

# Use of animal models to support revising Meningococcal breakpoints of $\beta$ -Lactams.

Nouria Belkacem, Eva Hong, Ana Antunes, Aude Terrade, Ala-Eddine Deghmane, Muhamed-Kheir Taha

# ► To cite this version:

Nouria Belkacem, Eva Hong, Ana Antunes, Aude Terrade, Ala-Eddine Deghmane, et al.. Use of animal models to support revising Meningococcal breakpoints of  $\beta$ -Lactams.. Antimicrobial Agents and Chemotherapy, 2016, 60 (7), pp.4023-4027. 10.1128/AAC.00378-16. pasteur-02058949

# HAL Id: pasteur-02058949 https://pasteur.hal.science/pasteur-02058949

Submitted on 30 Mar 2019

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

| 1  | Use of Animal models to support revising meningococcal breakpoints of beta-lactams     |
|----|----------------------------------------------------------------------------------------|
| 2  |                                                                                        |
| 3  |                                                                                        |
| 4  | Nouria Belkacem, Eva Hong, Ana Antunes, Aude Terrade, Ala-Eddine Deghmane and          |
| 5  | Muhamed-Kheir Taha <sup>*</sup>                                                        |
| 6  |                                                                                        |
| 7  |                                                                                        |
| 8  | Institut Pasteur, Invasive Bacterial Infections Unit and National reference center for |
| 9  | meningococci                                                                           |
| 10 |                                                                                        |
| 11 | • For correspondence                                                                   |
| 12 | Email <u>mktaha@pasteur.fr</u>                                                         |
| 13 | Tel +33 1 45 68 84 38                                                                  |
| 14 | Fax +33 1 45 68 83 38                                                                  |
| 15 |                                                                                        |
| 16 |                                                                                        |
| 17 | Running title: In vivo antibiotic susceptibility testing                               |
| 18 | Keywords: Neisseria meningitidis, breakpoints, beta-lactam, animal models, dynamic     |
| 19 | imaging, inflammation                                                                  |
| 20 |                                                                                        |
| 21 |                                                                                        |
| 22 |                                                                                        |
| 23 |                                                                                        |
| 24 |                                                                                        |
| 25 |                                                                                        |

#### 26 Abstract

Antibiotic susceptibility testing (AST) in *Neisseria meningitidis* is an important part of the management of invasive meningococcal disease. It defines minimal inhibitory concentrations (MICs) of antibiotics that are used in treatment and/or prophylaxis and that mainly belong to beta-lactams. The interpretation of the AST requires breakpoints to classify the isolates into susceptible, intermediate or resistant. The resistance to penicillin G is defined by MIC>0.25 mg/L and that of amoxicillin is defined by MIC>1 mg/L. We provide data that may support revision of resistance breakpoints for beta-lactams in meningococci.

34 We used experimental intraperitoneal infection in 8-week-old transgenic female mice

35 expressing human transferrin and human factor H. Dynamic bioluminescence imaging was

36 performed to follow the infection by bioluminescent meningococci with different MIC. Three

37 hours later, infected mice were treated intramuscularly using several doses of amoxicillin or

38 penicillin G. Signal decreased during infection with meningococci with the strain showing

39 MIC of 0.064 mg/L of penicillin G with all doses. Signals only decreased for the strain with

40 MIC of 0.5 mg/L of penicillin G after treatment with the highest doses corresponding to

41 250,000 units/kg of penicillin G or 200 mg/kg of amoxicillin although to a slower rate than

42 the strain with MIC of 0.064 mg/L. The decrease of bioluminescent signals was associated

43 with a decrease in the levels of the pro-inflammatory cytokine, IL-6. Our data suggest that

44 high dose of amoxicillin or penicillin G can reduce growth during infection by isolates

45 showing MIC of penicillin G of > 0.25 mg/L and  $\le 1$  mg/L.

- 46
- 47
- 48

49

### 51 Introduction

| 52 | Neisseria meningitidis is a Gram negative bacterium frequently encountered in human                       |
|----|-----------------------------------------------------------------------------------------------------------|
| 53 | nasopharynx but it is also the causative agent of invasive meningococcal disease (IMD) that               |
| 54 | provokes mainly septicemia and meningitis. Neisseria meningitidis remains susceptible to                  |
| 55 | beta-lactams, the antibiotics of choice in the treatment of IMD (1). Resistance to beta-lactams           |
| 56 | in meningococci is extremely rare, but reduced susceptibility has been described to penicillin            |
| 57 | G and to amoxicillin (intermediate isolates, Pen <sup>I</sup> ). However, neither resistance nor reduced  |
| 58 | susceptibility to cephalosporin of third generation has been detected so far (2). The                     |
| 59 | proportions of Pen <sup>I</sup> isolates differ worldwide and are increasing in several countries and can |
| 60 | reach >30% of total meningococcal isolates (3-7).                                                         |
| 61 | We have previously shown direct correlation between the polymorphism of <i>penA</i> gene                  |
| 62 | encoding the penicillin binding protein 2 (PBP2) and the Pen <sup>I</sup> phenotype. This phenotype       |
| 63 | seems to result from the reduced affinity of penicillin G and amoxicillin to PBP2 as well as to           |
| 64 | modification of peptidoglycan structure in Pen <sup>I</sup> isolates with increased pentapeptide-         |
| 65 | containing muropeptides (8). Horizontal interspecies DNA exchanges in the genus Neisseria                 |
| 66 | are suggested to drive the polymorphism of <i>penA</i> (7). Antibiotic susceptibility testing (AST)       |
| 67 | is mandatory for beta-lactam antibiotics and requires reliable breakpoints to inform decision             |
| 68 | making in patient treatment.                                                                              |
| 69 | In order to consistently define breakpoints, sequencing of <i>penA</i> from a large collection of         |
| 70 | isolates allowed linking wild-type alleles of <i>penA</i> to low minimal inhibitory concentration         |
| 71 | (MIC) for penicillin G ( $<0.125$ mg/L)(7). This defined the epidemiological cut off values for           |
| 72 | susceptibility to penicillin G of MIC to be lower than 0.125 mg/L and <0.250 mg/L for                     |
| 73 | amoxicillin (7). It divided the meningococcal population into one part containing isolates                |
| 74 | harboring wild-type alleles of <i>penA</i> and another part comprising isolates showing highly            |
| 75 | diverse <i>penA</i> alleles and MICs of $\geq 0.125$ mg/L and 0.250 mg/L for penicillin G and             |

| 76  | amoxicillin, respectively (7). The value of MIC< $0.125 \text{ mg/L}$ was preferred to define the          |
|-----|------------------------------------------------------------------------------------------------------------|
| 77  | susceptibility to penicillin G as it allows to fill the important rule to not split wild-type MIC          |
| 78  | distribution (9) as isolates with wild type <i>penA</i> showed MIC of 0.094 mg/L(7). These values          |
| 79  | fitted with those used by the European Committee for Antimicrobial Susceptibility Testing                  |
| 80  | (EUCAST; http://www.eucast.org) and the Clinical and Laboratory Standards Institute                        |
| 81  | (CLSI)(10).                                                                                                |
| 82  | Intermediate isolates are expected to be treatable by beta-lactams, i.e. bacteria growth is                |
| 83  | reduced and/or bacteria are cleared from biological fluids. However, the higher limit of Pen <sup>I</sup>  |
| 84  | isolates is still to be determined. EUCAST and CLSI indicate that isolates with MIC of                     |
| 85  | penicillin G and amoxicillin $>0.250$ mg/L and $>1$ mg/L respectively are resistant (Pen <sup>R</sup> ) to |
| 86  | these beta-lactams (i.e. non treatable/treatment failure). However, isolates with MIC of                   |
| 87  | penicillin G >0.250 mg/L harbor similar modified <i>penA</i> alleles as Pen <sup>I</sup> isolates (7). The |
| 88  | definition of resistant breakpoints is mainly driven by pharmacokinetic (PK) and                           |
| 89  | pharmacodynamic (PD) indices that reflect antibiotic concentration and its effect respectively.            |
| 90  | However, experimental data are needed to correlate breakpoints to treatment. The use of                    |
| 91  | animal models may help testing whether these breakpoints correspond to resistance and                      |
| 92  | treatment failure.                                                                                         |
| 93  |                                                                                                            |
| 94  |                                                                                                            |
| 95  |                                                                                                            |
| 96  |                                                                                                            |
| 97  |                                                                                                            |
| 98  |                                                                                                            |
| 99  |                                                                                                            |
| 100 |                                                                                                            |

#### 101 Materials and Methods

#### 102 Ethics Statement

103 This study was carried out in strict accordance with the European Union Directive

104 2010/63/EU (and its revision 86/609/EEC) on the protection of animals used for scientific

105 purposes. Our laboratory has the administrative authorization for animal experimentation

106 (Permit Number 75-1554) and the protocol was approved by the Institut Pasteur Review

107 Board that is part of the Regional Committee of Ethics of Animal Experiments of Paris region

108 (Permit Number: 99-174).

#### 109 Meningococcal isolates: Phenotypic and Genotypic characterization

110 Two clinical isolates of *N. meningitidis* were used (LNP24198 and LNP27704). Both isolates

111 were of serogroup C and belonged to the clonal complex ST-11 (cc11). They harbored

respectively the *penA* alleles *penA*3 and *penA*9 corresponding to a wild-type and a modified

alleles respectively. MIC of penicillin G was determined as previously recommended using

114 Etest with Mueller-Hinton agar supplemented with sheep blood (11) and were 0.064 mg/L

and 0.5 mg/L respectively. MICs of amoxicillin were 0.125 and 1.5 mg/L respectively.

116 Bioluminescent variants of both isolates were constructed by transformation with the

117 recombinant plasmid pDG34, which carries the bioluminescent luxCDABE operon under the

118 control of the *porB* promoter (12) and named LNP24198lux and 27704lux. Both strains were

119 checked for their MICs of penicillin G, and for amoxicillin and their *penA* alleles verified by

120 sequencing, showing that they were identical to the parent isolates. Both strains grew

similarly on meningococcal growth medium.

#### 122 Mice infection and dynamic live imaging studies

We took advantage from the availability of an animal model to study *N. meningitidis* infection, the transgenic mice expressing the human transferrin, since an iron source is required for meningococcal growth (13). We have recently developed another animal model, a transgenic mice expressing the human factor H (fH) that allowed binding of this negative regulator of complement pathway on bacterial surface and hence allowing meningococci to escape complement-mediated lysis (14). The two types of mice were crossed to generate transgenic mice expressing both human transferrin and human fH that we used in infection experiments using bioluminescent meningococcal strains with different MIC to penicillin G and amoxicillin. Mice were in-house bred and were kept in a biosafety containment facility, in filter-topped cages with sterile litter, water and food, according to institutional guidelines.

133 Mice were infected by intraperitoneal route (i.p.) with standardized inoculate of  $5 \times 10^6$ 134 bioluminescent colony forming units (CFU) per mouse in 0.5 ml of bacterial suspension. At 135 the time point of 3 h the mice were divided into three groups that were treated by either 136 penicillin G or amoxicillin only once by intramuscular injection in the interior face of the left 137 thigh. The following increasing unique doses (per mouse) of penicillin G (60,000 units/kg, 138 120,000 units/kg or 250,000 units/kg; corresponding to 37mg/kg, 75 mg/kg and 150 mg/ml) 139 or of amoxicillin (50 mg/kg, 100 mg/kg and 200 mg/kg). The highest doses of both antibiotics 140 corresponded to a daily dose used in treatment of IMD in humans. A group of two mice were 141 only injected with saline as control. Interleukin-6 (IL-6) levels were also assayed in blood at 142 the end point (8 h) as previously described (15). As similar results were obtained from both 143 experiments with penicillin G and amoxicillin, IL-6 was tested for mice experiment treated 144 with amoxicillin.

145 Bacterial infection images were acquired after 0.5 h, 3 h, 6 h and 8 h of infection using an

IVIS 100 system (Xenogen Corp., Alameda, CA) as previously described (13). Analysis and
acquisition were performed using Living Image 4.3.1 software (Xenogen Corp.). Data were
analyzed by linear regression using GraphPad InStat version 3.06 (GraphPad Software, San
Diego, CA, USA).

#### 151 Results

152

#### 153 Impact of MIC on amoxicillin treatment during meningococcal infection in mice

In order to test the evolution of the experimental infection *in vivo*, transgenic mice were infected i.p. by the LNP24198lux (MIC penicillin 0.064 mg/L and amoxicillin 0.125 mg/L) or the strain LNP27704 (MIC penicillin 0.5mg/L and amoxicillin 1.5 mg/L). After 3 h of infection, infected mice were divided into groups that were treated by one of the three antibiotic doses (Amoxicillin or penicillin G). A group of mice was left untreated as a control group.

160 After bacterial intraperitoneal challenge, dynamic bioluminescence imaging showed that 161 30 min after the bacterial suspension injection, bacteria were mainly present in the peritoneal 162 cavity in both types of strains LNP24198lux (MIC penicillin 0.064 mg/L and amoxicillin 163 0.125 mg/L) and LNP27704lux (MIC penicillin 0.5 mg/L and amoxicillin 1.5 mg/L). Signal 164 increased in all mice after 3 h of infection. For mice infected with the strain LNP24198lux 165 and 6 h after infection (3 h after treatment with amoxicillin), the signal decreased in mice 166 treated with 200 mg/kg dose and were cleared after 8 h of infection (5 h after treatment). For 167 the two other doses, the signal only decreased after 8 h of infection (5 h after treatment). In 168 the untreated mice, signal continued to increase in all time points (Fig.1A). For mice infected 169 with the strain LNP27704lux (MIC penicillin 0.5 mg/L and amoxicillin 1.5 mg/L), the 170 bioluminescent signal decreased only in mice treated with the highest dose (200 mg/kg) while 171 signal continued to increase in mice treated with 50 mg/kg and 100 mg/kg and did not differ 172 from the signal observed in untreated mice (Fig.1B).

173 Linear regression analysis confirmed the significant decrease of bacterial viability for the 174 strain LNP24198lux in amoxicillin-treated mice in a dose-dependent manner. Negative slopes 175 were also significantly different from the slope of untreated mice (P<0.01 and r<sup>2</sup> of 0.38 and 176 0.85 respectively for 100 mg/kg and 200 mg/kg doses) (Fig. 1A; 1B). However, for the dose 177 of 50 mg/kg, the slope was not significantly different from zero (P=0.77 and  $r^2=0.007$ ) 178 suggesting bacteriostasic effect (Fig.1A; 1B).

For the strain LNP27704lux, only the 200 mg/kg dose resulted in a negative slope that differed significantly from that observed with untreated mice and from the other doses of amoxicillin-treated mice (P<0.001 and  $r^2=0.59$ ). For the strain LNP27704lux treated with the two other doses (50 mg/kg and 100 mg/kg) the slopes were positive and similar to those of untreated mice suggesting bacterial growth (Fig. 1A; 1B). For the 200 mg/kg-treated mice, the  $r^2$  values for the strain LNP27704lux was lower than that for strain LNP24198lux (0.59 versus 0.85 respectively) suggesting slower clearance of the former strain.

We also performed similar experiments using penicillin G with (doses of 60,000 units/kg; 125,000 units/kg and 250,000 units/kg). Mice were infected i.p. by the strain LNP27704 (MIC penicillin 0.5mg/L and amoxicillin 1.5 mg/L) and after 3 h of infection, three groups of infected mice were treated by one of the three penicillin G doses. A group of mice was left untreated as a control.

Bioluminescent signal increased and spread after 3 h of infection. After treatment, only the mice group treated with the highest dose (250,000 units/kg) showed a decrease of bioluminescent signal indicating loss of bacterial growth. The signal continued to increase in mice that were infected by LNP27704lux and treated with either 60,000 units/kg or 125,000 units/kg of penicillin G (Fig. 1C).

Linear regression analysis confirmed the impact of the highest dose in mice infected with the strain LNP27704lux. The highest dose resulted in a negative slope that differed significantly from that obtained with the other doses and untreated mice (P<0.001) with an r<sup>2</sup> value of 0.12. For the mice infected by the strain LNP24198lux (MIC 0.064mg/L) and treated with penicillin G, the data were similar to those obtained with amoxicillin treatment (data not shown).

All these data taken together suggest the highest dose, similar to the daily dose used in humans, leads to decrease of bacterial counts in mice even if the strain is considered  $Pen^{R}$ .

205

#### 206 Decreased inflammatory response in mice treated with optimal amoxicillin dose

207 We next assayed the levels of IL-6, a proinflammatory cytokine at 8 h post-infection. The 208 data are showed in Table 1 and clearly suggest a dose dependent decrease of IL-6 levels in 209 amoxicillin-treated mice that were infected by the strain LNP24198lux (MIC penicillin 0.064 210 mg/L and amoxicillin 0.125 mg/L). These levels were not detectable in mice treated with 200 211 mg/kg of amoxicillin. On the other hand, mice infected with the strain LNP27704lux (MIC 212 penicillin 0.5 mg/L and amoxicillin 1.5 mg/L), and treated with 50 mg/kg and 100 mg/kg of 213 amoxicillin showed similar levels of IL-6 as obtained in untreated mice (Table). IL-6 level 214 was not detectable in mice treated with the highest dose (200 mg/kg of amoxicillin). 215

217

- 218
- 219
- 220
- 221
- 222
- 223
- 224

#### 225 Discussion

226 We have previously emphasized the advantages of *in vivo* bioluminescent imaging for real-227 time monitoring of meningococcal infections and their treatment (13, 16). This technology is 228 sensitive, rapid and non-invasive. It limits animal-to-animal variation and reduces the number 229 of animal used. In the present study, we adapted this system to evaluate the correlation of 230 beta-lactams breakpoints during experimental meningococcal infection in transgenic mice. 231 *N. meningitidis* is intrinsically susceptible to many antibiotic classes and  $MIC_{50}$  and  $MIC_{90}$ 232 values (antibiotic concentrations respectively inhibiting 50% and 90% of a sample of strains) 233 are very low(17). Meningococcal resistance to beta-lactams remains rare and meningococcal 234 strains remained susceptible to penicillin G with an MIC<sub>50</sub> of penicillin G of 0.06 mg/L. Few 235 old reports described rare beta-lactamase producing strains with MICs that may reach or 236 exceed 256  $\mu$ g/ml (18, 19). These beta-lactamases are plasmid-borne TEM-1 type enzymes 237 similar to those described in Neisseria gonorrhoeae that inactivate penicillin G and 238 amoxicillin but does not hydrolyze third generation cephalosporins (18). However, isolates 239 with reduced susceptibility to penicillin G and amoxicillin are quite frequent worldwide (7). 240 The MICs of amoxicillin and penicillin G for these intermediate isolates remain low and 241 defining the upper limit of the critical values remains problematic.

Although treatment failures have been described for strains with the highest MICs (20), the

severe infections caused by these strains generally resolve favorably using high doses of

244 penicillin G or amoxicillin, which allow bactericidal concentration to be reached in

245 cerebrospinal fluid. The effect of beta-lactams is dependent on the time the antibiotic

concentration exceeds its MIC for the microorganism (T > MIC) (9). Our data with the

- 247 highest dose of antibiotics are in agreement with this consideration. This dose corresponds to
- the recommended total daily dose for the treatment of IMD (21). Our data suggest that the
- strain with MIC of 0.5 mg/L may not be classified as resistant to penicillin G as it was

250 treatable. However, lower doses of penicillin G and amoxicillin failed to control the bacterial 251 growth and may lead to treatment failure. As the threshold of 1 mg/L corresponds to the 252 effective therapeutic concentration in the CSF obtained during treatment with penicillin G 253 (22), we may suggest that the upper breakpoint for penicillin G to by 1 mg/L and thus 254 intermediate isolates may be defined as those with MIC  $\geq 0.125$  mg/L and  $\leq 1$  mg/L. This range 255 also contains the isolates with altered *penA* alleles that all shared the same altered residues (7). Isolates with MICs >0.25 mg/ml and  $\leq 1$  mg/ml may not be considered as Pen<sup>R</sup> isolates. 256 257 Indeed, the drug effect, in vivo, is subjective to bacterial growth rate but is also dependant on 258 host defense mechanisms. These latter aspects are not directly considered by the conventional 259 PK/PD model but can be addressed using relevant animal models as described in this work. 260 IL-6 is considered to be an important mediator of acute inflammatory responses to bacterial 261 infection (23). After 8 h of infection, the levels of IL-6 increased in mice infected by both 262 isolates and were higher in mice infected by the susceptible strain (LNP24198lux) than in 263 mice infected by the resistant isolate (LNP27704lux). This is in agreement with our previous 264 study that meningococcal isolates with modified PBP2 showed significant lower induction of 265 the inflammatory response (15). The mice treated with the higher dose did not show any 266 detectable IL-6. The trends of IL-6 levels in amoxicillin treated groups followed the 267 microbiological results. Our data are consistent with previous reports suggesting that IL-6 was 268 a possible indicator of bacterial killing (24).

Finally, our data suggest that if amoxicillin and penicillin G are to be used in treatment of

270 IMD prior determination of MIC, the first dose should be 200 mg/Kg and 250,000 units/kg

271 respectively.

Our findings clearly highlight a powerful approach in defining breakpoints through the analysis the polymorphism of the gene encoding the targets of the antibiotics to characterize the alterations of the targets and their correlation with MIC. The use of animal models in

association with PK/PD analysis can then allow defining the breakpoints. Finally, the increase of MIC in meningococci may also correspond to other undefined mechanisms that require additional studies. However, our proposal for a breakpoint for resistance to penicillin G higher than 1 mg/L fits with other breakpoints for pathogens showing meningeal tropism (25).

## 279 **References**

| 280 | 1. | Nadel S, Kroll JS. 2007. Diagnosis and management of meningococcal disease: the         |  |  |  |
|-----|----|-----------------------------------------------------------------------------------------|--|--|--|
| 281 |    | need for centralized care. FEMS Microbiol Rev 31:71-83.                                 |  |  |  |
| 282 | 2. | Antignac A, Ducos-Galand M, Guiyoule A, Pires R, Alonso JM, Taha MK. 200                |  |  |  |
| 283 |    | Neisseria meningitidis strains isolated from invasive infections in France (1999-2002): |  |  |  |
| 284 |    | phenotypes and antibiotic susceptibility patterns. Clin Infect Dis 37:912-920.          |  |  |  |
| 285 | 3. | Vazquez JA. 2001. The resistance of Neisseria meningitidis to the antimicrobial         |  |  |  |
| 286 |    | agents: an issue still in evolution. Rev Med Microbiol 12::39-45.                       |  |  |  |
| 287 | 4. | Harcourt BH, Anderson RD, Wu HM, Cohn AC, MacNeil JR, Taylor TH, Wang                   |  |  |  |
| 288 |    | X, Clark TA, Messonnier NE, Mayer LW. 2015. Population-Based Surveillance of            |  |  |  |
| 289 |    | Neisseria meningitidis Antimicrobial Resistance in the United States. Open Forum        |  |  |  |
| 290 |    | Infect Dis <b>2:</b> ofv117.                                                            |  |  |  |
| 291 | 5. | Sorhouet-Pereira C, Efron A, Gagetti P, Faccone D, Regueira M, Corso A,                 |  |  |  |
| 292 |    | Gabastou JM, Ibarz-Pavon AB. 2013. Phenotypic and genotypic characteristics of          |  |  |  |
| 293 |    | Neisseria meningitidis disease-causing strains in Argentina, 2010. PLoS One             |  |  |  |
| 294 |    | <b>8:</b> e58065.                                                                       |  |  |  |
| 295 | 6. | du Plessis M, von Gottberg A, Cohen C, de Gouveia L, Klugman KP. 2008.                  |  |  |  |
| 296 |    | Neisseria meningitidis intermediately resistant to penicillin and causing invasive      |  |  |  |
| 297 |    | disease in South Africa in 2001 to 2005. J Clin Microbiol 46:3208-3214.                 |  |  |  |
| 298 | 7. | Taha MK, Vazquez JA, Hong E, Bennett DE, Bertrand S, Bukovski S, Cafferkey              |  |  |  |
| 299 |    | MT, Carion F, Christensen JJ, Diggle M, Edwards G, Enriquez R, Fazio C,                 |  |  |  |
| 300 |    | Frosch M, Heuberger S, Hoffmann S, Jolley KA, Kadlubowski M, Kechrid A,                 |  |  |  |
| 301 |    | Kesanopoulos K, Kriz P, Lambertsen L, Levenet I, Musilek M, Paragi M, Saguer            |  |  |  |
| 302 |    | A, Skoczynska A, Stefanelli P, Thulin S, Tzanakaki G, Unemo M, Vogel U,                 |  |  |  |

| 303 |     | Zarantonelli ML. 2007. Target gene sequencing to characterize the penicillin G         |  |  |  |
|-----|-----|----------------------------------------------------------------------------------------|--|--|--|
| 304 |     | susceptibility of Neisseria meningitidis. Antimicrob Agents Chemother 51:2784-2792.    |  |  |  |
| 305 | 8.  | Antignac A, Boneca IG, Rousselle JC, Namane A, Carlier JP, Vazquez JA, Fox A           |  |  |  |
| 306 |     | Alonso JM, Taha MK. 2003. Correlation between alterations of the penicillin-           |  |  |  |
| 307 |     | binding protein 2 and modifications of the peptidoglycan structure in Neisseria        |  |  |  |
| 308 |     | meningitidis with reduced susceptibility to penicillin G. J Biol Chem 278:31529-       |  |  |  |
| 309 |     | 31535.                                                                                 |  |  |  |
| 310 | 9.  | Mouton JW, Brown DF, Apfalter P, Canton R, Giske CG, Ivanova M,                        |  |  |  |
| 311 |     | MacGowan AP, Rodloff A, Soussy CJ, Steinbakk M, Kahlmeter G. 2012. The role            |  |  |  |
| 312 |     | of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the          |  |  |  |
| 313 |     | EUCAST approach. Clin Microbiol Infect 18:E37-45.                                      |  |  |  |
| 314 | 10. | Clinical and Laboratory Standards Institute. 2010. Performance standards for           |  |  |  |
| 315 |     | Antimicrobial susceptibility testing; twentieth informational supplement. Clinical and |  |  |  |
| 316 |     | Laboratory Standards Institute. Wayne, PA.                                             |  |  |  |
| 317 | 11. | Vazquez JA, Arreaza L, Block C, Ehrhard I, Gray SJ, Heuberger S, Hoffmann S,           |  |  |  |
| 318 |     | Kriz P, Nicolas P, Olcen P, Skoczynska A, Spanjaard L, Stefanelli P, Taha MK,          |  |  |  |
| 319 |     | Tzanakaki G. 2003. Interlaboratory comparison of agar dilution and Etest methods       |  |  |  |
| 320 |     | for determining the MICs of antibiotics used in management of Neisseria meningitidis   |  |  |  |
| 321 |     | infections. Antimicrob Agents Chemother 47:3430-3434.                                  |  |  |  |
| 322 | 12. | Guiddir T, Deghmane AE, Giorgini D, Taha MK. 2014. Lipocalin 2 in                      |  |  |  |
| 323 |     | cerebrospinal fluid as a marker of acute bacterial meningitis. BMC Infect Dis 14:276.  |  |  |  |
| 324 | 13. | Szatanik M, Hong E, Ruckly C, Ledroit M, Giorgini D, Jopek K, Nicola MA,               |  |  |  |
| 325 |     | Deghmane AE, Taha MK. 2011. Experimental meningococcal sepsis in congenic              |  |  |  |
| 326 |     | transgenic mice expressing human transferrin. PLoS One 6:e22210.                       |  |  |  |

| 327 | 14. | Taha M-K, Claus H, Lappann M, Veyrier FJ, Otto A, Becher D, Deghmane A-D,                |  |  |  |  |
|-----|-----|------------------------------------------------------------------------------------------|--|--|--|--|
| 328 |     | Frosch M, Hellenbrand W, Hong E, Parent de Châtelet I, Prior K, Harmsen D,               |  |  |  |  |
| 329 |     | Vogel U. 2016. Evolutionary events associated with an outbreak of meningococcal          |  |  |  |  |
| 330 |     | disease in men who have sex with men. PLoS One.                                          |  |  |  |  |
| 331 | 15. | Zarantonelli ML, Skoczynska A, Antignac A, El Ghachi M, Deghmane AE,                     |  |  |  |  |
| 332 |     | Szatanik M, Mulet C, Werts C, Peduto L, d'Andon MF, Thouron F, Nato F,                   |  |  |  |  |
| 333 |     | Lebourhis L, Philpott DJ, Girardin SE, Vives FL, Sansonetti P, Eberl G, Pedron           |  |  |  |  |
| 334 |     | T, Taha MK, Boneca IG. 2013. Penicillin resistance compromises Nod1-dependent            |  |  |  |  |
| 335 |     | proinflammatory activity and virulence fitness of Neisseria meningitidis. Cell Host      |  |  |  |  |
| 336 |     | Microbe <b>13:</b> 735-745.                                                              |  |  |  |  |
| 337 | 16. | Levy M, Antunes A, Fiette L, Deghmane AE, Taha MK. 2015. Impact of                       |  |  |  |  |
| 338 |     | corticosteroids on experimental meningococcal sepsis in mice. Steroids 101:96-102.       |  |  |  |  |
| 339 | 17. | Taha M-K, Cavallo JD. 2010. Neisseria meningitidis, p 441-449. In Courvalin P,           |  |  |  |  |
| 340 |     | Leclercq R, Rice LB (ed), Antibiogram. ESKA-ASM, Portland.                               |  |  |  |  |
| 341 | 18. | Dillon JR, Pauze M, Yeung KH. 1983. Spread of penicillinase-producing and                |  |  |  |  |
| 342 |     | transfer plasmids from the gonococcus to Neisseria meningitidis. Lancet 1:779-781.       |  |  |  |  |
| 343 | 19. | Nicolas P, Cavallo JD, Fabre R, Martet G. 1998. [Standardization of the Neisseria        |  |  |  |  |
| 344 |     | meningitidis antibiogram. Detection of strains relatively resistant to penicillin]. Bull |  |  |  |  |
| 345 |     | World Health Organ 76:393-400.                                                           |  |  |  |  |
| 346 | 20. | Turner PC, Southern KW, Spencer NJ, Pullen H. 1990. Treatment failure in                 |  |  |  |  |
| 347 |     | meningococcal meningitis. Lancet <b>335:</b> 732-733.                                    |  |  |  |  |
| 348 | 21. | van de Beek D, Brouwer MC, Thwaites GE, Tunkel AR. 2012. Advances in                     |  |  |  |  |
| 349 |     | treatment of bacterial meningitis. Lancet 380:1693-1702.                                 |  |  |  |  |
| 350 | 22. | Hieber JP, Nelson JD. 1977. A pharmacologic evaluation of penicillin in children         |  |  |  |  |
| 351 |     | with purulent meningitis. N Engl J Med 297:410-413.                                      |  |  |  |  |

| 352 | 23. | Akira S, Taga T, Kishimoto T. 1993. Interleukin-6 in biology and medicine. Adv        |
|-----|-----|---------------------------------------------------------------------------------------|
| 353 |     | Immunol <b>54:</b> 1-78.                                                              |
| 354 | 24. | Arranz E, Blanco-Quiros A, Solis P, Garrote JA. 1997. Lack of correlation between     |
| 355 |     | soluble CD14 and IL-6 in meningococcal septic shock. Pediatr Allergy Immunol          |
| 356 |     | <b>8:</b> 194-199.                                                                    |
| 357 | 25. | Imohl M, Reinert RR, Tulkens PM, van der Linden M. 2014. Penicillin                   |
| 358 |     | susceptibility breakpoints for Streptococcus pneumoniae and their effect on           |
| 359 |     | susceptibility categorisation in Germany (1997-2013). Eur J Clin Microbiol Infect Dis |
| 360 |     | <b>33:</b> 2035-2040.                                                                 |
| 361 |     |                                                                                       |
| 362 |     |                                                                                       |
| 363 |     |                                                                                       |
| 364 |     |                                                                                       |
| 365 |     |                                                                                       |
| 366 |     |                                                                                       |
| 367 |     |                                                                                       |
| 368 |     |                                                                                       |
| 369 |     |                                                                                       |
| 370 |     |                                                                                       |
| 371 |     |                                                                                       |
| 372 |     |                                                                                       |
| 373 |     |                                                                                       |
| 374 |     |                                                                                       |
| 375 |     |                                                                                       |
| 376 |     |                                                                                       |

| 377 |                                                                                     |
|-----|-------------------------------------------------------------------------------------|
| 378 |                                                                                     |
| 379 | Acknowledgements                                                                    |
| 380 | The works was supported by the Institut Pasteur. This work used the dynamic imaging |
| 381 | facilities of the Imagopole at the Institut Pasteur, Paris, France.                 |
| 382 |                                                                                     |
| 383 |                                                                                     |
| 384 |                                                                                     |
| 385 |                                                                                     |
| 386 |                                                                                     |
| 387 |                                                                                     |
| 388 |                                                                                     |
| 389 |                                                                                     |
| 390 |                                                                                     |
| 391 |                                                                                     |
| 392 |                                                                                     |
| 393 |                                                                                     |
| 394 |                                                                                     |
| 395 |                                                                                     |
| 396 |                                                                                     |
| 397 |                                                                                     |
| 398 |                                                                                     |
| 399 |                                                                                     |
| 400 |                                                                                     |
| 401 |                                                                                     |

#### 402 **Legend to Figure**

403 Figure 1. Transgenic mice were infected i.p. with standardized inocula of  $5 \times 10^6$ 

- 404 bioluminescent colony forming units (CFU) per mouse in 0.5 ml of bacterial suspension.
- 405 Quantification was performed after 30 min, 3 h, 6 h and 8 h of infection by defining regions
- 406 of interest (the whole mouse). After 3 h of infection, mice were treated with the unique
- 407 indicated doses of amoxicillin or penicillin G by intramuscular injection in the interior face of
- 408 the left thigh. The untreated mice received an injection with the same volume of physiological
- 409 serum. Left side is the bioluminescent image and the right side is the linear regression
- 410 analysis of the evolution of bioluminescent signals after treatment. Linear regression data are
- 411 shown as solid lines with colors corresponding to the indicated tested condition with dashed
- 412 color-matched lines corresponding to the 95% confidence band (A). Amoxicillin treatment
- 413 data for the strain LNP24198lux (MIC of 0.064 mg/L and 0.125 mg/L of penicillin G and
- 414 amoxicillin respectively). (B) and (C) Amoxicillin treatment and penicillin G treatment
- 415 respectively for the strain LNP27704lux (MIC of 0.5 mg/L and 1.5 mg/L of penicillin G and
- 416 amoxicillin respectively). The doses of amoxicilline (in mg/kg A and B) and those of
- 417 penicillin G (in units/kg in C) are shown to the left.
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425









|                  | i inice presenteu i | II IIguie I ulter 0 | nouis of infection. |         |
|------------------|---------------------|---------------------|---------------------|---------|
|                  |                     | IL-6 Mean           | 95% CI of the       |         |
| Strain tested    | Antibiotic dose     | (µg/ml)             | mean                | P value |
| LNP24198lux      |                     |                     |                     |         |
| (0.125 mg/L)     |                     |                     |                     |         |
|                  | untreated           | 10.4                | 3.8 - 16.9          | Ref     |
|                  | 50 mg/kg            | 14.4                | -8.1 - 36.9         | Ref     |
|                  | 100 mg/kg           | 1.8                 | -0.7 - 4.2          | Ref     |
|                  | 200 mg/kg           | ND                  |                     |         |
| LNP27704lux (1.5 |                     |                     |                     |         |
| mg/L)            |                     |                     |                     |         |
|                  | untreated           | 2.8                 | 0.6 - 5             | 0.01    |
|                  | 50 mg/kg            | 4.2                 | 0.6-7.7             | 0.25    |
|                  | 100 mg/kg           | 4.3                 | 0.1 - 8.5           | 0.2     |
|                  | 200 mg/kg           | ND                  |                     |         |

Table 1 II-6 levels in mice presented in figure 1 after 8 hours of infection

ND: Non Detectable

CI: Confident interval

Ref: The Pen<sup>S</sup> isolate (LNP24198lux) was used as a reference for the comparison with the Pen<sup>R</sup> isolate (LNP27704).