Use of animal models to support revising Meningococcal breakpoints of β-Lactams.

Nouria Belkacem, Eva Hong, Ana Antunes, Aude Terrade, Ala-Eddine

Deghmane, Muhamed-Kheir Taha

- To cite this version:

Nouria Belkacem, Eva Hong, Ana Antunes, Aude Terrade, Ala-Eddine Deghmane, et al.. Use of animal models to support revising Meningococcal breakpoints of β-Lactams.. Antimicrobial Agents and Chemotherapy, 2016, 60 (7), pp.4023-4027. 10.1128/AAC.00378-16 . pasteur-02058949

HAL Id: pasteur-02058949

https://pasteur.hal.science/pasteur-02058949
Submitted on 30 Mar 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Use of Animal models to support revising meningococcal breakpoints of beta-lactams

Nouria Belkacem, Eva Hong, Ana Antunes, Aude Terrade, Ala-Eddine Deghmane and Muhamed-Kheir Taha*

Institut Pasteur, Invasive Bacterial Infections Unit and National reference center for meningococci

- For correspondence

Email mktaha@pasteur.fr
Tel +33 145688438
Fax +33145688338

Running title: In vivo antibiotic susceptibility testing
Keywords: Neisseria meningitidis, breakpoints, beta-lactam, animal models, dynamic imaging, inflammation

Abstract

Antibiotic susceptibility testing (AST) in Neisseria meningitidis is an important part of the management of invasive meningococcal disease. It defines minimal inhibitory concentrations (MICs) of antibiotics that are used in treatment and/or prophylaxis and that mainly belong to beta-lactams. The interpretation of the AST requires breakpoints to classify the isolates into susceptible, intermediate or resistant. The resistance to penicillin G is defined by MIC >0.25 mg / L and that of amoxicillin is defined by MIC $>1 \mathrm{mg} / \mathrm{L}$. We provide data that may support revision of resistance breakpoints for beta-lactams in meningococci.

We used experimental intraperitoneal infection in 8-week-old transgenic female mice expressing human transferrin and human factor H . Dynamic bioluminescence imaging was performed to follow the infection by bioluminescent meningococci with different MIC. Three hours later, infected mice were treated intramuscularly using several doses of amoxicillin or penicillin G. Signal decreased during infection with meningococci with the strain showing MIC of $0.064 \mathrm{mg} / \mathrm{L}$ of penicillin G with all doses. Signals only decreased for the strain with MIC of $0.5 \mathrm{mg} / \mathrm{L}$ of penicillin G after treatment with the highest doses corresponding to $250,000 \mathrm{units} / \mathrm{kg}$ of penicillin G or $200 \mathrm{mg} / \mathrm{kg}$ of amoxicillin although to a slower rate than the strain with MIC of $0.064 \mathrm{mg} / \mathrm{L}$. The decrease of bioluminescent signals was associated with a decrease in the levels of the pro-inflammatory cytokine, IL-6. Our data suggest that high dose of amoxicillin or penicillin G can reduce growth during infection by isolates showing MIC of penicillin G of $>0.25 \mathrm{mg} / \mathrm{L}$ and $\leq 1 \mathrm{mg} / \mathrm{L}$.

Introduction

Neisseria meningitidis is a Gram negative bacterium frequently encountered in human nasopharynx but it is also the causative agent of invasive meningococcal disease (IMD) that provokes mainly septicemia and meningitis. Neisseria meningitidis remains susceptible to beta-lactams, the antibiotics of choice in the treatment of IMD (1). Resistance to beta-lactams in meningococci is extremely rare, but reduced susceptibility has been described to penicillin G and to amoxicillin (intermediate isolates, $\mathrm{Pen}^{\mathrm{I}}$). However, neither resistance nor reduced susceptibility to cephalosporin of third generation has been detected so far (2). The proportions of $\mathrm{Pen}^{\mathrm{I}}$ isolates differ worldwide and are increasing in several countries and can reach $>30 \%$ of total meningococcal isolates (3-7).

We have previously shown direct correlation between the polymorphism of penA gene encoding the penicillin binding protein 2 (PBP2) and the Pen ${ }^{\mathrm{I}}$ phenotype. This phenotype seems to result from the reduced affinity of penicillin G and amoxicillin to PBP2 as well as to modification of peptidoglycan structure in $\mathrm{Pen}^{\mathrm{I}}$ isolates with increased pentapeptidecontaining muropeptides (8). Horizontal interspecies DNA exchanges in the genus Neisseria are suggested to drive the polymorphism of penA (7). Antibiotic susceptibility testing (AST) is mandatory for beta-lactam antibiotics and requires reliable breakpoints to inform decision making in patient treatment.

In order to consistently define breakpoints, sequencing of penA from a large collection of isolates allowed linking wild-type alleles of penA to low minimal inhibitory concentration (MIC) for penicillin $\mathrm{G}(<0.125 \mathrm{mg} / \mathrm{L})(7)$. This defined the epidemiological cut off values for susceptibility to penicillin G of MIC to be lower than $0.125 \mathrm{mg} / \mathrm{L}$ and $<0.250 \mathrm{mg} / \mathrm{L}$ for amoxicillin (7). It divided the meningococcal population into one part containing isolates harboring wild-type alleles of penA and another part comprising isolates showing highly diverse penA alleles and MICs of $\geq 0.125 \mathrm{mg} / \mathrm{L}$ and $0.250 \mathrm{mg} / \mathrm{L}$ for penicillin G and
amoxicillin, respectively (7). The value of MIC $<0.125 \mathrm{mg} / \mathrm{L}$ was preferred to define the susceptibility to penicillin G as it allows to fill the important rule to not split wild-type MIC distribution (9) as isolates with wild type penA showed MIC of $0.094 \mathrm{mg} / \mathrm{L}(7)$. These values fitted with those used by the European Committee for Antimicrobial Susceptibility Testing (EUCAST; http://www.eucast.org) and the Clinical and Laboratory Standards Institute (CLSI)(10).

Intermediate isolates are expected to be treatable by beta-lactams, i.e. bacteria growth is reduced and/or bacteria are cleared from biological fluids. However, the higher limit of Pen ${ }^{\text {I }}$ isolates is still to be determined. EUCAST and CLSI indicate that isolates with MIC of penicillin G and amoxicillin $>0.250 \mathrm{mg} / \mathrm{L}$ and $>1 \mathrm{mg} / \mathrm{L}$ respectively are resistant $\left(\mathrm{Pen}^{\mathrm{R}}\right)$ to these beta-lactams (i.e. non treatable/treatment failure). However, isolates with MIC of penicillin $G>0.250 \mathrm{mg} / \mathrm{L}$ harbor similar modified penA alleles as $\mathrm{Pen}^{\mathrm{I}}$ isolates (7). The definition of resistant breakpoints is mainly driven by pharmacokinetic (PK) and pharmacodynamic (PD) indices that reflect antibiotic concentration and its effect respectively. However, experimental data are needed to correlate breakpoints to treatment. The use of animal models may help testing whether these breakpoints correspond to resistance and treatment failure.

Materials and Methods

Ethics Statement

This study was carried out in strict accordance with the European Union Directive 2010/63/EU (and its revision 86/609/EEC) on the protection of animals used for scientific purposes. Our laboratory has the administrative authorization for animal experimentation (Permit Number 75-1554) and the protocol was approved by the Institut Pasteur Review Board that is part of the Regional Committee of Ethics of Animal Experiments of Paris region (Permit Number: 99-174).

Meningococcal isolates: Phenotypic and Genotypic characterization

Two clinical isolates of N. meningitidis were used (LNP24198 and LNP27704). Both isolates were of serogroup C and belonged to the clonal complex ST-11 (cc11). They harbored respectively the penA alleles penA3 and penA9 corresponding to a wild-type and a modified alleles respectively. MIC of penicillin G was determined as previously recommended using Etest with Mueller-Hinton agar supplemented with sheep blood (11) and were $0.064 \mathrm{mg} / \mathrm{L}$ and $0.5 \mathrm{mg} / \mathrm{L}$ respectively. MICs of amoxicillin were 0.125 and $1.5 \mathrm{mg} / \mathrm{L}$ respectively. Bioluminescent variants of both isolates were constructed by transformation with the recombinant plasmid pDG 34 , which carries the bioluminescent luxCDABE operon under the control of the porB promoter (12) and named LNP24198lux and 27704lux. Both strains were checked for their MICs of penicillin G , and for amoxicillin and their penA alleles verified by sequencing, showing that they were identical to the parent isolates. Both strains grew similarly on meningococcal growth medium.

Mice infection and dynamic live imaging studies

We took advantage from the availability of an animal model to study N. meningitidis infection, the transgenic mice expressing the human transferrin, since an iron source is required for meningococcal growth (13). We have recently developed another animal model,
a transgenic mice expressing the human factor $\mathrm{H}(\mathrm{fH})$ that allowed binding of this negative regulator of complement pathway on bacterial surface and hence allowing meningococci to escape complement-mediated lysis (14). The two types of mice were crossed to generate transgenic mice expressing both human transferrin and human fH that we used in infection experiments using bioluminescent meningococcal strains with different MIC to penicillin G and amoxicillin. Mice were in-house bred and were kept in a biosafety containment facility, in filter-topped cages with sterile litter, water and food, according to institutional guidelines.

Mice were infected by intraperitoneal route (i.p.) with standardized inoculate of 5×10^{6} bioluminescent colony forming units (CFU) per mouse in 0.5 ml of bacterial suspension. At the time point of 3 h the mice were divided into three groups that were treated by either penicillin G or amoxicillin only once by intramuscular injection in the interior face of the left thigh. The following increasing unique doses (per mouse) of penicillin G (60,000 units $/ \mathrm{kg}$, 120,000 units $/ \mathrm{kg}$ or 250,000 units $/ \mathrm{kg}$; corresponding to $37 \mathrm{mg} / \mathrm{kg}, 75 \mathrm{mg} / \mathrm{kg}$ and $150 \mathrm{mg} / \mathrm{ml}$) or of amoxicillin ($50 \mathrm{mg} / \mathrm{kg}, 100 \mathrm{mg} / \mathrm{kg}$ and $200 \mathrm{mg} / \mathrm{kg}$). The highest doses of both antibiotics corresponded to a daily dose used in treatment of IMD in humans. A group of two mice were only injected with saline as control. Interleukin-6 (IL-6) levels were also assayed in blood at the end point $(8 \mathrm{~h})$ as previously described (15). As similar results were obtained from both experiments with penicillin G and amoxicillin, IL-6 was tested for mice experiment treated with amoxicillin.

Bacterial infection images were acquired after $0.5 \mathrm{~h}, 3 \mathrm{~h}, 6 \mathrm{~h}$ and 8 h of infection using an IVIS 100 system (Xenogen Corp., Alameda, CA) as previously described (13). Analysis and acquisition were performed using Living Image 4.3.1 software (Xenogen Corp.). Data were analyzed by linear regression using GraphPad InStat version 3.06 (GraphPad Software, San Diego, CA, USA).

Results

Impact of MIC on amoxicillin treatment during meningococcal infection in mice

In order to test the evolution of the experimental infection in vivo, transgenic mice were infected i.p. by the LNP24198lux (MIC penicillin $0.064 \mathrm{mg} / \mathrm{L}$ and amoxicillin $0.125 \mathrm{mg} / \mathrm{L}$) or the strain LNP27704 (MIC penicillin $0.5 \mathrm{mg} / \mathrm{L}$ and amoxicillin $1.5 \mathrm{mg} / \mathrm{L}$). After 3 h of infection, infected mice were divided into groups that were treated by one of the three antibiotic doses (Amoxicillin or penicillin G). A group of mice was left untreated as a control group.

After bacterial intraperitoneal challenge, dynamic bioluminescence imaging showed that 30 min after the bacterial suspension injection, bacteria were mainly present in the peritoneal cavity in both types of strains LNP24198lux (MIC penicillin $0.064 \mathrm{mg} / \mathrm{L}$ and amoxicillin $0.125 \mathrm{mg} / \mathrm{L}$) and LNP27704lux (MIC penicillin $0.5 \mathrm{mg} / \mathrm{L}$ and amoxicillin $1.5 \mathrm{mg} / \mathrm{L}$). Signal increased in all mice after 3 h of infection. For mice infected with the strain LNP24198lux and 6 h after infection (3 h after treatment with amoxicillin), the signal decreased in mice treated with $200 \mathrm{mg} / \mathrm{kg}$ dose and were cleared after 8 h of infection (5 h after treatment). For the two other doses, the signal only decreased after 8 h of infection (5 h after treatment). In the untreated mice, signal continued to increase in all time points (Fig.1A). For mice infected with the strain LNP27704lux (MIC penicillin $0.5 \mathrm{mg} / \mathrm{L}$ and amoxicillin $1.5 \mathrm{mg} / \mathrm{L}$), the bioluminescent signal decreased only in mice treated with the highest dose $(200 \mathrm{mg} / \mathrm{kg})$ while signal continued to increase in mice treated with $50 \mathrm{mg} / \mathrm{kg}$ and $100 \mathrm{mg} / \mathrm{kg}$ and did not differ from the signal observed in untreated mice (Fig.1B).

Linear regression analysis confirmed the significant decrease of bacterial viability for the strain LNP24198lux in amoxicillin-treated mice in a dose-dependent manner. Negative slopes were also significantly different from the slope of untreated mice ($P<0.01$ and r^{2} of 0.38 and
0.85 respectively for $100 \mathrm{mg} / \mathrm{kg}$ and $200 \mathrm{mg} / \mathrm{kg}$ doses) (Fig. 1A; 1B). However, for the dose of $50 \mathrm{mg} / \mathrm{kg}$, the slope was not significantly different from zero ($P=0.77$ and $\mathrm{r}^{2}=0.007$) suggesting bacteriostasic effect (Fig.1A; 1B).

For the strain LNP27704lux, only the $200 \mathrm{mg} / \mathrm{kg}$ dose resulted in a negative slope that differed significantly from that observed with untreated mice and from the other doses of amoxicillin-treated mice $\left(\mathrm{P}<0.001\right.$ and $\left.\mathrm{r}^{2}=0.59\right)$. For the strain LNP27704lux treated with the two other doses ($50 \mathrm{mg} / \mathrm{kg}$ and $100 \mathrm{mg} / \mathrm{kg}$) the slopes were positive and similar to those of untreated mice suggesting bacterial growth (Fig. 1A; 1B). For the $200 \mathrm{mg} / \mathrm{kg}$-treated mice, the r^{2} values for the strain LNP27704lux was lower than that for strain LNP24198lux (0.59 versus 0.85 respectively) suggesting slower clearance of the former strain.

We also performed similar experiments using penicillin G with (doses of $60,000 \mathrm{units} / \mathrm{kg}$; 125,000 units $/ \mathrm{kg}$ and 250,000 units $/ \mathrm{kg}$). Mice were infected i.p. by the strain LNP27704 (MIC penicillin $0.5 \mathrm{mg} / \mathrm{L}$ and amoxicillin $1.5 \mathrm{mg} / \mathrm{L}$) and after 3 h of infection, three groups of infected mice were treated by one of the three penicillin G doses. A group of mice was left untreated as a control.

Bioluminescent signal increased and spread after 3 h of infection. After treatment, only the mice group treated with the highest dose $(250,000$ units $/ \mathrm{kg}$) showed a decrease of bioluminescent signal indicating loss of bacterial growth. The signal continued to increase in mice that were infected by LNP27704lux and treated with either 60,000 units $/ \mathrm{kg}$ or 125,000 units/kg of penicillin G (Fig. 1C).

Linear regression analysis confirmed the impact of the highest dose in mice infected with the strain LNP27704lux. The highest dose resulted in a negative slope that differed significantly from that obtained with the other doses and untreated mice $(P<0.001)$ with an r^{2} value of 0.12 .

For the mice infected by the strain LNP24198lux (MIC $0.064 \mathrm{mg} / \mathrm{L}$) and treated with penicillin G, the data were similar to those obtained with amoxicillin treatment (data not shown).

All these data taken together suggest the highest dose, similar to the daily dose used in humans, leads to decrease of bacterial counts in mice even if the strain is considered Pen ${ }^{\mathrm{R}}$.

Decreased inflammatory response in mice treated with optimal amoxicillin dose

We next assayed the levels of IL-6, a proinflammatory cytokine at 8 h post-infection. The data are showed in Table 1 and clearly suggest a dose dependent decrease of IL-6 levels in amoxicillin-treated mice that were infected by the strain LNP24198lux (MIC penicillin 0.064 mg / L and amoxicillin $0.125 \mathrm{mg} / \mathrm{L}$). These levels were not detectable in mice treated with 200 $\mathrm{mg} / \mathrm{kg}$ of amoxicillin. On the other hand, mice infected with the strain LNP27704lux (MIC penicillin $0.5 \mathrm{mg} / \mathrm{L}$ and amoxicillin $1.5 \mathrm{mg} / \mathrm{L}$), and treated with $50 \mathrm{mg} / \mathrm{kg}$ and $100 \mathrm{mg} / \mathrm{kg}$ of amoxicillin showed similar levels of IL-6 as obtained in untreated mice (Table). IL-6 level was not detectable in mice treated with the highest dose $(200 \mathrm{mg} / \mathrm{kg}$ of amoxicillin).

Discussion

We have previously emphasized the advantages of in vivo bioluminescent imaging for realtime monitoring of meningococcal infections and their treatment $(13,16)$. This technology is sensitive, rapid and non-invasive. It limits animal-to-animal variation and reduces the number of animal used. In the present study, we adapted this system to evaluate the correlation of beta-lactams breakpoints during experimental meningococcal infection in transgenic mice. N. meningitidis is intrinsically susceptible to many antibiotic classes and MIC_{50} and MIC_{90} values (antibiotic concentrations respectively inhibiting 50% and 90% of a sample of strains) are very low(17). Meningococcal resistance to beta-lactams remains rare and meningococcal strains remained susceptible to penicillin G with an MIC_{50} of penicillin G of $0.06 \mathrm{mg} / \mathrm{L}$. Few old reports described rare beta-lactamase producing strains with MICs that may reach or exceed $256 \mu \mathrm{~g} / \mathrm{ml}(18,19)$. These beta-lactamases are plasmid-borne TEM-1 type enzymes similar to those described in Neisseria gonorrhoeae that inactivate penicillin G and amoxicillin but does not hydrolyze third generation cephalosporins (18). However, isolates with reduced susceptibility to penicillin G and amoxicillin are quite frequent worldwide (7). The MICs of amoxicillin and penicillin G for these intermediate isolates remain low and defining the upper limit of the critical values remains problematic.

Although treatment failures have been described for strains with the highest MICs (20), the severe infections caused by these strains generally resolve favorably using high doses of penicillin G or amoxicillin, which allow bactericidal concentration to be reached in cerebrospinal fluid. The effect of beta-lactams is dependant on the time the antibiotic concentration exceeds its MIC for the microorganism ($\mathrm{T}>\mathrm{MIC}$) (9). Our data with the highest dose of antibiotics are in agreement with this consideration. This dose corresponds to the recommended total daily dose for the treatment of IMD (21). Our data suggest that the strain with MIC of $0.5 \mathrm{mg} / \mathrm{L}$ may not be classified as resistant to penicillin G as it was
treatable. However, lower doses of penicillin G and amoxicillin failed to control the bacterial growth and may lead to treatment failure. As the threshold of $1 \mathrm{mg} / \mathrm{L}$ corresponds to the effective therapeutic concentration in the CSF obtained during treatment with penicillin G (22), we may suggest that the upper breakpoint for penicillin G to by $1 \mathrm{mg} / \mathrm{L}$ and thus intermediate isolates may be defined as those with MIC $\geq 0.125 \mathrm{mg} / \mathrm{L}$ and $\leq 1 \mathrm{mg} / \mathrm{L}$. This range also contains the isolates with altered penA alleles that all shared the same altered residues (7). Isolates with MICs $>0.25 \mathrm{mg} / \mathrm{ml}$ and $\leq 1 \mathrm{mg} / \mathrm{ml}$ may not be considered as Pen ${ }^{\mathrm{R}}$ isolates. Indeed, the drug effect, in vivo, is subjective to bacterial growth rate but is also dependant on host defense mechanisms. These latter aspects are not directly considered by the conventional $\mathrm{PK} / \mathrm{PD}$ model but can be addressed using relevant animal models as described in this work. IL-6 is considered to be an important mediator of acute inflammatory responses to bacterial infection (23). After 8 h of infection, the levels of IL-6 increased in mice infected by both isolates and were higher in mice infected by the susceptible strain (LNP24198lux) than in mice infected by the resistant isolate (LNP27704lux). This is in agreement with our previous study that meningococcal isolates with modified PBP2 showed significant lower induction of the inflammatory response (15). The mice treated with the higher dose did not show any detectable IL-6. The trends of IL-6 levels in amoxicillin treated groups followed the microbiological results. Our data are consistent with previous reports suggesting that IL-6 was a possible indicator of bacterial killing (24).

Finally, our data suggest that if amoxicillin and penicillin G are to be used in treatment of IMD prior determination of MIC, the first dose should be $200 \mathrm{mg} / \mathrm{Kg}$ and 250,000 units $/ \mathrm{kg}$ respectively.

Our findings clearly highlight a powerful approach in defining breakpoints through the analysis the polymorphism of the gene encoding the targets of the antibiotics to characterize the alterations of the targets and their correlation with MIC. The use of animal models in
association with PK/PD analysis can then allow defining the breakpoints. Finally, the increase of MIC in meningococci may also correspond to other undefined mechanisms that require additional studies. However, our proposal for a breakpoint for resistance to penicillin G higher than $1 \mathrm{mg} / \mathrm{L}$ fits with other breakpoints for pathogens showing meningeal tropism (25).

References

1. Nadel S, Kroll JS. 2007. Diagnosis and management of meningococcal disease: the need for centralized care. FEMS Microbiol Rev 31:71-83.
2. Antignac A, Ducos-Galand M, Guiyoule A, Pires R, Alonso JM, Taha MK. 2003. Neisseria meningitidis strains isolated from invasive infections in France (1999-2002): phenotypes and antibiotic susceptibility patterns. Clin Infect Dis 37:912-920.
3. Vazquez JA. 2001. The resistance of Neisseria meningitidis to the antimicrobial agents: an issue still in evolution. Rev Med Microbiol 12::39-45.
4. Harcourt BH, Anderson RD, Wu HM, Cohn AC, MacNeil JR, Taylor TH, Wang X, Clark TA, Messonnier NE, Mayer LW. 2015. Population-Based Surveillance of Neisseria meningitidis Antimicrobial Resistance in the United States. Open Forum Infect Dis 2:ofv117.
5. Sorhouet-Pereira C, Efron A, Gagetti P, Faccone D, Regueira M, Corso A, Gabastou JM, Ibarz-Pavon AB. 2013. Phenotypic and genotypic characteristics of Neisseria meningitidis disease-causing strains in Argentina, 2010. PLoS One 8: 588065.
6. du Plessis M, von Gottberg A, Cohen C, de Gouveia L, Klugman KP. 2008. Neisseria meningitidis intermediately resistant to penicillin and causing invasive disease in South Africa in 2001 to 2005. J Clin Microbiol 46:3208-3214.
7. Taha MK, Vazquez JA, Hong E, Bennett DE, Bertrand S, Bukovski S, Cafferkey MT, Carion F, Christensen JJ, Diggle M, Edwards G, Enriquez R, Fazio C, Frosch M, Heuberger S, Hoffmann S, Jolley KA, Kadlubowski M, Kechrid A, Kesanopoulos K, Kriz P, Lambertsen L, Levenet I, Musilek M, Paragi M, Saguer A, Skoczynska A, Stefanelli P, Thulin S, Tzanakaki G, Unemo M, Vogel U,

Zarantonelli ML. 2007. Target gene sequencing to characterize the penicillin G susceptibility of Neisseria meningitidis. Antimicrob Agents Chemother 51:2784-2792.
8. Antignac A, Boneca IG, Rousselle JC, Namane A, Carlier JP, Vazquez JA, Fox A, Alonso JM, Taha MK. 2003. Correlation between alterations of the penicillinbinding protein 2 and modifications of the peptidoglycan structure in Neisseria meningitidis with reduced susceptibility to penicillin G. J Biol Chem 278:3152931535.
9. Mouton JW, Brown DF, Apfalter P, Canton R, Giske CG, Ivanova M, MacGowan AP, Rodloff A, Soussy CJ, Steinbakk M, Kahlmeter G. 2012. The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach. Clin Microbiol Infect 18:E37-45.
10. Clinical and Laboratory Standards Institute. 2010. Performance standards for Antimicrobial susceptibility testing; twentieth informational supplement. Clinical and Laboratory Standards Institute. Wayne, PA.
11. Vazquez JA, Arreaza L, Block C, Ehrhard I, Gray SJ, Heuberger S, Hoffmann S, Kriz P, Nicolas P, Olcen P, Skoczynska A, Spanjaard L, Stefanelli P, Taha MK, Tzanakaki G. 2003. Interlaboratory comparison of agar dilution and Etest methods for determining the MICs of antibiotics used in management of Neisseria meningitidis infections. Antimicrob Agents Chemother 47:3430-3434.
12. Guiddir T, Deghmane AE, Giorgini D, Taha MK. 2014. Lipocalin 2 in cerebrospinal fluid as a marker of acute bacterial meningitis. BMC Infect Dis 14:276.
13. Szatanik M, Hong E, Ruckly C, Ledroit M, Giorgini D, Jopek K, Nicola MA, Deghmane AE, Taha MK. 2011. Experimental meningococcal sepsis in congenic transgenic mice expressing human transferrin. PLoS One 6:e22210.
14. Taha M-K, Claus H, Lappann M, Veyrier FJ, Otto A, Becher D, Deghmane A-D, Frosch M, Hellenbrand W, Hong E, Parent de Châtelet I, Prior K, Harmsen D, Vogel U. 2016. Evolutionary events associated with an outbreak of meningococcal disease in men who have sex with men. PLoS One.
15. Zarantonelli ML, Skoczynska A, Antignac A, El Ghachi M, Deghmane AE, Szatanik M, Mulet C, Werts C, Peduto L, d'Andon MF, Thouron F, Nato F, Lebourhis L, Philpott DJ, Girardin SE, Vives FL, Sansonetti P, Eberl G, Pedron T, Taha MK, Boneca IG. 2013. Penicillin resistance compromises Nod1-dependent proinflammatory activity and virulence fitness of Neisseria meningitidis. Cell Host Microbe 13:735-745.
16. Levy M, Antunes A, Fiette L, Deghmane AE, Taha MK. 2015. Impact of corticosteroids on experimental meningococcal sepsis in mice. Steroids 101:96-102.
17. Taha M-K, Cavallo JD. 2010. Neisseria meningitidis, p 441-449. In Courvalin P, Leclercq R, Rice LB (ed), Antibiogram. ESKA-ASM, Portland.
18. Dillon JR, Pauze M, Yeung KH. 1983. Spread of penicillinase-producing and transfer plasmids from the gonococcus to Neisseria meningitidis. Lancet 1:779-781.
19. Nicolas P, Cavallo JD, Fabre R, Martet G. 1998. [Standardization of the Neisseria meningitidis antibiogram. Detection of strains relatively resistant to penicillin]. Bull World Health Organ 76:393-400.
20. Turner PC, Southern KW, Spencer NJ, Pullen H. 1990. Treatment failure in meningococcal meningitis. Lancet 335:732-733.
21. van de Beek D, Brouwer MC, Thwaites GE, Tunkel AR. 2012. Advances in treatment of bacterial meningitis. Lancet 380:1693-1702.
22. Hieber JP, Nelson JD. 1977. A pharmacologic evaluation of penicillin in children with purulent meningitis. N Engl J Med 297:410-413.
23. Akira S, Taga T, Kishimoto T. 1993. Interleukin-6 in biology and medicine. Adv Immunol 54:1-78.
24. Arranz E, Blanco-Quiros A, Solis P, Garrote JA. 1997. Lack of correlation between soluble CD14 and IL-6 in meningococcal septic shock. Pediatr Allergy Immunol 8:194-199.
25. Imohl M, Reinert RR, Tulkens PM, van der Linden M. 2014. Penicillin susceptibility breakpoints for Streptococcus pneumoniae and their effect on susceptibility categorisation in Germany (1997-2013). Eur J Clin Microbiol Infect Dis 33:2035-2040.

Acknowledgements

The works was supported by the Institut Pasteur. This work used the dynamic imaging facilities of the Imagopole at the Institut Pasteur, Paris, France.

Legend to Figure

Figure 1. Transgenic mice were infected i.p. with standardized inocula of 5×10^{6}
bioluminescent colony forming units (CFU) per mouse in 0.5 ml of bacterial suspension.
Quantification was performed after $30 \mathrm{~min}, 3 \mathrm{~h}, 6 \mathrm{~h}$ and 8 h of infection by defining regions of interest (the whole mouse). After 3 h of infection, mice were treated with the unique indicated doses of amoxicillin or penicillin G by intramuscular injection in the interior face of the left thigh. The untreated mice received an injection with the same volume of physiological serum. Left side is the bioluminescent image and the right side is the linear regression analysis of the evolution of bioluminescent signals after treatment. Linear regression data are shown as solid lines with colors corresponding to the indicated tested condition with dashed color-matched lines corresponding to the 95% confidence band (A). Amoxicillin treatment data for the strain LNP24198lux (MIC of $0.064 \mathrm{mg} / \mathrm{L}$ and $0.125 \mathrm{mg} / \mathrm{L}$ of penicillin G and amoxicillin respectively). (B) and (C) Amoxicillin treatment and penicillin G treatment respectively for the strain LNP27704lux (MIC of $0.5 \mathrm{mg} / \mathrm{L}$ and $1.5 \mathrm{mg} / \mathrm{L}$ of penicillin G and amoxicillin respectively). The doses of amoxicilline (in $\mathrm{mg} / \mathrm{kg} \mathrm{A}$ and B) and those of penicillin G (in units $/ \mathrm{kg}$ in C) are shown to the left.

B

c

Table 1. Il-6 levels in mice presented in figure 1 after 8 hours of infection.

Strain tested	Antibiotic dose	IL-6 Mean $(\mu \mathrm{g} / \mathrm{ml})$	95% CI of the mean	P value
LNP24198lux $(0.125 \mathrm{mg} / \mathrm{L})$				
	untreated	10.4	$3.8-16.9$	Ref
	$50 \mathrm{mg} / \mathrm{kg}$	14.4	$-8.1-36.9$	Ref
	$100 \mathrm{mg} / \mathrm{kg}$	1.8	$-0.7-4.2$	Ref
	$200 \mathrm{mg} / \mathrm{kg}$	ND		
LNP27704lux $(1.5$				
mg/L)				
	untreated	2.8	$0.6-5$	0.01
	$50 \mathrm{mg} / \mathrm{kg}$	4.2	$0.6-7.7$	0.25
	$100 \mathrm{mg} / \mathrm{kg}$	4.3	$0.1-8.5$	0.2
	$200 \mathrm{mg} / \mathrm{kg}$	ND		

ND: Non Detectable
CI: Confident interval
Ref: The Pen ${ }^{\text {s }}$ isolate (LNP24198lux) was used as a reference for the comparison with the Pen ${ }^{\mathrm{R}}$ isolate (LNP27704).

