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One Sentence Summary 77 
Human mobility patterns and climate changes predict the spread of the arbovirus vectors Aedes aegypti 78 
and Ae. albopictus, which transmit viruses such as dengue, yellow fever, chikungunya, and Zika. 79 
Abstract 80 
The global population at risk from mosquito-borne diseases – including dengue, yellow fever, 81 
chikungunya, and Zika – is expanding in concert with changes in the distribution of two key 82 
vectors, Aedes aegypti and Ae. albopictus. The distribution of these species is largely driven by 83 
both human movement and the presence of suitable climate. Using statistical mapping techniques, 84 
we show that human movement patterns explain the spread of both species in Europe and the 85 
United States of America (USA) following their introduction. We find that the spread of Ae. 86 
aegypti is characterised by long distance importations, whilst Ae. albopictus has expanded more 87 
along the fringes of its current distribution. We describe these processes and predict the future 88 
distributions of both species in response to accelerating urbanisation, connectivity, and climate 89 
change. Global surveillance and control efforts that aim to mitigate the spread of chikungunya, 90 
dengue, yellow fever and Zika viruses must consider the so far unabated spread of these 91 
mosquitos. Our maps and predictions offer an opportunity to strategically target surveillance and 92 
control programs and thereby augment efforts to reduce arbovirus burden in human populations 93 
globally. 94 
 95 
Main text 96 
The geographical distributions of the arboviruses dengue, yellow fever, chikungunya, and Zika 97 
have expanded, causing severe disease outbreaks in many urban populations.1–5 Transmission of 98 
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these viruses depends, with few exceptions, on the presence of the competent mosquito vectors 99 
Aedes aegypti and Ae. albopictus6,7. Previous predictions of the future distributions of Aedes 100 
aegypti [=Stegomyia aegypti] and Ae. albopictus [=Stegomyia albopicta] have focussed solely 101 
on climate, despite the known importance of urbanisation and other socioeconomic factors in 102 
defining suitable habitat8. Moreover, those projections assumed that both species can fully infest 103 
all areas of predicted newly suitable habitat4,9. Recent trends in the global spread of these species, 104 
however, suggest that the process of expansion may be more complex and spatially structured 105 
than previously acknowledged10. Expansion from the native ranges in Ae. aegypti (from African 106 
forests) and Ae. albopictus (from Asia) was precipitated by a shift from zoophily to 107 
anthropophily and by adaptation to container-breeding in domestic or peri-domestic 108 
environments11,12. Whilst their short flight ranges limit self-powered dispersal13. A century of 109 
rapid human population growth and international trade has enabled their global spread. Trade in 110 
items that provide potential larval development habitats such as tires and potted plants led to 111 
inter-continental dissemination of their desiccation-resistant eggs14–16. Moreover, the 112 
establishment of Ae. albopictus in locations with cooler climates has been aided by its ecological 113 
plasticity, with eggs able to undergo diapause (dormancy) as one possible explanation for 114 
populations persisting through winters too cold for adult survival17,18. 115 
Whilst the various routes of inter-continental importation are well described11,19, the processes 116 
underlying intra-continental spread of the species remain poorly quantified, preventing informed 117 
prediction of future distributions. Modelling of human-mediated range expansion suggests that 118 
quantitative models of human movement could, and should, be used to predict intra-continental 119 
spread20–22. To address this, we developed predictive models of Ae. aegypti and Ae. albopictus 120 
spread and combined these with forecasts of future climatic conditions and urban growth, to 121 
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predict the ranges of these medically important vectors from 2015 to 2080 (Extended Data Fig. 122 
1). 123 
We collated spatially- and temporally-explicit data on the distributions of Ae. aegypti and Ae. 124 
albopictus and their spread over time in the USA, and Ae. albopictus in Europe (Fig. 1, Extended 125 
Data Figs. 2, 3). Extending a previous study4, we first mapped contemporary habitat suitability 126 
for each species together with projected suitability in 2020, 2050, and 2080, under three different 127 
Representative Concentration Pathway (RCP) and 17 global climate models (GCMs), as well as 128 
under projections of urban growth. We then parameterised quantitative models of human 129 
mobility using census data on migration and commuting patterns23,24, and general movement 130 
patterns derived from mobile phone logs (call detail records) (Extended Data Fig. 1)23–25. The 131 
combined predictions from these different mobility models and datasets capture different aspects 132 
of human travel and trade, and their ability to spread Aedes eggs and juveniles at different spatial 133 
scales. 134 
We tabulated annualised presence records which documented the first detection of each species 135 
in 1,567 different locations over 38 years in Europe (225 / 1,588 districts, between 1979 - 2016) 136 
and 32 years in the USA (1,342 / 3,134 counties, between 1985 and 2016) (Extended Data Fig. 137 
2a, b, c). These data were used to parameterise statistical models of spatial spread for each 138 
species. Detection within a given area was modelled as a function of i) the receptivity of the area 139 
(as determined by the habitat suitability models), ii) long-distance importation pressure (from 140 
multiple human movement models) and iii) short-distance importation pressure from adjacent 141 
areas (to represent natural dispersal). Forward simulation of these fitted models of spatial spread 142 
was then used to predict the future spread or recession of each species, considering climate 143 
changes, urbanisation, and human-mediated importation. To account for potentially biased 144 
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sampling procedures we performed a comprehensive sensitivity analysis assuming different 145 
levels of detection for both species (Supplementary Information). 146 
Short-range importation between adjacent districts played a greater role in the inferred spread 147 
process for Ae. albopictus (Fig. 1a, c, d, f) than for Ae. aegypti (Fig. 1b, e), which was more 148 
frequently imported over longer distances. Historically, most of the observed range expansion of 149 
Ae. aegypti in the USA originated from southern States (Fig. 1b, Extended Data Fig. 2b). Using 150 
thin plate spline regression, we estimated the localised invasion velocity of Ae. aegypti spread in 151 
the USA to be relatively homogeneous at ~250km per year (Fig. 1b, e). Aedes albopictus spread 152 
in the USA was fastest between 1990 and 1995 (Fig. 1a, d) and has since slowed to about ~60km 153 
per year. In contrast, the estimated rate of spread of Ae. albopictus in Europe is faster (~100km 154 
per year) rising to ~150km per year over the last five years (Fig. 1c, f, Extended Data Fig. 2c, f, 155 
i). The geographic origin of recent Ae. albopictus spread in Europe seems to be Italy, with the 156 
Alps serving as a dispersal barrier that lowers rates of spread (Extended Data Fig. 2c, f). Once 157 
that barrier has been overcome, however, spread rates beyond the Alps are as high as in Italy. 158 
This may explain the increased rate of spread in recent years, which also corresponds to the 159 
detection of Ae. albopictus in areas north of the Alps (Extended Data Fig. 2c, f). 160 
Using human-mobility-driven statistical models we can predict the past spread of both mosquito 161 
species with high reliability (Extended Data Fig. 6) and accuracy (out of sample area under the 162 
receiver operating characteristic curve [AUC]: 0.7-0.9, Extended Data Fig. 7). Only slight 163 
improvements are observed when including human mobility models over models that only 164 
included distance and adjacency metrics (Supplementary Information, Extended Data Fig. 12). 165 
Further, we evaluated our models’ ability to predict the range expansion in Europe using a model 166 
fitted to US data (1,149 records) only. This test similarly documented a high degree of predictive 167 
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ability (out of sample AUC: 0.8-0.9, Extended Data Fig. 8). In addition, country borders seem 168 
not to limit the spread of the mosquitoes (Extended Data Fig. 11) and our spread model is robust 169 
even under different assumptions in mosquito sampling strategies but the underlying 170 
observational data may impact our estimates of velocity of spread (Supplementary Information). 171 
In contrast, the model fitted to only European data was unable to predict the spread in the USA, 172 
presumably because of the relatively few Ae. albopictus records in Europe compared to the USA 173 
(192 records). Therefore we used the model fitted to USA data to project the range of both 174 
species into the future (Supplementary Information). Both Ae. aegypti and Ae. albopictus are 175 
anticipated to continue expanding beyond their current distributions (Extended Data Figs. 4, 5). 176 
For Ae. aegypti, predicted future spread is mostly concentrated within its tropical range and in 177 
new temperate areas in the USA and China; reaching as far north as Chicago and Shanghai by 178 
2050 (Figs. 2, 4, Extended Data Fig. 4). At the expansion front in the United States, our model 179 
predicts the spread to occur mostly through long-distance introductions in large urban areas (Figs. 180 
2a, b, Extended Data Fig. 10). Even under the most extreme scenarios (RCP8.5 in 2080), Ae. 181 
aegypti is predicted to establish in Europe in only a few isolated regions of southern Italy and 182 
Turkey (Extended Data Fig. 4). By 2080 we predict there will be 159 countries worldwide (range 183 
156 – 162) reporting this species, of which three (range 0-6) will be reporting it for the first time 184 
(Extended Data Tab. 8). 185 
By contrast, Ae. albopictus is expected to spread broadly through Europe, ultimately reaching 186 
wide areas of France and Germany (Fig. 3b). Areas in northern USA and highland regions of 187 
South America and East Africa are also projected to see establishment of Ae. albopictus over the 188 
next 30 years (Figs. 2, 4). At the same time, some areas are predicted to become less suitable for 189 
the species, particularly locations in central southern USA (Fig. 2, Extended Data Fig. 5) and 190 
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Eastern Europe (Fig. 3) where climate models indicate aridity will increase. Due to Ae. 191 
albopictus broader distribution in northern latitudes, as in the USA, the spread pressure follows a 192 
clear front-like expansion (Figs. 2c, d). In total, 197 countries (range 181-209) are expected to 193 
report Ae. albopictus by 2080, 20 (range 4-32) of those countries will be reporting its presence 194 
for the first time (Extended Data Tab. 8). 195 
Spread of both species over the next 5-15 years is predicted to occur independently of extensive 196 
environmental changes as both species continue to expand into their anthropogenic ecological 197 
niches through spatial dispersal. Aedes albopictus is anticipated to saturate its ecological niche 198 
between 2030 and 2050 (Figs. 4d, f), and Ae. aegypti by 2020 (Figs. 4a,c). Beyond these dates 199 
the predicted expansion of these species will be driven primarily by environmental changes that 200 
create new habitat, including changes in climate, especially temperature (Extended Data Tab. 1, 201 
2), as well as exploitation of the increased availability of large human urban environments. Thus 202 
efforts to curb or reverse climate change are predicted to be insufficient to prevent fully the 203 
expansion of these vector species; significantly greater expansion, however, is predicted, 204 
especially between 2050 and 2080, if emissions are not reduced (Fig. 4). At the same time, future 205 
human population growth is expected to be concentrated disproportionately within areas where 206 
Ae. aegypti and Ae. albopictus already will be established, leading to large increases in the global 207 
population at risk of diseases transmitted by these species. 208 
Overall our predicted expansions will see Ae. aegypti invading an estimated 19.96 million km2 209 
by 2050 (19.91 – 23.45 million km2, depending on the climate and urbanisation scenarios), 210 
placing an estimated 49.13% (48.23 – 58.10%) of the world’s population at risk of arbovirus 211 
transmission (Figs. 4c, f). 212 
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Few countries conduct routine, systematic surveillance for Ae. aegypti and Ae. albopictus. 213 
Consequently our analysis relies on datasets from the USA and Europe that contain spatio-214 
temporal biases in reporting (Extended Data Fig. 2), with an implicit assumption that the 215 
processes driving spread in these regions apply elsewhere. These regions have (i) a 216 
comparatively high capacity to track establishment and mitigate the spread of these species and 217 
(ii) openly available datasets on human movement26. Our modeled rate of spread is thus most 218 
likely to be biased towards an underestimate of the global rate of spread (Supplementary 219 
Information). We did not model potential changes in human mobility which could increase the 220 
rate of spread of both species as population mobility increases. Competitive displacement may 221 
occur between these two species but this possibility could not be included in this analysis due to 222 
a lack of available data27,28. However, current ecological literature and ecological theory suggests 223 
interspecific competition occurs primarily at localized spatial scales and has not been found to 224 
influence species’ distributions at a coarser spatial resolution, such as the scale we consider 225 
here29–31. As both species are already established on every human-inhabited continent on the 226 
planet, we did not model spread between continents.  227 
In the context of predicting mosquito-borne viral transmission, Aedes distribution maps have 228 
already been shown to help predict the local32, regional33,34, and international1,2,6,7,35,36 spread of 229 
chikungunya, dengue, yellow fever and Zika viruses. Moreover, local outbreaks of these 230 
arboviruses have typically followed within 5-15 years of infestation by Ae. aegypti and Ae. 231 
albopictus, emphasising the importance of vector spread importation as a key risk factor for 232 
arbovirus transmission. 233 
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There is significant uncertainty surrounding future predictions of changes in climatic conditions. 234 
We used an ensemble approach to propagate the uncertainty from climate scenarios through our 235 
predictions of both Aedes species (Figs. 2, 3, 4, Extended Data Figs. 4, 5).  236 
Even under current climate conditions and population densities, both vector species will continue 237 
to spread globally over the coming decades, filling unoccupied suitable habitats and posing a risk 238 
to human health in the majority of locations where they survive and reproduce. Thus efforts to 239 
prevent their global dissemination in the near future will be most effective if focussed on 240 
preventing human-mediated spread and establishment. To prevent introductions, countries 241 
should strengthen entomological surveillance, particularly around high-risk introduction routes 242 
such as ports and highways and develop rapid response protocols for vector control to prevent 243 
introduced mosquitoes from establishing permanent populations37–41. We expect such efforts will 244 
need to intensify over time as human populations become ever more connected and urban 245 
agglomerations grow further9. 246 
Beyond 2030 and especially 2050, the distributions of both species will continue to expand, co-247 
inciding with niche expansion into climatically suitable urban areas as opposed to the exploration 248 
of the current niche. Increased urbanisation worldwide has already put great strains on our ability 249 
to prevent the spread of certain disease vectors and has intensified endemic transmission of 250 
arboviruses42. Some areas may become less suitable for human habitation due to climate change 251 
impacts, reducing the number of people living in areas at risk. In the longer term, reducing 252 
emission of greenhouse gases would be desirable to limit the increase in Ae. aegypti and Ae. 253 
albopictus suitable habitat. Every effort must be made to limit factors that contribute to the 254 
global spread of Ae. aegypti and Ae. albopictus if we are to limit the future burden of the diseases 255 
vectored by these mosquitoes. 256 
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Methods 259 
We used a combination of two approaches to estimate the predicted future distribution of Ae. 260 
aegypti and Ae. albopictus: (1) projecting the environmental suitability of both species using a 261 
set of seven environmental covariates and (2) simulating the spread within each continent using 262 
the species’ past dispersal patterns, human movement data, and between region adjacency 263 
matrices (Extended Data Fig. 1). Here we describe the models and data sources for both 264 
processes. 265 
1. Data 266 
1.1. Global mosquito occurrence data 267 
We used a previously collated database of 19,930 and 22,137 geopositioned occurrence records 268 
for Ae. aegypti and Ae. albopictus respectively (Extended Data Fig. 3)43. Each of these records 269 
corresponds to a unique detection of a mosquito population in a given location at a given point in 270 
time, as described in detail elsewhere43. We excluded records that were classified as temporary 271 
presence when such information was available. 272 
1.2. Environmental and socio-economic covariates 273 
Aedes survival is influenced by a variety of climatic and environmental factors such as long term 274 
and inter-annual temperature44,45, water availability (described as relative humidity and 275 
precipitation), and degree of urbanisation. We used projections from the “Representative 276 
Concentration Pathways” (RCP) developed by the Intergovernmental Panel on Climate Change 277 
(IPCC)46 which represent different assumptions about emission scenarios that might result in a 278 
variety of climatic changes over the next 65 years. Here we use RCPs 4.5, 6.0 and 8.5, which 279 
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assume emission peaks around 2040, 2080 and increases throughout the 21st century 280 
respectively46. These time points were chosen because (i) 2020 represents the date when the 281 
climate mitigating policies of the Paris Agreement within the United Nations Framework 282 
Convention on Climate Change (UNFCCC) will come into action47, (ii) 2080 corresponds to the 283 
date of the emission peaks modelled according to the RCP 6.0 scenario and (iii) 2050 represents 284 
the midpoint between these dates. We use an ensemble of 17 GCMs and pattern scaling to 285 
produce monthly mean values of maximum and minimum temperature and monthly totals of 286 
rainfall as used in MarkSim. Humidity data were calculated from temperature estimates (see 287 
details in section 3). To complement the changes in temperature, relative humidity, and 288 
precipitation, we modelled a continued process of global urbanisation until 2080 using a 289 
probabilistic machine learning algorithm based on Linard et al48. Here we use urban growth rates 290 
projected by the United Nations as a predictor variable49 as well as a range of other critical 291 
covariates, as described in van Vuuren et al48. 292 
1.3. Mosquito spatial spread data 293 
A unique set of time-series occurrence records for both species were abstracted from Kraemer et 294 
al.4,43, and updated with records obtained from Hahn et al50. Records were available for Ae. 295 
aegypti in the United States from 1995 – 2016 with United States county-specific information 296 
regarding whether the species was present or absent; for Ae. albopictus information was 297 
available from the United States (1987 – 2013) and from Europe (1979 -2017) (Fig. 1, Extended 298 
Data Fig. 2). We considered these time periods because they show consistent expansion of the 299 
species distribution as described in Hahn et al50. 300 
For the United States, counties were identified as reporting presence of either species in a given 301 
year if at least one specimen of any life stage of the mosquito was collected, using any collection 302 
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method50. Sampling efforts, techniques and temporal resolution were heterogeneous across 303 
counties and states in the United States. Therefore, the baseline presence datasets may classify 304 
some areas as absent where either of the two Aedes species considered may be present. 305 
For Europe, Administrative/Statistical units (NUTS3) were identified as reporting establishment 306 
of either species in a given year if immature stages and overwintering were observed, using any 307 
collection method. Sampling efforts, techniques, and temporal resolution were heterogeneous 308 
across countries and either species may have been absent before investigations were triggered by 309 
citizen complaint. Therefore, dates correspond to published reports or expert-shared data 310 
(VBORNET, VectorNet), and a species could have established earlier in some locations where 311 
regular surveillance had not been implemented. Because we were not able to quantify the 312 
sampling biases, we instead employed a sensitivity analysis to account for potential under- or 313 
over-reporting (see section 2.4). 314 
1.4. Human mobility datasets 315 
Overland human movements are known to drive the importation of both species38,39,41. Therefore 316 
we used human movement data to infer the connectivity between regions as a proxy for 317 
importation risk of Ae. aegypti and Ae. albopictus. 318 
US commuting data: For the United States, where both species have been spreading successfully, 319 
we obtained data on workforce commuting flows from county to county between 2009 – 2013, 320 
conducted by the American Community Survey (ACS). Data are freely available at 321 
http://www.census.gov/hhes/commuting/. Here, commuting was defined as a worker’s travel 322 
between home and workplace, where the latter refers to the geographical location of the worker’s 323 
job. Daytime population refers to the estimated number of people who are residing and working 324 
in an area during “daytime working hours”. The data represent 3,134 counties including 50 states 325 
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and the District of Columbia (DC) but excluding Puerto Rico. The generalisability of this data 326 
has been demonstrated in studies that have successfully approximated human movements 327 
derived from mobile phone data and predicted the spread of infectious diseases24. As described 328 
below in section 2.3 in detail, we considered gravity and radiation movement models as well as 329 
nearest neighbour-type movements for human movement. We used the fitted models from the 330 
USA to extrapolate to all other regions in the Americas using the movement package in R51. 331 
European mobile phone data: For Europe, we obtained mobile phone data (or call detail records, 332 
or CDRs) from three different countries where Ae. albopictus is present or has recently been 333 
detected: France43, Portugal52, and Spain43. CDR data contain the time at which a call was made 334 
or a text message was sent, the duration of the call, and the code of the cell in which 335 
communication started. The cell corresponds to an area covered by a specific mobile phone 336 
tower that serves a particular area. This means that the spatial resolution is restricted to the tower 337 
area, the specific location of each individual in the dataset cannot be ascertained. As our analysis 338 
was performed at the district level, all users’ activity profiles were aggregated up to the district 339 
level, which is generally larger than cell tower areas. We thereby obtained a connectivity matrix 340 
that shows the connections made between each district i to each district j within each respective 341 
country.  342 
For Portugal, data were available from over one million mobile phone users between April 2006 343 
and March 2007 (12 months). In Spain, CDRs were extracted from 1,034,430 users over three 344 
months between November 2007 and January 2008. In France we had the largest sample of 345 
5,695,974 users, collected between September 2007 and mid-October 2007 covering the entire 346 
country. Other aspects of the collection and processing methods have been described in detail 347 



 16

elsewhere23. We used the fitted models from Europe to extrapolate to all other regions in Europe, 348 
using the movement package in R51. 349 
Human movement data for Asia: Mobility matrices for Asia are inferred from data from Chinese 350 
users of Baidu, the largest location-based service (LBS) in China. Baidu offers a large variety of 351 
apps and software for mobile devices and personal computers, mostly for online searching. We 352 
extracted GPS data from 23 April 2013 to 30 April 2014 (about 400 million users in China). The 353 
raw data was collected at the county level (n = 2,959) and aggregated to the prefecture level (345 354 
prefectures). We then estimated daily flows of people between each pair of counties and 355 
aggregated this information per year. Movement is recorded in the Baidu data such that on each 356 
day if a user was observed at locations A->B->C, then A->B and A->C are counted which may 357 
produce biased population flow estimates. To explore potential bias in the data we compared the 358 
data derived from Baidu to a complete dataset of taxi-based GPS locations in the capital city of 359 
Hunan province, covering a one week period (full details below). The correlation of origin-to-360 
destination flows in the city between the Baidu data and the complete taxi GPS data was very 361 
high (R2 = 0.99). 362 
Baidu data validation: To verify the validity of the Baidu LBS data, we obtained a complete 363 
dataset of GPS locations for all taxis in Changsha city (capital of Hunan Province, population: 7 364 
million) in 2014. The location of each taxi is recorded for regulatory reasons using a GPS device 365 
in each taxi. The location is updated every 30 seconds. There were approximately 7,000 taxis in 366 
Changsha resulting in 20.16 million records (7000*24*60*2) on a daily basis. The status of the 367 
cab was also recorded, such as the locations where passengers get on and off. These data are then 368 
used to extract the movements between the five districts in the main area of Changsha: Kaifu 369 
district, Furong district, Yuhua district, Tianxin district, and Yuelu district. For the purpose of 370 
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comparison, one week’s data (April 4 to April 17, 2016) were extracted and analysed. The 371 
movements were normalized and then compared with the same week in 2014 from the Baidu 372 
LBS data. The correlation between the mobility estimates extracted from the Baidu LBS data and 373 
from the taxi’s GPS data for Changsha city is presented in Extended Data Fig. 9. There is a high 374 
level of similarity between the two datasets, with a correlation coefficient of 0.99 (p=0.001). We 375 
subsequently used the fitted models from China to extrapolate to other regions in Asia and 376 
Oceania again using the movement package in R51. 377 
Human movement data for Africa: To calibrate the gravity and radiation models for Africa, we 378 
used aggregated and de-identified mobile phone-derived mobility estimates at the constituency 379 
level from Namibia between 1 October 2010 and 30 September 2011. These data represent the 380 
proportion of time that unique subscriber identity module (SIM) cards in each constituency 381 
spend in all other constituencies, as described in detail in Jones & Thornton (2000)53. We used 382 
this data set from Namibia because it was openly available and because it offered the best spatial 383 
and temporal resolution compared to census-derived data. We then used the fitted models to 384 
extrapolate to all other regions in Africa using the movement package in R51. Systematic 385 
surveys of cross-border human movements were not available at the time of the study and for the 386 
study regions. 387 
It is possible that there are significant differences between regions in terms of mobility, but 388 
unfortunately no sufficiently widespread and well-resolved data source was available to test this. 389 
Our model captured the spread process of Aedes mosquitoes using a variety of human movement 390 
data, including both CDR data and commuting data. To assess the generalizability of our results 391 
we applied the model fitted to commuting data in the USA to the range expansion process 392 
observed in Europe. The predictive ability of this cross-continental validation indicates that the 393 
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mobility data used are sufficiently robust in the context of this study (Extended Data Fig. 8). 394 
However, we note there may be several limitations to using commuting data to infer vector 395 
introductions as they overly emphasize work-related movements. To test whether our model 396 
would perform well even in the absence of human movement data, we performed a cross 397 
validation that uses only distance and adjacency matrices which only marginally reduces 398 
predictability (Extended Data Fig. 12). Despite this, such data has indeed been used in the United 399 
States to successfully predict the long distance spread of infectious diseases. We are therefore 400 
confident that such data can be applied to predict both short and long distance spread in the 401 
USA54. Similarly, CDR data has been used to describe the spread of pathogens such as influenza 402 
in Europe23. As new data become available, our model is flexible enough to incorporate them 403 
and estimates of the predicted range expansion of Ae. aegypti and Ae. albopictus can be updated. 404 
There was also no suitable data available on cross border movements that could improve 405 
estimates of between-country spread (see section 2.4. for a sensitivity analysis). 406 
2. Model fitting to data 407 
2.1 Description of speed of dispersal: 408 
To understand the past range expansion of both species and to provide basic summary statistics 409 
of the speed of dispersal over time in areas where sufficient observations were available, we use 410 
the methods of spread rate measurements employed by Tisseuil et al55. For each species and 411 
study area, the centroids of the spatial units where the species were observed were re-projected in 412 
a metric system (epsg 102003 in the US, and epsg 3035 in Europe) and the first date of detection 413 
in each centroid was interpolated on a 10 km resolution grid using thin plate spline regression 414 
(TPSR). The local slope of the surface was measured by a 3 x 3 moving windows filter, and the 415 
resulting friction surface (time / distance) was smoothed by an average 11 x 11 cell filter to 416 
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prevent local null frictions values. The local spread rate was then obtained by taking the inverse 417 
of the friction. This measure was computed within a mask, which was obtained by kernel density 418 
smoothing of the centroids of spatial units where the species were observed. We used the method 419 
of Berman and Diggle56 to determine the optimal bandwidth for the US and EU invasions. In 420 
order to have a similar bandwidth for all masks, we used the maximum of the three estimated 421 
optimal bandwidths, which was found to be 73.2 km. A density threshold of 2.9 points per 422 
10,000 km2 was chosen to delineate the mask, which was the maximum threshold value allowing 423 
the inclusions of all observation points in the mask in both the US and EU. 424 
2.2. Mosquito environmental niche modelling 425 
To predict the likely future distributions of both species independently (in years 2020, 2050 and 426 
2080), we first fitted species distribution models to data from the present day. This approach 427 
built on previous work4 using the boosted regression tree (BRT) models fit to mosquito 428 
occurrence data (section 1.1.). BRTs combine strengths from regression trees and machine 429 
learning (gradient boosting) and are able to accommodate non-linear relationships to identify the 430 
environmental niche in which the environment is suitable for the species in question. After an 431 initial regression tree is fitted and iteratively improved upon in a forward stepwise manner 432 (boosting) by minimising the variation in the response variable not explained by the model 433 at each iteration. This approach has been shown to simultaneously fit complex non-linear 434 response functions efficiently while guarding against over-fitting. 435 
We first developed a baseline scenario for the year 2015, using the global dataset of Ae. aegypti 436 
and Ae. albopictus occurrence (section 1.1)43,57 and a set of environmental and socioeconomic 437 
predictors (section 1.2). In a BRT modelling framework pseudo-absences need to be generated to 438 
allow for discrimination between areas where the mosquitoes can persist, and to identify biases 439 



 20

in reporting58. We used the approach previously described in and applied by Kraemer et al4 using 440 
background points from the Global Biodiversity Information Facility (GBIF) and the inverse of 441 
an Aedes temperature suitability mask45 with equal ratio between presence and absence points 442 
and no threshold being applied. From that we constructed 100 sub-models to derive the mean 443 
prediction map and model-fitting uncertainty using the SEEG-SDM package in R59,60. 444 
2.3. Human mobility modelling 445 
Given the heterogeneous abundance of both species61 as well as the low probability of their 446 
surviving slower and longer transits, the chance of a species being introduced following any 447 
single translocation event is low. Hence we used relatively long time steps (yearly) and 448 
generalized human movement models fitted to a variety of data sources to understand the spatial 449 
spread patterns of Ae. aegypti and Ae. albopictus. 450 
We incorporated three distinct human movement models that act at different scales, since we are 451 
uncertain a priori which type of human movement will be most associated with mosquito spread. 452 
We considered (i) a gravity model, (ii) a radiation model, (iii) an adjacency network model and 453 
(iv) un-transformed great-circle distance. Each of these models have been shown to be useful 454 
depending on the local context to infer regular daily commuting patterns, longer-term 455 
movements, and as general descriptions of human mobility24,62,63. First, the gravity model, 456 
assumes that fluxes between two areas i and j are ,  = , , where N represents human 457 
population size and d is great circle distance between two locations, and , , , and  are 458 
parameters to be fit64,65. The gravity model emphasises the attractive power of large population 459 
centres. Second, the radiation model assumes fluxes to be ,  =  , , , where  460 
is the number of individuals leaving area  and  is the total population in the circle centered at 461 
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 with radius ,  excluding the population of the two areas  and . The radiation model 462 
considers not only distance and population sizes at origin and destination but also the cumulative 463 
population at a lesser distance from the origin than the destination24. Consequently, this model 464 
considers not only the origin and destination but also the landscape of ‘intervening opportunities’ 465 
between them. Third, adjacency networks encode the number of district borders an individual 466 
would need to cross to move from one district to another. Thus, this metric reflects the 467 
neighbourhood effect. Finally, we computed the great-circle distance between each pair of 468 
locations and used that as a metric of mobility in and of itself 32,66. 469 
For each second Administrative unit (county/municipality) in the world, we determined the total 470 
human population size using gridded population estimates and calculated the great-circle 471 
distance between the centroids of each pair of districts within each continent67. Gravity and 472 
radiation model parameters were fitted by maximum likelihood methods to the empirical data 473 
described above using the movement R package51. National adjacency networks were computed 474 
using administrative boundary data from the GADM dataset (http://www.gadm.org). To account 475 
for neighbourhood effects of spread and for the potential importance of within-country and 476 
between-country movements, we constructed adjacency matrices that were disaggregated into 477 
three binary connectivity matrices with connectivity degrees of one (i.e., districts share a border), 478 
two (i.e., districts share a common neighbour), and three (i.e., more than two degrees away). 479 
2.4. Mosquito spread modelling 480 
Let ( ) be the Aedes population status of district  at time  (i.e., a binary variable takes the 481 
value 1 if there were Aedes mosquitoes that time, and 0 otherwise). Given the nature of the 482 
dataset collected, we assumed that all data points represented detection of established 483 
populations and thus assumed continuous presence of the species for the first and last reported 484 
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occurrences. We used a standard logistic model to characterize the probability that some district j 485 
will become occupied at time t: 486 

( ) =  1| ( − 1) =  0 = + ,( ) 
where ,( ) corresponds to the value of explanatory variable k in district  at time . Explanatory 487 
variables included in this analysis were the predicted vector habitat suitability (i.e. suitability for 488 
establishment of an introduced vector, 2.1.) and connectivity between infested and non-infested 489 
districts (i.e. probability of introduction of a vector). Separate metrics of connectivity were 490 
defined for each human movement model (2.2.). From each human movement model, a 491 
connectivity matrix ( ) was calculated for each location  and . A corresponding covariate for 492 
the occupation model was then computed to represent the global force of importation, exerted 493 
from all other infested districts to : ,( )  = ∑ ( ) ( − 1). 494 
These models were re-fit in each successive year separately for the North American and 495 
European datasets, and for each vector species, using all available data up to that year. Model 496 
selection was done through backward selection using Akaike Information Criterion (AIC).68 The 497 
fitted model was then evaluated prospectively over the next year by comparing predicted 498 
presence or absence with observations, thereby allowing us to evaluate and validate model 499 
performance over time. For model evaluation we considered all locations (i.e. 3,134 counties in 500 
the USA, 1,587 NUTS in Europe). This model evaluation was used to identify the best 501 
explanatory variables to include in the Aedes spread model. Model evaluation was performed 502 
using receiver operating characteristic curves (ROC curves) (Extended Data Fig. 7) and model 503 
accuracy was characterized comparing the predicted probabilities of first detection vs the 504 
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response (Extended Data Fig. 6). We calculated the probability of first detection  predicted by 505 
the model for each district-year that had not yet reported mosquitoes. We then partitioned 506 
district-years into eight groups with predicted probability in the range of 0-1%, 1-5%, 5-10%, 507 
10-15%, 15-20%, 20-25%, 25-35%, and 35-100%. For each group, we calculated the mean 508 
predicted probability and compared it with the proportion of district-years in the group in which 509 
range expansion was observed. Our model assumes that each mosquito species will persist in an 510 
area once detected, whilst there are some examples of incursions apparently having been 511 
successfully eradicated or died out. It is possible that this assumption could result in inflated 512 
predictions of the rate of spread, due to an overestimated number of source populations for each 513 
potential invasion event. However, it should be noted that this overestimate of the number of 514 
source populations would also be present in the training data, and would be at least partially 515 
absorbed into estimates of the probabilities of importation. Insufficient data were available to test 516 
or account for this potential bias, but based on additional experiments, we do not anticipate our 517 
estimates to greatly overpredict Aedes presence (see section: sensitivity analyses and sampling 518 
bias). 519 
Cross-validation: To test whether the spread between countries is different to the spread within 520 
countries, we used the multi-country dataset from Ae. albopictus in Europe and varied the 521 
relative frequency of within- and between-country mobility by decreasing movement between 522 
countries by 20%, 50%, and 70%. The results were then compared with a baseline, in which 523 
predicted within-country movement is the same as between-country movement (Extended Data 524 
Fig. 11). We also performed sensitivity analyses to evaluate how a model including human 525 
movements compares to single variable models that have objective measurements such as great 526 
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circle distance and adjacency. A model that includes human movements only slightly increased 527 
predictive performance (Extended Data Fig. 12). 528 
Sensitivity analyses and sampling bias: Surveillance efforts to detect Ae. aegypti and Ae. 529 
albopictus may vary in time and space due to gradual progressive improvements as a result of 530 
technology trapping technology, general expertise, or in response to specific events. Three types 531 
of possible changes in surveillance could bias the estimates of our spread model: (1) spatial 532 
expansion of surveillance system coverage to new areas; (2) intensification of sampling effort 533 
within areas where the surveillance system already operates; and (3) changes in sampling 534 
methods within areas where the surveillance system already operates that make it more or less 535 
likely to detect either Ae. aegypti or Ae. albopictus. To address each of these, we completed 536 
sensitivity analyses to understand how possible changes in surveillance may affect the inference 537 
about spread in the future. 538 
Expansions of the surveillance system can be definitively distinguished from true known 539 
expansions of the vectors by comparing the state transitions of areas in longitudinal datasets, 540 
such as our Ae. albopictus dataset in Europe between the years of 2013 and 2017. Areas that first 541 
report absence of the species (often for multiple years) and later report presence are as close to a 542 
clear example of introduction as possible and give a reasonable estimate of the arrival date. 543 
Conversely, if an area’s first report is presence of the species, the species’ arrival date may have 544 
been estimated later than it truly occurred. 545 
Firstly, the existence of such longitudinal records in the Ae. albopictus database in Europe is 546 
strong evidence that the distribution of the species is expanding, however to test if expanding 547 
surveillance efforts is a contributing factor to the observed rate of spread we compared our 548 
original model fit to the full Ae. albopictus in Europe dataset, as used in our main analysis 549 
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(model 1), with a model fit only to the data points that have strong evidence for a specific 550 
introduction date (i.e., report absence before presence; model 2). We tabulated data from Ae. 551 
albopictus in Europe where information was available whether there was ongoing surveillance 552 
prior to the reporting of the species (transition from absence to presence). Such data was 553 
available for 179 out of 600 observations between 2013 – 2018, a time period where 400 new 554 
regions reported the presence of the species making our sub-sample about 50% of all new 555 
invasions. This data was available at higher spatial resolution that the full Ae. albopictus dataset 556 
for Europe. 75% of these records are from locations of most recent spread in France and 557 
Germany. Finally, as model 2 was fit to data from a narrower date range we also consider a third 558 
model (model 3) which was fit to both occurrence and longitudinal data but only from the more 559 
recent date range (Extended Data Tab. 3). If expansion of surveillance efforts is a contributing 560 
factor to the observed rate of spread in the data, then we would expect Model 2 to predict a 561 
significantly lower rate of spread than Models 1 or 3 (our null hypothesis).  562 
Each of these models were fit to the above datasets, then used to simulate Ae. albopictus spread 563 
from a common baseline (based on occurrence and longitudinal data at the end of 2012) for five 564 
years between 2013 and 2017 as described previously. The predicted total number of new 565 
districts infested of this period was calculated and is shown in Extended Data Tab. 4. Note that 566 
comparison of goodness of fit metrics for these models was not possible since the models were 567 
fit to different datasets. 568 
Contrary to the expectation that more precise dates of invasion would lead to conclusions of 569 
slower rates of spread, this sensitivity exercise found  that restricting the model to just areas 570 
where the date of introduction is known significantly increases the predicted rate of spread. Thus, 571 
this exercise rejects our above null hypothesis. This effect was also independent of the time 572 
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period of the fitting data (similar results for Model 1 and Model 3). These results suggest that it 573 
is more likely that true spread of Ae. albopictus is outpacing expansion of mosquito surveillance, 574 
and if longitudinal surveillance was in place everywhere, the observed rates of spread would be 575 
greater.  576 
We therefore believe that the currently implemented model is a conservative estimate of spread 577 
of these species that is not highly affected by changes in spatial coverage of surveillance systems 578 
and provides the most robust estimates of spread over these time periods given the available data. 579 
Given the limited number of years of data available to fit Model 2, we believe that Model 1 580 
provides the most reliable estimates of future spread. 581 
Intensification in sampling effort and technological advancements in collection methods may 582 
affect the probability of detection of a species in earlier in their invasion process vs today. Here 583 
we test both hypotheses through inclusion of different terms in our spread model regression and 584 
compare such models to the null of no changes in surveillance intensity over time (as currently 585 
implemented in our main analysis). To represent increases or decreases in surveillance over time, 586 
we include the spline-smoothed year of detection as a variable in the regression analysis. To 587 
represent step changes in surveillance efforts in response to specific events we include a factor 588 
variable; either before the 2003 peak in West Nile Virus cases in the USA, or after 2003 (only 589 
for models in USA). Internal cross validation was then used to compare the predictive 590 
performance of these three models with evaluation on three-year-lookahead holdout sets, subject 591 
to a minimum of 10 consecutive years of data to fit the models. Model predictive performance 592 
was then compared using deviance from observed values in the holdout set. 593 
This showed that for all species in all continents, the inclusion of a temporal (Year) term reduced 594 
predictive accuracy (increased deviance). This was the case for both gradual change over time 595 
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(s(Year)) and for breakpoint changes in response to specific events (Year > 2003). As a result, 596 
we conclude that there is no evidence for temporal changes in sampling effort in any of the 597 
datasets concerned and therefore do not include such terms in our final predictions (Extended 598 
Data Tab. 5). 599 
Finally, there is a possibility that changes in general vector surveillance strategies could have led 600 
to changes that affected the probability of detection of one species more than the other. Such 601 
differential biases could undermine our inter-species spread rate comparison. One key period of 602 
concern is around the 2003 West Nile Virus (WNV) outbreak in the US where vector 603 
surveillance may have prioritized trapping in more rural environments to optimize detection of 604 
various Culex species. Such a focus on rural environments may have led to relative increases in 605 
sampling intensity of Ae. albopictus and relative reductions in sampling intensities for Ae. 606 
aegypti.  607 
To test this hypothesis, we follow a similar approach to the above analysis, where covariates for 608 
“before” and “after” the 2003 WNV outbreak are included in the USA spread model for each 609 
species. If the above hypothesis is true, such terms should i) have larger “after” values than 610 
“before” values in the Ae. albopictus model and vice versa in the Ae. aegypti model, and ii) 611 
improve model prediction accuracy. 612 
The best fits from the Ae. aegypti and Ae. albopictus spread models in the USA show that 613 
detection of Ae. aegypti marginally increased relative to Ae. albopictus (positive model 614 
coefficients for post-2003 term in Ae. aegypti, negative in Ae. albopictus) (Extended Data Tab. 615 
6). However, as previously stated, inclusion of such changes in surveillance quality over time 616 
reduces the model predictive performance (increase in deviance for both species) and therefore 617 
may not provide a better time period to mirror the spread of the species in the United States. 618 
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2.5. Classifying the ranges of each mosquito species and incorporating uncertainty 619 
Current reported distributions of Ae. aegypti and Ae. albopictus are unlikely to be fully 620 
representative of their actual distributions because of logistical and financial constraints on 621 
vector surveillance.37 Therefore we used the following method to estimate the current-day global 622 
distribution (realised niche) of each mosquito species by comparing environmental suitability 623 
maps with occurrence data. We extracted the predicted environmental suitability value at each of 624 
the locations where the mosquito species has been reported, and the value of environmental 625 
suitability that encompassed 90% of these reported locations was chosen as the range threshold. 626 
Every value above or equal to this threshold was defined as within the range of the mosquito 627 
species (Extended Data Fig. 13). This approach assumes that the 10% of occurrences outside of 628 
the predicted range represent temporary introductions that do not persist longer than one year and 629 
are not representative of the long-term distribution of the species. As there is uncertainty in what 630 
proportion of the data are representative of these transient identifications (given that the majority 631 
of the data are cross-sectional not longitudinal), we undertook a sensitivity analysis that varied 632 
this threshold from 85% to 95%, thereby creating 96 different possible range maps that represent 633 
different realisations of the current distribution of each species. In doing so, we capture locations 634 
that have the conditions for mosquito presence and where there is potential for onward spread. 635 
We did not include international shipping as a contributor to infrequent long-distance 636 
importation events between continents since both species are already well established on each 637 
continent and therefore new occurrences are more likely to be driven by intra-continental 638 
importation pressure. 639 
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3. Future projections 640 
3.1. Projecting environmental and socioeconomic covariates 641 
We used 17 GCMs to estimate 30 arc-sec images for monthly mean climate data. Extended Data 642 
Table 7 provides the designation, origin, references and number of replicate runs for each model. 643 
The procedures are described in detail in MarkSim documentation65. For each GCM the baseline 644 
monthly climate was derived from the historic runs for temperatures and rainfall, the monthly 645 
means were calculated for each GCM for the years 2000 to 2095, and the difference ‘delta’ for 646 
each month was calculated by subtracting the specific GCM baseline. The deltas were 647 
interpolated from the native GCM pixel (Extended Data Tab. 7) to a one degree by one degree 648 
pixel for the globe. The data were pattern scaled to WorldClim 1.0364 for each one degree pixel, 649 
RCP, and month. For each variant a fourth order polynomial regression was fitted over the 96 650 
years of data and through the origin at 1985 (1985 being the mean midpoint of the data used in 651 
the WorldClim construction) to calculate one output per model per year per scenario.  652 
Humidity data were estimated directly at the 30 arc-sec level from dewpoint calculated by the 653 
tabular method of Linacre69 and the mean temperature. To fully propagate the variation between 654 
the climate models through our predictions we used the outputs of 17 GCM, for all 3 years, and 3 655 
scenarios. 656 
Global temperature estimates were converted into temperature suitability for mosquito 657 
population persistence (separate metrics for each vector species), hereafter referred to as 658 
temperature suitability, using temperature-based mathematical models from Riahi et al44 and 659 
Fujino et al45. These show the effects of diurnal and seasonal changes in temperatures on the 660 
generation time of the mosquito and its resultant effects on the persistence of a population. 661 
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As a highly anthropophilic mosquito species, the future distribution of the Aedes is likely to 662 
depend critically on both environmental and human socioeconomic factors that modify the 663 
availability of its habitat8. To incorporate these features, we also modelled the continued process 664 
of global urbanisation until 2080 using a probabilistic machine learning algorithm based on the 665 
work of Linard et al48. Here we use urban growth rates predicted by the United Nations as a 666 
predictor variable49 as well as a range of other covariates as previously described in van Vuuren 667 
et al48. 668 
3.2. Projecting future niche of Ae. aegypti and Ae. albopictus 669 
Although niche shifts might occur over long time-periods, the future effects remains unclear for 670 
Ae. aegypti and Ae. albopictus since their expansion from their native range70. Therefore, we 671 
assume niche conservatism, implying that the mosquitoes tend to establish and survive under 672 
similar environmental conditions in native and invaded ranges in the future4,71,72. 673 
Our final aim was to produce 18 maps predicting Ae. aegypti and Ae. albopictus suitability in the 674 
years 2020, 2050 and 2080 under three different emissions scenarios (RCPs). Each of these 18 675 
maps were composed of 100 ensemble predictions that randomly sampled (with replacement) the 676 
following aspects of the analysis: 677 

1. The fitted Aedes BRT model (from a choice of 100 BRT models fitted to 2015 data) 678 
2. The predicted temperature suitability for Aedes survival (from a choice of 17 GCMs) 679 
3. The predicted minimum precipitation (from a choice of 17 GCMs) 680 
4. The predicted relative humidity (from a choice of 17 GCMs) 681 
5. The predicted minimum precipitation (from a choice of 17 GCMs) 682 
6. The predicted geographic expansion via land from the spread models (section 3.3). 683 
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This approach sought to fully propagate the uncertainty in the climate, Aedes temperature 684 
suitability and Aedes models through to the final prediction. These 100 predictions were then 685 
summarised by mean and 95% credible intervals to give the final prediction for each year RCP 686 
combination. Uncertainties are shown in all maps along the X-axes. 687 
Our baseline map modelling is different from previously published maps in so far that it uses 688 
only projectable environmental and socio-demographic variables and does not use the Enhanced 689 
Vegetation Index (EVI), as the EVI is a direct empirical measure of the Earth’s current 690 
greenness4. To minimise potential reduction in the predictive ability of the model by omitting 691 
this covariate, we include precipitation and relative humidity as predictors for suitability for 692 
green vegetation growth in both the present day and future models. 693 
3.3. Projecting mosquito spread 694 
To derive yearly model-based estimates of the possible expansion of both species by 2080 we 695 
forward-simulated the geographic spread model based on the equation in 2.4. To account for the 696 
spatio-temporal dependence in first detection probabilities (each district’s probability is a 697 
function of every other district that was infested the year before), we run 1,000 simulations 698 
forward in time. Within each simulation we estimate the probability of infestation to each district 699 
that had yet to detect the species. We then drew a Bernoulli random variable with that probability 700 
of ‘1’ (i.e., invasion) and imputed those results for each potential detection. Using these imputed 701 
invasions as well as all districts that had previously been infested, we repeat the estimation of 702 
range expansion for the next year. This process is repeated up to the desired forecast horizon. 703 
This represents a single simulation. It is important to note that we did not allow for the situation 704 
where an already infested district will ‘lose’ its infection status (i.e., if ( − 1) = 1 for district 705 
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, we force ( ) = 1). We then combine the results of the 1,000 simulations to identify which 706 
districts were most likely to have a positive species presence at any point. 707 
3.4. Calculating population at risk and area expansion 708 
To classify areas as at risk or not at risk of Ae. aegypti and Ae. albopictus a threshold was 709 
defined for the continuous Aedes suitability maps by the value that maximised sensitivity and 710 
specificity when classifying the occurrence and background data using the 2015 map. This value 711 
was found to be 0.47 and 0.51 for Ae. aegypti and Ae. albopictus respectively. Any pixel with a 712 
predicted suitability value above that was considered at risk and the same threshold was applied 713 
to each time point and scenario to calculate the population and area at risk in each global region. 714 
The final maps for 2020, 2050, 2080 are then overlaid with contemporary estimates of human 715 
populations at 5 km resolution and extracted the relevant population at risk was estimated using 716 
the raster package in R. We paired the climatic scenarios based on Shared Socioeconomic 717 
Pathways (SSPs) that were defined by O’Neill et al. in 201473. They represent reference 718 
pathways that describe plausible alternate trends in the evolution of society and ecosystems over 719 
a century, in the absence of climate change or climate policies. SSPs are predicated on possible 720 
outcomes that would make it more or less difficult to respond to climate change challenges. Each 721 
SSP consists of quantified population and Gross Domestic Product (GDP) trajectories, serving as 722 
the starting points for various organisations to model these factors and to provide projections for 723 
demographic and economic development variables. The Integrated Assessment Modelling 724 
Consortium (IAMC) made available certain peer-reviewed projections via the International 725 
Institute for Applied Systems Analysis (IIASA, http://www.iiasa.ac.at), whereby the SSP 726 
storylines were converted into population and GDP projections for 195 countries74 for every 727 
decade between the years 2010 and 2100. 728 
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Figures 909 

 910 
Fig. 1: Reconstruction of Ae. albopictus and Ae. aegypti spread in the United States (a and b respectively), 911 
and Ae. albopictus in Europe (c). Estimates of speed of spread in km/year are based on thin spline 912 
regression on mosquito observations since their earliest detection in each continent. Red indicates fast 913 
dispersal (km/year) whereas yellow and white indicate slower spread (km/year) velocity (see legend 914 
below panel b). Areas highlighted in grey have no reported mosquito presence. Panels d – f summarise 915 
the speed of dispersal of Ae. albopictus  and Ae. aegypti spread in the United States (d, e) and of Ae. 916 
albopictus in Europe (f) starting from their date of first detection until 2017. The red line indicates the 917 
average velocity per year across all districts using the thin spline regression model. 918 
  919 



 40

 920 
Fig. 2: Predicted future spread of Aedes aegypti and Aedes albopictus in the United States, estimated 921 
using human-mobility metrics and ecological determinants fitted to past occurrence data. Panel A shows 922 
the forecasted change in the distribution of Ae. aegypti between 2020 and 2050 using the medium climatic 923 
scenario Representative Concentration Pathways 6.0 at the United States county level ranging from -0.25 924 
(blue) to 0.25 (red). Red indicates expansion and dark blue contraction of the Aedes range distribution 925 
between 2020 and 2050. Panel b shows the predicted suitability of presence of Ae. aegypti in 2050. 926 Pixels with no predicted suitability are coloured in grey. Panels c and d show the corresponding 927 results for Ae. albopictus.  928 
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 929 
Fig. 3: Predicted future spread of Aedes albopictus in Europe. Panel a shows the expansion (red) and 930 
contraction (blue) of Ae. albopictus between 2020 and 2050 under the medium climate scenario RCP6.0 931 
with emissions peaking in 2080. Panel b shows the predicted distribution of Ae. albopictus. Panel b 932 shows the predicted suitability of presence of Ae. albopictus in 2050. Pixels with no predicted 933 suitability are coloured in grey.  934 
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 935 
Fig. 4: Predicted global geographic distribution of Ae. aegypti (a) and Ae. albopictus (c) in 2050 under the 936 
medium climatic scenario RCP6.0 and uncertainty for Ae. aegypti (b) and Ae. albopictus (e). Predicted 937 suitability of Ae. aegypti quantile cutoff points were 0.24, 0.66, 0.88. Relative uncertainty was 938 computed as the ratio of the 95% uncertainty intervals and predicted Ae. aegypti suitability for each 939 pixel. Cutoff points for uncertainty were 0.08, 0.18, 0.31. The lowest quantile of predicted suitability 940 is shown in white, and the highest in dark pink. The lowest quantile for uncertainty is white and the 941 highest is blue. The colours overlap such that areas coloured purple have both high predicted 942 suitability of Ae. aegypti and high relative uncertainty. Pixels with no predicted suitability are 943 coloured in grey. Panel c show the corresponding results for Ae. albopictus. Predicted suitability of 944 Ae. albopictus quantile cutoff points were 0.13, 0.41, 0.70. Cutoff points for uncertainty for Ae. 945 
albopictus  were 0.16, 0.36, 0.53. The global population predicted to live in areas suitable for Ae. 946 
aegypti (b) and Ae. albopictus (c) under the conservative (RCP4.5), medium (RCP6.0), and worst-947 case scenario (RCP8.5) using the binary cutoff values of suitability of 0.46 and 0.51 for both species 948 respectively. 949 
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