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Abstract 16 

 17 

Over the long course of evolution from a probable environmental reservoir, the pathogen that 18 

we know today as Mycobacterium tuberculosis has become fully capable of adapting to the 19 

life inside host cells by evading and modifying their responses to infection. Factors 20 

contributing to the success of this pathogen are numerous and thanks to a large body of work 21 

accumulated over the past decades, we are closer to understanding the remarkable complexity 22 

of tuberculosis pathogenesis. The unique type VII secretion systems and various complex 23 

lipids of the cell envelope have emerged as some of the most important and most studied 24 

factors in this regard. This review attempts to summarize recent findings on these and other 25 

virulence factors, while discussing their evolution in different closely related tuberculosis-26 

causing bacteria as well, with the aim of exploring the processes which led M. tuberculosis to 27 

becoming one of the deadliest infections agents. 28 

 29 

 30 

 31 

1 Introduction 32 

With a death toll of estimated 1.3 million HIV-negative people and additional 374 000 deaths 33 

among HIV-positive people in the year 2016, tuberculosis (TB) is the leading cause of death 34 

by a single infectious agent worldwide (WHO, 2017). Its etiological agent, Mycobacterium 35 
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tuberculosis, is a primarily intracellular pathogen that is capable of successfully maintaining 36 

its viability within the host, involving a delicate interplay between the immune system and the 37 

pathogen's armaments, acquired and trained through thousands of years of host-pathogen 38 

interaction (Orgeur and Brosch, 2018). M. tuberculosis is spread by airborne transmission of 39 

bacteria-containing droplets from patients with active TB, allowing infection of lung alveoli 40 

in new hosts. After the initial stage of innate immune response, presentation of antigens by 41 

dendritic cells and recruitment of effector T-cells, characteristic multicellular structures called 42 

granulomas are formed with the aim of restricting the spread of the pathogen. In a weakened 43 

or immunocompromised host, the thereby established balance between pathogen and host 44 

responses may be lost, with subsequent systemic dissemination of the bacilli leading to active 45 

disease and new transmission. Besides M. tuberculosis, which is specialized on the human 46 

host, some highly related members (more than 99.99 % of genome sequence identity with M. 47 

tuberculosis) of the so-called M. tuberculosis complex (MTBC) can cause TB-like disease in 48 

other mammalian species, and most of these have kept their traditional names referring to the 49 

mammalian species from where they were isolated (Mycobacterium bovis, Mycobacterium 50 

microti, Mycobacterium pinnipedii etc.) and these members have been proposed to represent 51 

special ecotypes of the tubercle bacilli (Smith et al., 2009).    52 

 For studying mycobacterial pathogenesis on a cellular level, the use of macrophages 53 

has been proven as an invaluable tool, as bacteria are ingested primarily by these host cells 54 

upon entry into the alveoli, and events crucial to the disease process occur in their 55 

intracellular environment. Inside the infected macrophage, antibacterial mechanisms such as 56 

reactive oxygen, nitrogen intermediate production and phagolysosomal fusion are factors that 57 

usually function to eliminate pathogens. However, M. tuberculosis has evolved efficient ways 58 

to counteract some of these host-defense mechanisms. This also can be tested in selected 59 

cellular or animal infection models, mostly human or murine cell lines, as well as laboratory 60 

mice and guinea pigs, where the ability of a particular strain to multiply and cause lung and 61 

spleen pathology can be assessed and quantified over time.  62 

Compared to some other bacterial pathogens, which may produce specific toxins or 63 

unique virulence factors, M. tuberculosis does not produce a single dominant factor 64 

responsible for causing disease, but rather induces pathology by a complex combination of 65 

virulence determinants and host responses. Extensive research on mycobacterial virulence, 66 

has helped to pinpoint several groups of factors involved in different stages of pathogenesis of 67 

TB. A key study of in vivo essentiality in the mouse model of infection using transposon site 68 

hybridization (TraSH) gave a first rough estimate of the global picture of M. tuberculosis 69 
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virulence factors, by identifying 194 M. tuberculosis genes as being specifically required for 70 

in vivo growth/survival in mice (Sassetti and Rubin, 2003). When a similar study was done on 71 

macrophages, 126 genes were identified, some of them being essential exclusively in the 72 

macrophage model (Rengarajan et al., 2005). Moreover, results of a more recent study using 73 

deep sequencing, significantly overlapped with the previous one from 2003, but found more 74 

than 400 additional genes as being essential in vivo (Zhang et al., 2013). These combined data 75 

now provide a framework for the definition of virulence genes of M. tuberculosis, whereby 76 

the individual genes may still be necessary to be studied in more detail to identify their exact 77 

roles and functions in the infection process. A number of genes identified as essential for 78 

virulence encode proteins involved in basic metabolism, a fact that makes defining a virulence 79 

factor in M. tuberculosis an ardent task. On the other hand, factors such as components of the 80 

ESX / type VII secretion systems, as well as several types of complex lipids of the cell 81 

envelope are standing at the frontline facing the host immune system and the most recent 82 

progress in the study of their biological roles and their participation in the virulence of M. 83 

tuberculosis constitutes the main focus of this review.  84 

 85 

2 Type VII secretion systems 86 

The Mycobacterium tuberculosis genome encodes five type VII secretion systems (ESX-1, 87 

ESX-2, ESX-3, ESX-4 and ESX-5) which are specialized for transport of selected protein 88 

substrates across the cell envelope (Abdallah et al., 2007; Brodin et al., 2004; Gröschel et al., 89 

2016). Genes that likely encode core components of the secretion machinery (ESX conserved 90 

components, Ecc) are conserved in each of the five loci, with esx-4 having the minimal set of 91 

genes encoding the simplest and earliest type VII secretion system, from which the rest 92 

probably originated via gene duplication and plasmid-mediated horizontal gene transfer 93 

(Dumas et al., 2016; Newton-Foot et al., 2016). A recently published structure of ESX-5 from 94 

Mycobacterium xenopi gives insight into the assembly of EccB, EccC, EccD and EccE into a 95 

functional complex (Fig. 1) (Beckham et al., 2017). ESX-1 emerged from several independent 96 

experimental approaches as one of the most significant for pathogenesis. Comparative 97 

genomic studies of M. tuberculosis with the attenuated vaccine strain M. bovis Bacille 98 

Calmette Guérin (BCG), as well as naturally attenuated M. microti have shown that parts of 99 

the ESX-1 secretion system are encoded in the regions of difference (RD) 1 (RD1BCG and 100 

RD1mic) (Brodin et al., 2002; Gordon et al., 1999; Mahairas et al., 1996). Both RD1BCG and 101 

RD1mic are notable for encoding secreted proteins ESAT-6 (early secretory antigenic target of 102 

6 kDa) and CFP-10 (culture filtrate protein of 10 kDa), also known as EsxA and EsxB, 103 
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respectively, which are known for a long time as potent T-cell antigens (Barnes et al., 1992; 104 

Berthet et al., 1998; Sørensen et al., 1995). By constructing an RD1 deletion mutant strain of 105 

M. tuberculosis H37Rv, as well as knock-in strains of M. bovis BCG and M. microti it was 106 

confirmed that both the secreted antigens, but also a functional secretion machinery are 107 

necessary for virulence (Hsu et al., 2003; Pym et al., 2002).  108 

A considerable amount of research has been conducted in recent years attempting to 109 

clarify the fate of M. tuberculosis after infection. One of the main strategies of M. 110 

tuberculosis as an intracellular pathogen, after undergoing phagocytosis by the macrophages, 111 

is disabling or rather delaying the differentiation of the phagosome into a phagolysosome – 112 

thus avoiding the hostile acidic environment optimal for the activity of hydrolytic enzymes. 113 

Many factors have been implicated in this process and several pathogen strategies have been 114 

described, such as retention of vacuolar H+-ATPase (Queval et al., 2017; Wang et al., 2015; 115 

Wong et al., 2011), interfering with Rab GTPase recruitment (Via et al., 1997) and evading 116 

the toxicity of reactive oxygen and nitrogen species (Voskuil et al., 2011). Surprisingly, there 117 

were also indications that M. tuberculosis is capable of translocating from these endosomal 118 

compartments into the cytosol, probably at later stages of infection (McDonough et al., 1993; 119 

van der Wel et al., 2007). In a sophisticated assay using a fluorescent probe sensitive to the 120 

beta-lactamase activity localized on the surface of the bacterium and a fluorescence resonance 121 

energy transfer (FRET)-based method, contact of M. tuberculosis with the cytoplasm of 122 

macrophages was confirmed (Simeone et al., 2012). The ability of M. tuberculosis to rupture 123 

the phagosomal membrane was subsequently demonstrated in vivo in mouse lungs and by 124 

using an inhibitor of phagosomal maturation it was indicated that restriction of phagosomal 125 

acidification is a prerequisite of phagosomal rupture (Simeone et al., 2015). Most importantly, 126 

phagosomal rupture has been reproducibly linked to ESX-1, as neither M. tuberculosis ΔRD1 127 

nor M. bovis BCG exerted this effect. The observation that ESX-1-deficient strains are unable 128 

to cause phagosomal rupture seem to be in concert with previously reported membrane lysing 129 

activity of EsxA (D. Houben et al., 2012; Hsu et al., 2003), although its precise function 130 

probably needs to be reexamined (Conrad et al., 2017). The consequences of cytosolic contact 131 

can be sensing of bacterial components, such as DNA via nucleotidyltransferase cGAS and by 132 

AIM-2, which results in type I interferon (IFN) production and activation the inflammasome, 133 

respectively (Collins et al., 2015; Wassermann et al., 2015; Watson et al., 2015). It should be 134 

mentioned however, that it is not clear from where the DNA that is sensed by cGAS 135 

specifically comes from. Apart from mycobacterial DNA that could potentially be released by 136 

the bacteria via membrane vesicles or yet unknown mechanisms (Majlessi et al., 2015), the 137 
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release of mitochondrial DNA into the cytosol has also been suggested (Wiens and Ernst, 138 

2016). Lastly, cytosolic contact leads to cell death, as observed in different cellular infection 139 

models, promoting bacterial dissemination (Aguilo et al., 2013; Simeone et al., 2012; 140 

Augenstreich et al., 2017). Under in vivo conditions however, M. tuberculosis-infected 141 

macrophages tend to survive longer (Simeone et al., 2015), although it is tempting to 142 

speculate that phagosomal rupture and thereby induced host cell death might play a role 143 

during the formation of the caseous lesions inside granulomas, in which the tubercle bacilli 144 

find themselves in an extracellular environment.  145 

M. bovis BCG is to date the only anti-TB vaccine strain licensed, although its efficacy 146 

for pulmonary TB in the adolescent and adult population is deficient, prompting urgent efforts 147 

for the development of refined or new vaccine strains. As a consequence of the RD1 deletion 148 

in BCG strains, phagosomal rupture and subsequent immune signaling events are absent, 149 

which seems to limit the protective efficacy of the vaccine. Hence, one of the approaches to 150 

develop a more efficient vaccine strain might involve engineering recombinant BCG strains 151 

with a functional ESX-1 system, as a BCG strain complemented with the extended RD1 152 

region from M. tuberculosis H37Rv did improve this efficacy (Pym et al., 2003), but with 153 

safety concerns. As an alternative, a BCG strain harboring the ESX-1 locus of biosafety level 154 

2 (BSL-2) species Mycobacterium marinum was prepared (Gröschel et al., 2017), providing 155 

desired improvement of protective efficacy in the murine model of infection, with functional 156 

phagosomal rupture inducing several host cell responses not present when using parental 157 

BCG, and at the same time showing strongly reduced virulence compared to M. bovis BCG 158 

ESX-1Mtb. In parallel, reactogenicity to ESX-1-secreted antigens that are absent from BCG 159 

has also been suggested to be linked to the improved protection against M. tuberculosis of 160 

other vaccine strains, such as the attenuated M. tuberculosis vaccine MTBVAC (Aguilo et al., 161 

2017), which is presently in late clinical development as a live vaccine (Spertini et al., 2015). 162 

Alongside the ESX-1 secretion system, the ESX-5 and ESX-3 systems have also been 163 

implicated in virulence of pathogenic mycobacteria. ESX-5 is the most recently evolved type 164 

VII secretion system and can be found only in slow growing mycobacterial species (Gey van 165 

Pittius et al., 2001). Initially revealed in Mycobacterium marinum (Abdallah et al., 2009), the 166 

major function of the ESX-5 secretion system appears to be secretion of substrates belonging 167 

mostly to the unique families of PE and PPE proteins named after their N-terminal Pro-Glu 168 

and Pro-Pro-Glu motifs, respectively (Cole et al., 1998). These large and somewhat 169 

mysterious families of proteins comprising about 8 % of the genome of M. tuberculosis 170 

H37Rv are further divided into subgroups, depending on motifs present in their C-terminal 171 
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sequence (Cole et al., 1998). The emergence of PE polymorphic GC-rich-repetitive sequence 172 

(PE_PGRS) and the PPE major polymorphic tandem repeat (PPE-MPTR) subfamilies 173 

represents the most recent evolutionary event among the mycobacterial PE/PPE sequences, 174 

and these are thus present only in pathogenic species (Gey van Pittius et al., 2006). 175 

Indications that the ESX-5 system is implicated in pathogenesis initially came from research 176 

on M. marinum (Abdallah et al., 2008; Ramakrishnan et al., 2000; Weerdenburg et al., 2012). 177 

Subsequent characterization of different ESX-5 mutants of M. tuberculosis showed that 178 

inactivation of the ESX-5 system resulted in a defect in PPE protein export, impaired cell-wall 179 

integrity and strong attenuation (Bottai et al., 2012) as well as defects in PE_PGRS export (E. 180 

N. G. Houben et al., 2012). In addition, these experiments also revealed that certain ESX-5 181 

components were essential for in vitro growth of M. tuberculosis, as certain ESX-5 knock-out 182 

mutants could only be obtained when a second copy of selected ESX-5 genes was introduced 183 

(Di Luca et al., 2012) or if the cell wall composition was weakened (Ates et al., 2015). 184 

Moreover, a mutant in esx-5 region-encoded ppe/pe genes M. tuberculosis Δppe25-pe19 has 185 

shown attenuation, but still was able to induce strong CD4+ T-cell immunity owing to cross-186 

reactivity with numerous PE/PPE homologs encoded by other parts of the genome (Sayes et 187 

al., 2016, 2012). While the molecular mechanism underlying the attenuation of the Δppe25-188 

pe19 construct remains currently unknown, the interference with the export of certain PE and 189 

PPE proteins has also been associated with increase of virulence of selected M. tuberculosis 190 

strains. In this respect, interesting observations were made for M. tuberculosis strains that had 191 

mutated or lost the gene ppe38, whose presence was found to be required for ESX-5-mediated 192 

secretion of more than 80 PE_PGRS and PPE-MPTR substrates. In the same study it was also 193 

found that the ppe38 locus was deleted through IS6110-mediated recombination processes 194 

(Gonzalo-Asensio et al., 2018) in most M. tuberculosis strains of the so-called “Beijing” 195 

family (lineage 2), raising important questions on the role of these PE_PGRS and PPE_MPTR 196 

proteins in virulence, but also on the mechanism of their secretion (Ates et al., 2018b). 197 

Moreover, the ppe38 locus is also deleted from a series of animal-adapted members of the 198 

MTBC, such as M. bovis, due to deletion of the RD5 region. Consequently, also the vaccine 199 

strain BCG Pasteur does not export the plethora of PE_PGRS and PPE_MPTR proteins, a 200 

phenotype which could be repaired by genetic complementation with a copy of the ppe38 201 

locus from M. tuberculosis in recombinant BCG38 (Ates et al., 2018c). Interestingly, despite 202 

the restauration of the PE_PGRS and PPE-MPTR export in such recombinant BCG38 strain, 203 

vaccination trials in different mouse infection models have not shown a significant change in 204 

the vaccine potential of the recombinant strain, questioning somewhat the specificity of some 205 
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of the PPE-MPTR protein components of subunit booster vaccines tested in clinical 206 

vaccination trials (Ates et al., 2018c). 207 

Investigated to a lesser extent, ESX-3 has been implicated in virulence, aside from its 208 

role in iron and zinc acquisition (Serafini et al., 2009; Siegrist et al., 2014) through several 209 

PE/PPE proteins (Tufariello et al., 2016) and its secreted substrates, EsxH and EsxG were also 210 

found to inhibit phagosomal maturation (Mehra et al., 2013; Portal-Celhay et al., 2017). 211 

 212 

3 Other surface exposed factors 213 

Other components of the cell envelope of M. tuberculosis have emerged as important 214 

virulence factors, based on their strategic location on the host-pathogen interface. The 215 

mycobacterial cell envelope has a complex organization (Brennan and Nikaido, 1995) and 216 

consists of a conventional plasma membrane, a layer of peptidoglycan with a covalently 217 

attached polysaccharide named arabinogalactan which has its pentaarabinosyl ends esterified 218 

by mycolic acids. These latter components, which are characteristic of mycobacteria and 219 

associated to the name of this bacterial genus, are very long, 60-90 carbon-atom containing α-220 

alkyl β-hydroxy fatty acids which are essential for viability of the mycobacterial cell 221 

(Grzegorzewicz et al., 2012a; Portevin et al., 2005; Vilchèze et al., 2000). These mycolic acid 222 

residues are the main components of the inner leaflet of the mycobacterial outer membrane, 223 

also called the mycomembrane – a unique lipid bilayer, with the outer leaflet consisting of 224 

various types of non-covalently bound lipids, such as trehalose mono- and dimycolates 225 

(TMM, TDM), phthiocerol dimycocerosates (PDIM), di- and polyacyl trehaloses (DAT, PAT) 226 

and sulfolipids (SL), some of which are transported by mycobacterial transporters of the 227 

MmpL family to the outer membrane, thereby constituting targets for drug development 228 

(Degiacomi et al., 2017; Grzegorzewicz et al., 2012b; Viljoen et al., 2017). The richness of 229 

structures of mycobacterial cell envelope lipids has been a subject of research for decades. 230 

Some of these lipids are found throughout the Mycobacterium genus, such as trehalose mono- 231 

and dimycolates, and some, notably phthiocerol dimycocerosates (abbreviated PDM (Brennan 232 

and Nikaido, 1995), DIM (Augenstreich et al., 2017) or PDIM (Quigley et al., 2017)) are 233 

present only in certain mycobacterial species. 234 

Based on research accumulated over the decades, it became clear that mycobacterial 235 

surface lipids and glycoconjugates are important factors for entry into macrophages, 236 

stimulating various receptors. As early as the 1950s, TDM has been shown to be an important 237 

effector molecule, also receiving the name “cord factor”, as it was thought to be the only 238 

factor responsible for the characteristic cord-like appearance of M. tuberculosis in 239 
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microscopic preparations (Bekierkunst, 1968; Bloch and Noll, 1955). By stimulating the 240 

macrophage inducible C-type lectin (Mincle), TDM causes induction of cytokine and nitric 241 

oxide production (Ishikawa et al., 2009) and at the same time TDM may be one of the factors 242 

contributing to phagosome maturation delay, which was shown by using TDM-coated beads 243 

(Indrigo et al., 2003). TDM is an abundant cell-wall component of all bacteria belonging to 244 

the Mycobacterium genus, but subtle modifications of mycolic acid residues, such as 245 

cyclopropyl groups which are normally present only in pathogenic species (Barry et al., 1998) 246 

(Fig. 2B, C) might be an important factor. Immunomodulatory significance of mycolic acid 247 

modifications was confirmed in a laborious study of constructing an M. tuberculosis strain 248 

lacking all S-adenosylmethionine dependent methyltransferases responsible for cyclopropyl 249 

group modifications of mycolates and a strain additionally lacking oxygenated functional 250 

groups (Barkan et al., 2012). Results of using these strains in a murine model of infection 251 

show severe attenuation and changes in antigen-specific immune response dependent on the 252 

presence of specific modifications. Deletion of the hma gene, which is essential for synthesis 253 

of both oxygenated mycolate types (methoxy- and ketomycolates) shows that these forms 254 

contribute to cell wall integrity, but also seem to be important for specifically inhibiting IL-255 

12p40 mediated responses (Dao et al., 2008; Dubnau et al., 2000). Considering the 256 

complexity of the biosynthesis of mycolic acids and the apparent interconnectedness of the 257 

enzymes in this pathway by protein-protein interactions (Cantaloube et al., 2011; Veyron-258 

Churlet et al., 2005), mutations in genes encoding core components of the fatty acid synthase 259 

system II (FASII), such as kasB and hadC (Fig. 2A) seem to affect the mycolic acid 260 

composition and, consequently, the virulence of respective strains (Bhatt et al., 2007; Slama et 261 

al., 2016). Oxygenated mycolates, in particular, are crucial for forming so-called foamy 262 

macrophages – differentiated infected macrophages rich in lipid droplets which enable the 263 

persistence of the bacilli (Dkhar et al., 2014; Peyron et al., 2008) and recent steps in 264 

elucidating the biosynthesis and metabolism of these mycolate classes (Madacki et al., 2018) 265 

could provide new clues for studying their impact on the virulence and persistence of 266 

mycobacteria. 267 

 Contrary to trehalose mycolates, which are common lipids of the mycobacterial cell 268 

wall, other identified trehalose containing lipids – di- and polyacyl trehaloses (DAT, PAT) are 269 

found exclusively in members of the M. tuberculosis complex, and sulfolipids (SL) were 270 

suggested to be produced only in M. tuberculosis (Daffé and Draper, 1997). The acyl chains 271 

of these lipids are synthesized by specialized polyketide synthase systems (PKS), resulting in 272 

polymethylated hydrocarbon chains. The specific occurrence of these lipids in pathogenic 273 
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strains has naturally raised a question of their involvement in tuberculosis pathogenesis, with 274 

rather ambiguous answers when using PKS mutants in vivo (Rousseau et al., 2003b, 2003a). 275 

A recent study analyzed multiple deletion strains deficient in DAT, PAT and SL synthesis, 276 

but also in PDIM, which contain methyl branched acyl chains, with the conclusion that all of 277 

the mentioned lipids contribute to phagosome maturation arrest, but with PDIM having a 278 

more dominant role in this process, thus masking the effect of the former (Passemar et al., 279 

2014).  280 

The role of sulfolipids in virulence has been questioned previously, notably by Rousseau et 281 

al., 2003b. However, the production of SL was more recently linked to the PhoP/R two 282 

component regulatory system, suggesting that PhoP-deficient strains have no or very low 283 

expression of genes encoding for proteins involved in SL biosynthesis (Gonzalo-Asensio et 284 

al., 2014), with possible implication on virulence. Additionally, using an approach aimed at 285 

identifying factors modulating NF-κB-dependent signaling, a transposon mutant defective in 286 

SL biosynthesis was identified, showing that SL are Toll-like receptor 2 antagonists (Blanc et 287 

al., 2017). Methyl-branched fatty acid-containing lipids of M. tuberculosis apparently have a 288 

buffering role, as polyketide synthases incorporate toxic propionate, which comes from 289 

cholesterol catabolism, a significant energy source for the intracellular bacilli (Lee et al., 290 

2013). Apart from their immunogenic properties, PDIM were shown to have an important 291 

structural role as components of the mycomembrane, but it was also suggested that their 292 

incorporation into the host plasma membrane is able to alter its biophysical properties with 293 

downstream effects on phagocytic receptors (Astarie-Dequeker et al., 2009; Camacho et al., 294 

2001). Furthermore, it was shown that PDIM are indispensable for efficient phagosomal 295 

rupture mediated by ESX-1, a remarkable example of coordinated usage of proteins and 296 

lipids, which awaits more mechanistic insights (Augenstreich et al., 2017; Quigley et al., 297 

2017). Another group of polymethylated acyl chain containing molecules found in 298 

mycobacteria are lipooligosaccharides (LOS), which are, however absent in M. tuberculosis. 299 

Interestingly, these surface molecules are present in Mycobacterium canettii strains, which 300 

bare the closest resemblance to the progenitor of M. tuberculosis (Supply et al., 2013; 301 

Boritsch et al., 2016b). It was recently ascertained that LOS are responsible for the 302 

characteristic smooth colony morphology of M. canettii strains, owing to the presence of an 303 

intact dual pks5 locus, which has apparently undergone homologous recombination resulting 304 

in loss of selected pks5 functions and pap-encoded acyltransferase activity in M. tuberculosis 305 

during its evolution into a strict pathogen (Boritsch et al., 2016a). This recombination event 306 

might have resulted in an evolutionary advantage for M. tuberculosis, judging from the 307 
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increased fitness and virulence of spontaneous rough morphotype and LOS-deficient M. 308 

canettii K compared to its smooth counterpart. Another group of PKS-synthetized lipids, 309 

phenolic glycolipids (PGL), is found only in a subset of M. tuberculosis strains, such as the 310 

hypervirulent Beijing lineage, due to a frameshift mutation in the pks15/1 gene (Constant et 311 

al., 2002). Although immunomodulatory activity of PGLs from M. tuberculosis has been 312 

described (Reed et al., 2004), their reported contribution to the hypervirulent phenotype of the 313 

Beijing strains is not fully understood (Huet et al., 2009; Sinsimer et al., 2008). 314 

The abundant mannosylated components of the cell envelope of mycobacteria – 315 

phosphatidylinositol mannosides (PIMs), lipomannan (LM) and lipoarabinomannan (LAM) 316 

were extensively studied for their importance in host-cell recognition – see (Vergne et al., 317 

2015) for a recent review. Variations in lipoarabinomannan structure and their impact on its 318 

immunogenic properties in vitro have attracted much attention, notably the pathogenic 319 

species-specific mannose cap motif, resulting in ManLAM, which was shown to contribute to 320 

phagosome maturation arrest (Chatterjee et al., 1992; Fratti et al., 2003). An additional, and 321 

unusual, methylthio-D-xylose motif was also characterized in M. tuberculosis, binding to one 322 

mannose cap per molecule of ManLAM (Joe et al., 2006; Treumann et al., 2002), while a 323 

recently discovered genetic locus responsible for its biosynthesis will enable elucidation of its 324 

biological role (Angala et al., 2017). Mutant strains of M. bovis BCG and M. tuberculosis 325 

producing capless LAM, however, failed to show changes in in vivo replication and cytokine 326 

production, rather suggesting a redundant function (Afonso‐Barroso et al., 2012) which 327 

prompts deeper research into the biological functions of this important glycoconjugate. 328 

Although the protein composition of the mycomembrane is still largely unexplored, 329 

interesting insights are beginning to emerge from their studies. One of the few characterized 330 

integral proteins of the mycomembrane, CpnT is a channel forming protein with an N-331 

terminal exotoxin domain, which confers the ability of M. tuberculosis to induce necrosis of 332 

infected cells (Danilchanka et al., 2014; Sun et al., 2015). Upon exerting its necrotizing 333 

activity, CpnT does not appear to induce vast cytokine production, and is thus suggested to 334 

allow “quiet” cellular escape and dissemination of the bacilli (Maueröder et al., 2016). 335 

Alternative approaches for dissecting the mycobacterial cell envelope and defining the 336 

composition of the native mycomembrane in rapidly growing mycobacteria have suggested 337 

that the outer membrane fraction might also contain Antigen 85 complex proteins (see below) 338 

and members of the large Mce (mammalian cell entry) protein family (Chiaradia et al., 2017). 339 

Finally, other potential candidates that might be localized in the outer membrane are the 340 

EspACD proteins, which are associated to the ESX-1 type VII system (Orgeur and Brosch, 341 
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2018) (Fig. 1). EspC, for example was shown to form a filamentous structure in the 342 

mycobacterial cell envelope, which could theoretically be embedded in the mycomembrane 343 

layer (Lou et al., 2017).  344 

Several important secreted proteins independent from type VII secretion systems (Fig. 345 

1) have also been described as virulence factors. For example, the three mycolyl transferases 346 

that are exported by the Twin- arginine translocation (TAT) system catalyze the attachment of 347 

mycolate residues onto arabinogalactan, as well as the synthesis of TDM (Belisle et al., 1997; 348 

Jackson et al., 1999; Katti et al., 2008). These major secreted immunogens also known as the 349 

Antigen 85 complex, are also found associated to the mycobacterial cell surface (Wiker and 350 

Harboe, 1992). These antigens  have previously been associated to altered vaccination 351 

efficacy (Horwitz et al., 1995; Ndiaye et al., 2015), but more recent studies have found that 352 

the level of export and the availability of the Ag85 proteins for generating immune responses 353 

is influenced by the PhoP/R two component regulatory system (Sayes et al., 2018; Solans et 354 

al., 2014), and the use of Ag85 as immunogens might not be generally applicable for 355 

protection against all M. tuberculosis strains, as important, strain lineage-dependent variation 356 

of immune recognition might exist (Sayes et al., 2018). Another notable example is the 357 

protein tyrosine phosphatase PtpA, directly binding to vacuolar H+-ATPase, thus being one of 358 

the main inhibitors of phagosome acidification (Wong et al., 2011). However, as mentioned 359 

before, the inhibition of phagosomal acidification and maturation by mycobacteria seems to 360 

be more complex, like recently found by the screening of host-factors that impact this process 361 

(Queval et al., 2017) as well as the identification of specific proteins (SapM, PknG) that are 362 

exported via the SecA2 mediated general secretory pathway (GSP) (Fig. 1) and also impact 363 

acidification/maturation of mycobacteria-containing phagosomes (Zulauf et al., 2018). 364 

 365 

4 Miscellaneous factors 366 

A considerable number of factors that were found to be indispensable for proper process of 367 

pathogenesis do not necessarily fall into the category of surface-exposed effectors directly 368 

interacting with the host. The above-mentioned preferential utilization of host-cell cholesterol, 369 

but also triacylglycerols by intracellular M. tuberculosis relies on several enzymes required 370 

for their degradation, their absence causing severe attenuation (Crowe et al., 2018, 2017; 371 

Daniel et al., 2011; Pandey and Sassetti, 2008; Singh et al., 2017; VanderVen et al., 2015). In 372 

this context, members of the Mce family of proteins should again be mentioned, as they are 373 

thought to import cholesterol or other hydrophobic substrates such as fatty acids and were 374 

shown to be implicated in virulence of tubercle bacilli (Marjanovic et al., 2010; Nazarova et 375 
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al., 2017; Senaratne et al., 2008; Shimono et al., 2003; Ekiert et al., 2017). Also, research of 376 

gene and posttranslational regulation has also pointed out the importance of DosR, WhiB, 377 

PhoP (Geiman et al., 2006; Smith et al., 2017), adenylyl cyclases (Samanta et al., 2017; 378 

Shleeva et al., 2017), and protein kinase pknG (Khan et al., 2017; Rieck et al., 2017), and new 379 

insights on manipulation of small molecules interfering with cytosolic surveillance are 380 

emerging (Dey et al., 2015, 2017). Finally, in our selection of recently identified and/or 381 

confirmed virulence factors of M. tuberculosis that are presented in this review, we also 382 

would like to highlight a dedicated gene cluster, named moaA1-D1. The proteins encoded by 383 

this cluster have been recently found to enable the tubercle bacillus to respire nitrate and to 384 

survive oxygen depletion, a feature which seems particularly important in hypoxic 385 

granulomas in the host (Levillain et al., 2017). Strikingly, this gene cluster, which is involved 386 

in the biosynthesis of the molybdenum cofactor seems to have been acquired horizontally 387 

together with its hypoxia-responsive transcriptional regulator by a recent common ancestor of 388 

the tubercle bacilli from plasmids of environmental bacteria of another phylum (β-389 

proteobacteria Burkholderia vietnamiensis) (Levillain et al., 2017) (Fig. 3A). The specific 390 

acquisition by tubercle bacilli is underlined by the absence of the moaA1-D1 cluster in closely 391 

related mycobacteria (M. marinum, Mycobacterium kansasii) (Fig. 3B) that have been used as 392 

model organisms for studying the evolution and emergence of M. tuberculosis (Stinear et al., 393 

2008; Wang et al., 2015). Apart from the MTBC strains, the moaA1-D1 genetic locus is also 394 

present in M. canettii strains, although it is not complete in all the strains 395 

(http://genolist.pasteur.fr/CanettiiList/), which suggests that after the acquisition of the 396 

moaA1-D region via horizontal transfer, parts of the locus were lost in a subgroup of M. 397 

canettii strains. However, in the MTBC this locus is highly conserved, suggesting that the 398 

associated function in nitrate respiration (Williams et al., 2014) is important and a matter of 399 

selection, apparently giving MTBC members some advantages for the survival in mammalian 400 

hosts (Levillain et al., 2017).  401 

 402 

In conclusion, as briefly shown in this review by selected examples, the evolution of M. 403 

tuberculosis towards pathogenicity was a complex process involving a multitude of adaptative 404 

steps, some of which appear ancient while others are likely more recent. M. tuberculosis is a 405 

highly adapted, professional human pathogen which needs to cause disease in the human 406 

lungs for efficient spread. Thus, the co-evolution of humans and M. tuberculosis has resulted 407 

in an intimate host-pathogen relationship. How long it really has been, this is a question of 408 

debate, estimations range from 70000 years (Comas et al., 2013) to 6000 years (Bos et al., 409 
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2014), whereby the latter hypothesis becomes more and more accepted as it is based on the 410 

analysis of ancient DNA samples and less on estimations derived from genome comparisons 411 

of extant mycobacterial strains (Kay et al., 2015; Mokrousov, et al., 2017). However, it should 412 

also be repeated here that the last common ancestor of the MTBC was likely a strain that 413 

resembled M. canettii, which underwent a phenomenal clonal expansion by becoming a 414 

dedicated pathogen. It is well known that the MTBC besides M. tuberculosis also harbors 415 

very closely related relatives that infect selected other mammalian species than humans as 416 

their preferential hosts. Interestingly, these animal-adapted species seem to have evolved from 417 

a sublineage of the M. tuberculosis complex, which is characterized by the deletion of the 418 

region RD9 (Brosch et al., 2002; Orgeur and Brosch, 2018), and also comprises the two M. 419 

africanum lineages L5 and L6, which cause tuberculosis in humans in West Africa (Ates et 420 

al., 2018a; de Jong et al., 2010; Otchere et al., 2018). As such, M. africanum strains seem to 421 

be closely related to the common ancestor of animal strains and it will be of particular interest 422 

to determine which molecular factors have been involved in the adaptation processes of these 423 

tubercle bacilli to new animal hosts (Gonzalo-Asensio et al., 2014; Malone et al., 2018; 424 

Orgeur and Brosch, 2018). One surprising feature in this respect is the long-time known 425 

finding that M. tuberculosis in contrast to M. bovis does not cause disease in cattle, which was 426 

recently re-established in an advanced cattle infection model (Villarreal-Ramos et al., 2018). 427 

These are just another few examples of how complex the relationship between tubercle bacilli 428 

and their various hosts are. Similar processes have certainly also contributed to the emergence 429 

of M. tuberculosis strains from probably less virulent and much less prevalent ancestor pools 430 

(resembling M. canettii strains) into the professional human pathogens that they represent 431 

today. Without doubt, such factors make up the highly complex mosaic scaffold of 432 

mycobacterial virulence, for which we have tried to highlight some of the key players that we 433 

consider having an important impact on virulence. This said, there is certainly much more 434 

room for studying further virulence factors of M. tuberculosis, as well as host immunity 435 

factors that have not been covered in this review, but which can also contribute strongly to 436 

advance or restrict disease progression, and thereby influence the outcome of infection. The 437 

particularities of TB as disease in relation to the host and the extremely wide, and often 438 

specific distribution of certain M. tuberculosis strain families in the global human population 439 

make the infection dynamics associated to TB very complex. Research on TB-causing 440 

mycobacterial pathogens will therefore need to continue for a better understanding of the 441 

evolutionary adaptation processes that made M. tuberculosis such a powerful and devastating 442 

pathogen and for finding new possible solutions to counteract this situation.  443 
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Figure legends: 1128 

 1129 

Figure 1: Schematic representation of three types of secretion systems present in 1130 

mycobacteria – the general Sec secretory pathway, the TAT pathway and the ESX / type VII 1131 

secretion systems. The three-dimensional structure of ESX-5 system from Mycobacterium 1132 

xenopi as determined by electron microscopy and single particle analysis (Beckham et al., 1133 

2017) is also shown. 1134 

 1135 

Figure 2: Functional groups are attached to the main (meromycolic) hydrocarbon chain of 1136 

mycolic acids likely during its elongation by fatty acid synthase sytem II (FASII) (A) in two 1137 

distinct positions relative to the carboxyl group (B) – distal and proximal – resulting in 1138 

dicyclopropylated α-mycolates and oxygenated methoxy- and ketomycolates (C). The 1139 

mycolic acid modifying enzymes (in orange) are connected to the core enzymes of the FASII 1140 

system (in blue) through protein-protein interactions. 1141 

 1142 

Figure 3: Example of a genomic locus (moaA1-D1 locus) acquired by tuberculosis-causing 1143 

mycobacteria: (A) Jensen-Shannon divergence profiles of the M.tuberculosis genomic region 1144 

harboring the Moco-1 island and its genomic context. The red curve represents the divergence 1145 

between the signature of the whole M. tuberculosis H37Rv genome and that of the sliding 1146 

windows (5-kb long, 100-bp step) over the region. The blue curve represents the divergence 1147 

between the signature of the Burkholderia vietnamiensis G4 plasmid pBVIE01 and that of the 1148 

sliding windows over the region, as described in detail by Levillain et al., 2017. Image 1149 

adapted from Ref.(Levillain et al., 2017); (B) genomic region of the horizontally transferred 1150 

moaA1-D1 locus in M. tuberculosis and its flanking regions containing conserved 1151 

mycobacterial genes in comparison to the orthologous regions in Mycobacterium marinum M 1152 

and Mycobacterium kansasii ATCC 12478. Note that M. marinum M shows the minimal gene 1153 

content in this genomic region, while in M. tuberculosis the moaA1 -D1 gene cluster showing 1154 

similarity to the B. vietnamiensis G4 plasmid pBVIE01 encoded genes has been inserted in 1155 

addition to mycobacterial genes involved in molybdenum cofactor biosynthesis. In M. 1156 

kansasii ATCC 12478, genes with different functions, including one encoding a putative 1157 

polyketide synthase, are present in the genomic locus. Percentages on grey lines represent 1158 

amino acid identity values between gene products of respective strains. Color coding of genes 1159 

refers to the scheme used in TubercuList or CanettiiList 1160 
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(http://genolist.pasteur.fr/CanettiiList/). Mtb = M. tuberculosis; vs. = versus; B. vientn. = 1161 

Burkholderia vietnamiensis; HGT = Horizontal Gene Transfer.  1162 
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