necessary for the regulation of the expression of

the otx2 gene. InOtx1→Otx2 mutants, theotx2 gene (and therefore the production of the OTX1 protein)

is not induced in the anterior neural plaque. E: day of embryonic development.

above obtaining ‘‘clean’’ mutations (for a review,

see Sauer 1998). The Cre protein is a recombi-

nase identified in the P1 bacteriophage, which re-

acts when it recognizes a sequence of 34 base pairs

(called loxP) in a segment of DNA (Kilby et al.

1993) (see Fig. 4A-B). When twoloxP sites are

oriented in the same direction, the Cre recombinase

induces the deletion of the DNA segment placed be-

tween them. Conversely, if theloxP sites are ori-

ented in opposite direction, recombination induces

its inversion (see Fig. 4C). It should be noted that

Cre recombinase activity does not require a DNA co-

An. Acad. Bras. Cienc., (2001)73 (3)
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Fig. 3 – ‘‘Clean’’ mutations. The persistence in a modified allele of a selection cassette with its own promoter and regulatory sequences

may affect the target locus and surrounding loci. Creation of subtle mutations (point mutations, small deletions and insertions, ...)

therefore requires elimination of the selection cassette. The two strategies most used to create this type of modifications are presented

in this figure. Upper panels: the double replacement strategy. This approach requires the use ofhprt-ES cell lines. The first step

(A) consists in introducing a cassette expressing thehprt gene in the target gene. The recombinant cells (hprt+) are selected in the

presence of HAT. In the second step (B), these cells are transfected with a replacement vector presenting a subtle mutation and devoid

of a selection cassette. The homologous recombination event results in the loss of thehprt expression cassette, an event selected in the

presence of 6-TG. The use of other replacement vectors carrying different modifications permits the rapid creation of several alleles

for the same target gene. Lower panels: use of the Cre/loxP system (see Fig. 4). In the first step (C), the target gene is modified by a

target vector with a subtle mutation and a ‘‘floxed’’ selection cassette, i.e. surrounded by 2loxP sites in the same orientation. Then (D)

the transient expression of Cre recombinase in the recombinant cells induces deletion of the selection cassette. Apart from the desired

subtle modification, only oneloxP site of 34 pb persists in the final modified allele. The position of thisloxP site is chosen so that it

does not interfere with the expression of the target gene (generally in an intron).

factor or particular topology. Moreover, it is active

in the eukaryote cells (Sauer and Henderson 1988).

As is shown in Figure 3, these properties of the Cre/

loxP system could be used for the creation of alle-

les carrying ‘‘subtle’’ and ‘‘clean’’ mutations. At

the end of this scenario, the muted allele retains a

loxP site; however, no indication of an interference

of this site with genetic expression has ever been

demonstrated.

DELETIONS VIA TARGETING IN THE ES CELLS:
TOWARDS GLOBAL GENETIC ANALYSIS OF THE

MOUSE GENOME

Directed mutagenesis via ES cells is, as we have

seen, a precious method for analysis of gene func-

tion. However this approach is limited to known and

cloned genes. In a perspective of global functional

analysis of the mouse genome, this inverse genetic

approach must be completed by strategies that not

AABC 73 3 b 3
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only accumulate mutations but also localize them

precisely. Thus corresponding genes can eventually

be identified and cloned and then be used for targeted

mutagenesis.

Over the past fifteen years, highly effec-

tive methods of chemical mutagenesis have been ob-

tained which result in high-rate and random intro-

duction of mutations in the mouse genome: the use

of N-ethyl-N-nitrosourea (ENU) (Bode 1984), for a

review, see Brown and Peters 1996), a potent muta-

genic agent, leads, in the male mouse, to a mutation

in a given gene in one gamete out of 700 (which

is equivalent to a per locus mutation of around 1.5

x 10-3 and is very high). In general, the effect of

ENU results in the creation of point mutations. Once

the males have been treated by ENU and therefore

carry mutations in their spermatogonia, an approach

is needed to identify and collect these mutations.

This would be made easier, in the case of reces-

sive mutations, if one disposed of discrete deletions

throughout the genome: the crossing between mice

carrying a deletion in a given region and those car-

rying mutations induced by ENU should facilitate,

the localization and the identification of the gene(s)

responsible for the phenotype obtained, due to func-

tional haploidy of the deleted region. This type

of scenario, the interest of which has been clearly

demonstrated in Drosophila, is difficult to apply to

the mouse because of the relative rarity of deletions

reported in this animal. In this context, targeting by

homologous recombination in ES cells combined

with the properties of the Cre/loxP system opens

new opportunities ( for a review, see Justice et al.

1997) (Fig. 4C-D). This strategy was validated in

1995 when mice carrying deletions of several cen-

timorgans (cM) were obtained (Ramirez-Solis et al.

1995). Using a different scenario, You et al. (1997)

obtained deletions of varying length around a given

locus. In the future, a collection of deletions could

be accumulated and used, in combination with ENU

mutagenesis, for long-term projects of global func-

tional analysis of the mouse genome. The constant

extension of genetic maps of the mouse and man

should permit to analyse more specifically genomic

regions which would be rich in genes and/or thought

to be candidates for human genetic diseases.

CHROMOSOMAL REARRANGEMENTS MADE
EASIER BY THE EXPRESSION OF CRE IN THE MALE

GERM LINE

The recent generation of transgenic mice expressing

Cre in the male germ line has simplified the process

permitting the creation of chromosomal rearrange-

ments in the mouse, by conducting part of the op-

erations directly in vivo. Indeed, transgenic mice

with anSycp1-Cre fusion gene (in which the regula-

tory sequences ofSypc1 coding for protein 1 of the

synaptosomal complex control Cre protein expres-

sion), express the Cre protein in a specific manner

during the pro-phase of the first meiotic division of

male germ line cells, at a time when the chromoso-

mal pairing starts and crossing-over is therefore fa-

cilitated (Vidal et al. 1998). If one crosses mice car-

rying loxP sites on chromosomes homologous with

the latter, one obtains, in double-transgenic males

issued from this crossing, spermatozoa containing

deletions or duplications of the genomic region situ-

ated between theloxP sites (Figure 4D). Potentially,

this approach is a strong tool for the functional anal-

ysis of complex genomic regions: for example, the

question of functional significance of the clustering

of Hox genes into complexes can be determined by

varying their number or their position in these com-

plexes (Herault et al. 1998).

CONDITIONAL MUTAGENESIS: A NEW DIMENSION
OF FUNCTIONAL GENOME ANALYSIS

a) The Cre/loxP system: targeting of Cre by

a fusion transgene

We have emphasized the interest for the functional

analysis of the genome of programmed creation of

mice carrying various genetic modifications (null

mutations, discrete mutations, chromosomal rear-

rangements, etc). However, these situations in

which mutated mice carry the mutation in all their

cells have their limitations in particular for two rea-

sons: (1) in cases in which the mutation provokes

embryonic lethality in the homozygous state (an ex-

An. Acad. Bras. Cienc., (2001)73 (3)
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treme case is when mutation leads to cell death), it

is impossible to study the eventual function of the

gene beyond the time of embryonic letality and con-

sequently during adulthood; (2) a gene may have a

wide expression and its invalidation provoke a com-

plex phenotype affecting multiple tissues. To sim-

plify analysis in this case it would be interesting to

create mice expressing the mutation in only one or

the other of these tissues.

In an effort to overcome these limitations of

programmed mutagenesis in vivo, in recent years

different teams tried to develop strategies in which

the expression of a mutation would be rendered con-

ditional (for a review, see Gu et al. 1994, Cohen-

Tannoudji and Babinet 1998). These strategies are

based on the remarkable properties of theCre/loxP

system. The first step (see Fig. 5) consists in cre-

ating mice carrying alleles in which twoloxP sites

surround an essential part of the gene to be studied,

without disrupting its activity, by placing them for

example in the introns (we subsequently call these

alleles ‘‘floxed’’ alleles). In the case of a gene whose

null mutations are letal in the homozygous state, it

is necesssary to verify that the mice homozygous

for the floxed allele are viable. These mice are then

crossed with a transgenic mouse expressing the Cre

recombinase in a particular cell type, using appro-

priate regulatory sequences in the transgene (the Cre

recombinase promotes the deletion of the sequences

located between theloxP sites and induces a null

mutation in the cell type in which the transgene is

expressed). This strategy is powerful since it not

only avoids the embryonic lethality produced when

all the embryo cells carry the mutation, but also al-

lows to address the effect of this mutation in any

tissue, so long as a line of transgenic mice express-

ing protein Cre in the tissue concerned is available

(Table IV, Tsien et al. 1996, Shibata et al. 1997,

Harada et al. 1999, Kulkarni et al. 1999, Xu et al.

1999).

b) Inducible systems

Supplementary refinement consists in controlling in-

duction of the mutation, not only in space as ex-

plained above but also in time. To that end„ pro-

tein Cre is expressed in the form of a fusion protein

with the ligand binding domain of a steroid receptor

(LBD) (Kellendonk et al. 1996, Feil et al. 1996);

this fusion protein has no Cre activity (see Fig. 6).

However, in the presence of an appropriate ligand, a

change in conformation is produced that restores Cre

activity. Thus, in transgenic mice carrying the two

floxed alleles of the gene concerned and the trans-

gene expressing the fusion protein LBD/Cre under

the control a promoter functioning in a given tissue,

induction of a null mutation can be obtained by injec-

tion, at a given time, of the appropriate ligand (Fig.

6). An interesting alternative to the use of LBD/Cre

fusion proteins was recently demonstrated by the in-

jection, in a tissue of a mouse carrying the ‘‘floxed’’

gene, of an adenoviral vector capable of expressing

Cre: indeed, only the cells infected locally by the

virus expressed the mutation (Table IV and Shibata

et al. 1997). To end our brief description of the

approaches developed to obtain conditional muta-

tions, one must mention the possibility of control-

ling the recombinase expression by using systems

that induce or inhibit the transcription of a reporter

gene. The most documented system uses the op-

erator/repressor properties of the bacterial operon,

tetracycline (tet) (Baron et al. 1999). This com-

prises on the one hand a reporter gene controlled by

a minimal promoter linked to a concatermer of the

tet operator(tetO) sequences, and on the other hand a

gene expressing a fusion protein between the repres-

sor tetR and the activation domain of the VP16 pro-

tein (protein tTA). In the presence of tetracycline the

fusion protein cannot bind to thetetO sequences and

the reporter gene is not expressed. In the absence

of tetracycline, the fusion protein can bind and the

reporter gene is expressed. An alternative is to use a

fusion protein constructed with a mutant version of

the tetR repressor which can only bind to thetetO

sequences in the presence of tetracycline: activation

of the reporter gene can therefore be induced by ad-

dition of the antibiotic. The proof of the transcrip-

tional control obtained using this binary system has

been demonstrated in cell cultures and in transgenic
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←−
Fig. 4 – The Cre/loxP system and its applications. TheloxP site, symbolized by a triangle is a sequence of 34 base pairs composed of

palindromic sequences of 13 pb separated by a sequence of 8 pb (A). Cre recombinase specifically recognizes this sequence, provokes

the cleavage in DNA (vertical arrows, A) and induces the recombination of DNA between the twoloxP sites as illustrated in B. This

reaction is reversible. Several types of recombination events can be produced depending on whether the twoloxP sites are carried by

the same DNA molecule (recombination in cis) or by two different DNA molecules (recombination in trans) and depending on the

respective orientation of the twoloxP sites (the orientation of aloxP is given by the non-palindromic 8 pb sequence). Recombination

in cis (C). If the twoloxP sites have the same orientation, the DNA region situated between these sites is deleted during recombination.

This type of configuration is used to create ‘‘clean’’ mutations (elimination of the selection cassette, see Fig. 3), conditional mutations

(see Fig. 5) and deletions. If the orientation of the twoloxP sites is opposed, recombination leads to the inversion of the region

comprised between the two sites. Recombination in trans (D). If oneloxP site is integrated in the genome and the other is carried

by a circular plasmid, there may be an insertion of sequences carried by the plasmid in the integratedloxP site. However, since

the insertion is a rare event compared to deletion (i.e., the reverse reaction), this type of event requires the use of mutantloxP sites

(see Conclusions/Perspectives). When theloxP sites are both integrated in the genome, recombination in trans induces chromosomal

rearrangements: deletions, duplications or translocations. Such recombination events are rare and have to be selected to be revealed.

To do so, one can use truncated and non-functional hp-loxP andloxP-rt selection cassettes. After recombination between theloxP sites,

and only in this case, a functional hp-loxP-rt cassette (the remainingloxP site is situated in an intron) is reconstituted, thus allowing

selection of the chromosomal rearrangement desired. Furthermore, the relative orientation ofloxP sites compared with the centromeric

telomeric axis of the chromosomes is important. Indeed, in the case of wrong relative orientation, recombination will result in the

formation of acentric or dicentric chromosomes, which, in view of their great instability, will be eliminated from the cell.

mice. This strategy could therefore be used for the

temporal and spatial control of the expression of Cre

(Utomo et al. 1999). For various reasons, the con-

ditional mutagenesis strategies that we have briefly

described may prove difficult to use. However they

are of invaluable interest in thorough gene function

analysis and many teams are conducting research

to improve the different steps. Two conditions are

mandatory to avoid any bias in results and their inter-

pretation: (1) the total cell population in which one

wants to measure the impact of the mutation must

express protein Cre; (2) expression of protein Cre

must be strictly controlled and limited to the popu-

lation concerned. These conditions are difficult to

fulfill, in particular because expression of protein

Cre is generally obtained by the creation of conven-

tional transgenic mice (through microinjection into

the zygote) in which the transgene is integrated at

random; however, it is well established that trans-

gene expression depends on its site of insertion and

therefore may be perturbed or even lost. This can

be circumvented by inserting, via ‘‘Knock-in’’ (see

above), Cre coding sequences in a gene with spe-

cific expression corresponding to the cell types in

which the investigator wishes to induce the muta-

tion (Rickert et al. 1997, Harada et al. 1999).

CONCLUSION/PERSPECTIVES

If we look at the present state of programmed mu-

tagenesis in vivo in the mouse, several reflections

come to mind as regards the ways to circumvent the

present difficulties and the possible developments.

1) First, it is important to note that among the

mammalians studied, programmed modification of

the germ line is only accessible in laboratory mice.

Indeed, until now, it has been impossible, despite

multiple attempts, to isolate ES type cells capable of

colonizing the germ line in other laboratory or farm

mammals. A special mention should be made about

the human species. Indeed, three different groups

(Thomson et al. 1998, Shamblott et al. 1998, Reubi-

noff et al. 2000) have recently reported the isolation

of human pluripotent embryonic stem cells. In two

cases, these cells were isolated from blastocysts,
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Fig. 5 – The Cre/loxP system in vivo. The Cre/loxP system can be used directly in the mouse. The most common applications of this

approach are illustrated in this figure and require the use of two types of mouse. The first mouse (line A), obtained after homologous

recombination in the ES cells, carries in its genome a ‘‘floxed’’ sequence (exons, regulatory sequences, promoter, selection cassette,...).

The other is a transgenic mouse expressing the Cre recombination under the control of a given promoter. If this promoter directs the

expression of Cre in the female germ line (strain C), the animals issued from a cross between a female C and a male A will carry the

deletion in all their cells, the recombination event having taken place at the zygote stage through the recombinase accumulated in the

oocyte. If the promoter directs the expression of Cre in one or several cell types (strain B), the animals born from a cross between a

mouse A and a mouse C will be mosaics: the cell types expressing the recombinase will carry a deleted allele whereas the other cells

of the animal will carry a ‘‘floxed’’ allele. CNS: central nervous system; P: promoter.

in the third case, the pluripotent cells were gener-

ated taking a different route in which germ cells

from foetal gonads were used as a starting material

(these cells are therefore called Embryonic Germ

(EG) cells). Although it was not possible to test

their ability to contribute to the germ line, the hu-

man ES cells share with those of the mouse other

key features of embryonic stem cells, i.e., unlimited

self-renewal, normal caryotype, ability to differenti-

ate into cell types of the three germ layers. However,

there remain several problems to be solved before

they can be used in such a versatile way as is the

case with mouse ES cells. These difficulties per-

tain, in particular, to the very limited knowledge of

the factor(s) which control and maintain the undif-

ferentiated state and to the fact that they exhibit a

poor ability to grow clonally. Despite these limita-

tions, which should be overcome in the near future,

the availability of human ES cells opens new and

very interesting possibilities both for a better under-

standing of human embryonic development and for

ES cell based therapies (for a review, see Pera et al.

2000).

A recent study illustrates a possible means,
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TABLE IV

Some examples of knock-in.

Target Null mutation Cre targeting Tissues eliciting Conditional Ref.

gene phenotype method recombination mutation

phenotype

APC Embryo death Infection by Colorectal Intestinal polyps Shibata

(E 6.5) adenovirus epithelium et al.

(inoculation site) 1997

β-catenine Embryo death Knock-in Intestinal Intestinal polyps Harada

(E 7.5) (Ktr1-19) or epithelium et al.

Tg (Fabp) 1999

IR (insulin Diabetic acid Tg (Ins) β cells of the Type II diabetes Kulkarni

receptor) ketosis pancreas et al.

Perinatal lethality 1999

BRCA1 Embryo death Tg (WAP) Epithelium of the Tumors and Xu et al.

(E 8.5) mammary gland abnormal 1999

development of

the breast gland

NMDAR1 Prenatal lethality Tg Hippocampus Spatial memory Tsien et

Multiple CNS (αCAMKII) (pyramidal cells acquisition al. 1996

abnormalities of the CA1 defects

region)

Tg: transgenic mouse for a fusion gene between the coding sequences of Cre recombination and the regulatory

sequences (including the promoter) of the genes indicated (Fabp: fatty acid binding protein; Wap: whey

acidic protein;αCa MKII: ( calcium calmoduline kinase II dependent); Krt1-19:cytokeratine 19; CNS:

central nervous system.

though experimentally demanding, to perform pro-

grammed genetic modifications in absence of bona

fide ES cells; it is based on the advent of methods al-

lowing cloning of several mammalian species by the

transfer of nuclei from embryonic and even adult nu-

clei into oocytes (sheep, cow, mouse and and most

recently pig) (for a review, see (Solter 2000). In-

deed, McCreath et al. (2000) targeted the ovineα1

(I) procollagen gene in sheep fetal fibroblasts and

could reconstitute a whole animal by the transfer

of a nucleus carrying the genetic modification into

an enucleated oocyte. Despite its fairly low rate

of success (about 1% of the reconstructed embryos

give rise to live and apparently normal offspring),

these results represent a breakthrough and demon-

strate the feasability of obtaining gene targeted ani-

mals in mammals by nuclear transfer.

2) We have emphasized the obvious interest

of obtaining, via programmed ES cell mutagenesis,

mutants for the study of various biological prob-

lems. However two other aspects of ES cells should

be underlined. The first pertains to the ability of

ES cells to undergo differentiation in vitro. Over

recent years, a number of teams have tried to de-

velop experimental conditions permitting orienta-

tion of this differentiation towards a given lineage

(muscle, hematopoietic, nerve cells, etc.) (Brustle et

al. 1999, for a review see Keller 1995). Once these
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Fig. 6 – The Cre/loxP system and inducible mutations. (A) This strategy relies on the use of a fusion protein between the Cre

recombinase and the ligand binding domain of a steroid hormone nuclear receptor. In the absence of a ligand, recombinase activity

is null or very weak, whereas in the presence of a ligand it is rapidly induced. The ligand-binding domain is a modified version

which presents reduced affinity for the natural ligand (progesterone, estrogen) but increased in the case of synthetic analogs (RU486,

tamoxifen). The activity of this inducible Cre recombinase (Cre-ind) is therefore controlled by administration of the agonist. b) This

strategy can be applied in vivo, in animals carrying not only a ‘‘floxed’’ sequence but also a transgene coding for Cre-ind controlled

by a promoter (ubiquitous here). Deletion of the ‘‘floxed’’ sequence is dependent on the administration to this mouse of an agonist. It

therefore provides a way to control the time of the appearance of a targeted genetic modification. If, instead of an ubiquitous promoter,

a specific promoter is used, then the appearance of the modification can be controlled both in terms of time and localization (tissue or

cell type).

systems have been developed, introduction in ES

cells of the gene mutations eventually implied in a

given differentiation pathway and should bring new

light on their function. Secondly, certain aspects of

the phenotype engendered by a given genetic modifi-

cation (null mutation in the homozygous state, dom-

inant negative allele) can be further defined by the

creation of chimeras between the genetically mod-

ified ES cells and wildtype embryos (Rossant et al.

1998). This type of analysis allows, in particular, to

determine whether a mutation is cell autonomous or

not.

3) From a methodological point of view, de-

spite the wide use of programmed mutagenesis in

the mouse, it should be noted that it remains diffi-

cult and expensive not only in time but also in terms

of budget. From this point of view, the development

of new scenarios should in the long-term ensure that

the creation of mutations is less costly and more ef-

ficient. These scenarios profit essentially from the

existence of enzymatic systems that play a role in the

recombination process. One of them is the Cre/loxP

system that has been largely presented above. Thus,

it would be valuable to try and take advantage of

the integration event catalyzed by the Cre recombi-

nase, resulting in the integration of a circular DNA
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carrying aloxP site in a genomic location of inter-

est also carrying aloxP site (Fig. 4D). Normally

it is the reverse reaction (intramolecular deletion)

that is privileged. However some ‘‘tricks’’ (based

on the use of mutantloxP sites) allow to enhance

the insertion reaction (Araki et al. 1997). Another

approach relies on the observation of robust stim-

ulation of recombination following double-strands

DNA breaks. These can be promoted by using a

meganuclease, I-SceI, isolated from yeast, which

recognizes a specific 18 bp site. Once an allele of a

given gene carrying an I-SceI site has been created

(by homologous recombination in ES cells), varying

genetic modifications could be introduced repeat-

edly and efficiently by co-transfection of an expres-

sion vector for I-SceI, promoting a double-strand

break, together with a repair vector permitting the

introduction of the desired modification (Donoho et

al. 1998, Cohen-Tannoudji et al. 1998). Such ap-

proaches may ultimately permit programmed muta-

genesis directly in ovo, which would represent an

obvious simplification.

4) Despite the interest of targeted mutagenesis

that we have underlined in this article, it remains a

quite laborious and step by step process: cloning

of the gene considered, construction of appropriate

vectors, selection and identification of targeted cells

and derivation of the corresponding mutant mice.

More than 1500 genes have now been processed in

this manner, which is a minority compared with the

30 to 40 000 genes contained by the genome of the

mouse or man. Sequencing programs will provide

these genes, till we reach complete sequencing of the

mouse genome which should soon happen. There

would be great interest in developing tools permit-

ting the mutation of any gene, while circumventing

the cloning phase. As far as this is concerned, an

approach is being developed, based on a gene trap

strategy strategy in ES cells using a trapping vector

which in principle traps any gene, whether expressed

or not (Zambrowicz et al. 1998).Thus, a library of

ES cells is available, carrying tagged genes. How-

ever, this approach has its own limitations: the type

of mutation is stereotyped (insertion) and insertion

of the trapping vector does not lead to total inval-

idation in all cases. In conclusion, it is clear that

homologous recombination in ES cells of the mouse

has met its expectations. Creation of widely varying

types of mutations, affecting either a gene or whole

genomic regions continues to supply invaluable in-

formation on the function of genes and the genome

in the physiology and biology of the mouse while

providing murine models of human diseases. The

recent methodological developments, based on the

use of proteins that intervene in the recombination

process, will obviously widen these possibilities not

only qualitatively but also quantitatively.
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RESUMO

A capacidade de introduzir modificações genéticas na li-

nhagem germinal de organismos complexos tem sido, por

muito tempo, uma meta dos estudiosos da biologia do

desenvolvimento. Neste aspecto, o camundongo, um mo-

delo favorito de estudo dos mamíferos, é singular. Assim,

desde o final dos anos setenta, tem sido possível não só

adicionar genes ao genoma do camundongo, como em

vários outros organismos complexos, mas, também rea-

lizar a substituição e modificação de seus genes. Isto tem

sido possível graças a dois rasgos tecnológicos: 1) o iso-

lamento e cultura de células-tronco embrionárias, que

têm a capacidade singular de colonizar todos os tecidos

de um embrião hospedeiro, inclusive de sua linhagem ger-

minal; 2) o desenvolvimento de métodos que permitem a

recombinação homóloga entre um DNA que ‘‘ingressa’’

e sua seqüência cromossomal cognata (‘‘mira’’ genética

– ‘‘gene targetting’’ Como resultado, tornou-se possível

criar camundongos que carreiam mutações nulas em qual-

quer gene clonado (camundongos ‘‘knock out’’). Tal pos-
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sibilidade revolucionou a abordagem genética de quase

todos os aspectos da biologia do camundongo. Em anos

recentes, o escopo da ‘‘mira’’ genética ampliou-se ainda

mais devido ao refinamento da tecnologia de ‘‘knock

out’’: outros tipos de modificações genéticas podem agora

ser criadas, incluindo mutações sutis (mutações puncti-

formes, micro-deleções ou inserções, etc) e rearranjos

cromossomais tais como grandes deleções, duplicações

e translocações. Finalmente, têm sido implementados

métodos que permitem a criação de mutações condicio-

nais, permitindo o estudo da função gênica ao longo da

vida do animal, quando a inativação do gene acarreta a

letalidade embrionária. Neste artigo, apresentamos uma

revisão geral dos métodos e situações usadas para a modi-

ficação programada do genoma do camundongo e acentu-

amos seu enorme interesse para o estudo da biologia dos

mamíferos.

Palavras-chave: células-tronco embrionárias, genoma,

mira genética, camundongos ‘‘knock out’’, mutações con-

dicionais.
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