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Background: There is no consensus in the literature concerning the presence of
abnormal alpha wave profiles in patients with autism spectrum disorder (ASD). This may
be due to phenotypic heterogeneity among patients as well as the limited sample sizes
utilized. Here we present our results of alpha wave profile analysis based on a sample
larger than most of those in the field, performed using a robust processing pipeline.

Methods: We compared the alpha waves profiles at rest in children with ASD to
those of age-, sex-, and IQ-matched control individuals. We used linear regression
and non-parametric normative models using age as covariate forparsing the clinical
heterogeneity. We explored the correlation between EEG profiles and the patient’s brain
volumes, obtained from structural MRI. We automatized the detection of the alpha peak
and visually quality controled our MRI measurements. We assessed the robustness of
our results by running the EEG preprocessing with two different versions of Matlab as
well as Python.

Results: A simple linear regression between peak power or frequency of the alpha
waves and the status or age of the participants did not allow to identify any statistically
significant relationship. The non-parametric normative model (which took account the
non-linear effect of age on the alpha profiles) suggested that participants with ASD
displayed more variability than control participants for both frequency and amplitude
of the alpha peak (p < 0.05). Independent of the status of the individual, we also
observed weak associations (uncorrected p < 0.05) between the alpha frequency, and
the volumes of several cortical and subcortical structures (in particular the striatum),
but which did not survive correction for multiple testing and changed between analysis
pelines.
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Discussions: Our study did not find evidence for abnormal alpha wave profiles in ASD.
We propose, however, an analysis pipeline to perform standardized and automatized
EEG analyses on large cohorts. These should help the community to address the
challenge of clinical heterogeneity of ASD and to tackle the problems of reproducibility.

Keywords: child psychiatry, reproducibility, biomarker, spectral analysis, autism spectrum disorders

INTRODUCTION

Autism spectrum disorders (ASD), which affect 1–2% of
the general population, are characterized by impairments in
social communication associated with repetitive, stereotyped,
or ritualistic behaviors (American Psychiatric Association,
2000). Despite the unifying definition, ASD is a highly
heterogeneous condition since patients with ASD display a
variable clinical presentation ranging from mild to severe
impairments and are frequently associated with comorbid
disorders including intellectual developmental disability,
developmental language or coordination disorders, or attention
deficit and hyperactivity disorder (ADHD) (Gillberg, 2010).
Besides, genetic and environmental causes and risk factors
appear highly heterogeneous in ASD too. Considering the clinical
heterogeneity and the prevalence of ASD, the identification of
biomarkers, especially neuromarkers, is a public health issue.

Neuroimaging raised new hope in our ability to further
understand the biological mechanisms associated with ASD.
Functional MRI (fMRI), for instance, allowed to study brain
activity during rest and various tasks (Raichle et al., 2001; Di
Martino et al., 2013; Hahamy et al., 2015; Crippa et al., 2016).
In ASD, results from the last 10 years depicted a mixed patterns
of dysconnectivity with sometimes an under-connectivity,
especially in networks involving frontal regions, and sometimes
over-connectivity, for instance in the bilateral temporo-limbic
regions (Castelli et al., 2002; Just et al., 2004; Courchesne and
Pierce, 2005; Weng et al., 2010; Di Martino et al., 2013). Finally
large scales studies, based on data-sharing initiatives, such as the
ABIDE network, reported both under- and over-connectivity in
ASD (Jung et al., 2017). Recent results also support a higher
inter-subject heterogeneity in the spatial patterns of functional
connectivity across ASD individuals, probably accounting the
variation of results in previous studies (Hahamy et al., 2015).

Electroencephalography (EEG) has been also used to explore
the neural correlates of brain functions, for even longer. Multiple
studies have uncovered EEG patterns that could relate to
social communication abilities. For example, the alpha rhythm
(8–12 Hz), the most dominant rhythm during wakefulness,
has been associated with precise timing of visual perception
(Klimesch et al., 1998; Palva and Palva, 2011), consciousness state
(Engemann and Gramfort, 2015), sensory cognitive inhibition
(Pfurtscheller et al., 1996, 2006), and even to social coordination
(Tognoli et al., 2007; Dumas et al., 2010; Kelso et al., 2013). At the
physiological level, alpha oscillations may modulate the transfer
of information in the thalamo-cortical and cortico-cortical
networks but also facilitate and gate the external sensory
perception (Klimesch et al., 2007; Busch et al., 2009; Jensen
and Mazaheri, 2010; Amzica and Lopes da Silva, 2012). In the

70s, studies in typically developing (TD) participants reported
developmental trajectory of alpha waves with the frequency
increasing and the power decreasing until around 10 years
old, but those results were not questioned nor replicated since
(Matousek and Petersén, 1971; Petersén and Eeg-Olofsson, 1971).
In ASD, early reports also described less alpha in low-functioning
autistic children (Cantor et al., 1986). More recently, some
authors reported that the alpha power was positively correlated at
rest with the intensity of social deficit (measured with the Social
Responsiveness Scale) (Cornew et al., 2012; Edgar et al., 2015)
although several studies showed inconsistent results (Keehn et al.,
2017). For example, Oberman et al. (2005) reported in participant
with ASD, a normal alpha amplitude at rest in both the parietal
cortex and the superior temporal sulcus; both being involved in
action perception and understanding and considered as part of
the mirror neuron system (Rizzolatti et al., 2001). Notice that
since the 10 Hz oscillations over the primary somatosensory
cortex have been traditionally called Rolandic or mu rhythm,
authors now tend to use alpha-mu as a general term, especially
if the task contains action execution or observation. Indeed,
during action execution or observation, alpha-mu is suppressed
(Gastaut, 1952; Hobson and Bishop, 2017). In ASD, the lack of
similar effect during action observation lead to the hypothesis
that autism was linked to a dysfunction of the MNS – the so-called
“broken mirror hypothesis” (Oberman et al., 2005) – and that this
dysfunction could be a biomarker of ASD (Dickinson et al., 2017;
Keehn et al., 2017).

Alpha-mu abnormalities in ASD (Cantor et al., 1986; Dawson
et al., 1995; Chan and Leung, 2006; Murias et al., 2007;
Machado et al., 2015; Shephard et al., 2018) may be explained by
multiple factors: (1) at the intrinsic level, the major phenotypic
heterogeneity in patients with ASD with a combination of
comorbidities (for review, see Jeste et al., 2015), etiological
heterogeneity, and risk factors, but also variance factors such
as the age of the participants or cerebral volume; and (2) at
the extrinsic level, the variations of methods across studies
(Hobson and Bishop, 2016). For instance, studies tend to use
different frequency bands and linear approaches to extract alpha-
mu characteristics. Those methods (e.g., fast Fourier transform
or FFT) require stationary signals (Wang et al., 2013) while
EEG dynamics is nonlinear and complex. Pipelines of analysis
may thus rely on more advanced signal processing approaches
(Bigdely-Shamlo et al., 2015). However, the choice frequency
band may be the most important source of bias in the results
reported in ASD (Dumas et al., 2014b). Indeed, the initial reports
of abnormal alpha-mu suppression in ASD may result from an
analysis considering alpha waves as a homogeneous phenomenon
covering the 8–12/13 Hz frequency band, although it can be
functionally segregated in two distinct sub-bands, 8–10 and
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10–12/13 Hz (Bazanova and Vernon, 2014). When considering
only the upper sub-band, a suppression of the alpha waves in
the sensorimotor cortex during response to motor observation
was observed in both TD and ASD participants (Dumas et al.,
2014b). Finally, the discrepancies in the literature may also result
from spatial effects. Indeed, source reconstructions revealed
an abnormal alpha-mu pattern in ASD, with simultaneously a
decrease in occipito-parietal regions and an increase in frontal
regions, resulting in an apparent absence of mu-suppression over
the central regions at the scalp level (Dumas et al., 2014b).

To quantify the impact of heterogeneity both ASD participants
and methodological choices, we developed a systematic pipeline
of analysis across different versions of software. Concerning
clinical heterogeneity, specifically the impact of developmental
variation, we used normative models using age as a clinical
covariate (Marquand et al., 2016; Bethlehem et al., 2018).
Concerning variability of methodological choices, we control the
reproducibility of manual alpha peak detection between human
observers and automatic alpha peak detection between software.
We especially compared analysis pipelines across two versions of
Matlab and Python. We finally tested if the variability of the alpha
peak characteristics could be explained by a similar variability in
structural brain volumes (cortical and subcortical structures). We
specifically explored the correlation with thalamic volume, since
thalamus has been proposed as a core pacemaker for the alpha
waves (Edgar et al., 2015).

MATERIALS AND METHODS

Participants
A sample of 88 individuals composed of 44 participants with
ASD and their sex-, age-, and IQ-matched TD participants
(N = 44) were enrolled in the study (Table 1 and Supplementary
Figure S1). All participants were from the Paris Autism Research
International Sibpair (PARIS) consortium cohort and recruited at

TABLE 1 | Clinical and demographic characteristics of probands with ASD and
their controls enrolled in the study for alpha waves analysis in patients and TD
participants.

ASD (n = 44) TD (n = 44)

Males, % (no.) 75% (33) 75% (33)

Current age, months m (SD) 116.01 (43.6) 116.05 (45.8)

Non-verbal IQ (SD) 91.2 (24.0) 93.7 (23.6)

ADI-R subdomain scores

Social 16.4 (9.4) −

Communication 12.4 (7.8) −

Repetitive behavior 5.5 (3.6) −

ADOS – two subdomain scores

Communication 4.8 (1.9) −

Social 3.5 (3.0) −

Repetitive behaviors 1.6 (1.5) −

SRS total score (t-score) 74.8 (11.8) −

ASD, autism spectrum disorder; TD, typically developing participants; ADI-R,
autism diagnostic interview – revisited; ADOS, autism diagnostic observation
schedule.

the Child and Adolescent Psychiatry Department, Robert Debré
Hospital, Paris (France). Patients with ASD were included after
a systematic clinical and medical check-up including negative
blood tests results for Fragile-X and exclusion of participants
carrying a large deletion over 2 Mb detected by the Illumina
700K SNPs array, in an attempt to further analysis combining
genetic, MRI, and EEG data. Final diagnosis of ASD was
based on DSM-IV TR criteria and made by summing the
information from the Autism Diagnosis Interview – Revised
(ADI-R) (Lord et al., 1994), the Autism Diagnostic Observation
Scale (ADOS) (Lord et al., 2000), and data from clinical reports
from expert in the field. In multiplex families, only index cases
were included in the present study to ensure unbiased estimate
of the alpha waves’ quantification. Psychiatric comorbidities
according to DSM-IV-TR were screened with a semi-structured
direct interview, the Schedule for Affective Disorders, and
Schizophrenia for School-Age Children, Present and Lifetime
Version (K-SADS-PL). Intellectual functioning of all participants
was estimated with the Raven’s Progressive Matrices or with the
Wechsler Intelligence Scales.

Participants from the control group were from the general
population. All participants with a personal or a familial
history of ASD were not included. Participants were TD
children. They never reported any speech therapy, psychiatric,
or neurological follow-up or a personal history of traumatic
brain injury, severe prematurity (<1850 g at birth), or
epilepsy.

Ethics Statement
This study was carried out in accordance with the
recommendations of the local ethics committee of Hospital
Robert Debré. All participants gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the Inserm Ethics Committee (study approval No.
08-029).

Electroencephalogram Acquisition and
Data Extraction
Digital 10-channel EEG (FP1/2, F7/8, T5/6, O1/2, C3/4) was
recorded using a Nihon-Kohden (Inc., Tokyo, Japan) system with
the electrodes positioned according to the International 10–20
system (Sharbrough et al., 1994). Unipolar leads tracings were
taken, regarding both sides of the ear as the reference electrode
(Sharbrough et al., 1994). The EEG activity was acquired using
a linked ears reference, sampled at 500 Hz, and filtered offline
between 1 and 120 Hz. Impedance was kept below 5 k�.
Vigilance-controlled recordings were made according to usual
clinical standards, including a 10-min resting eyes-closed state,
1 min of alternate 10 s-eyes open/eyes closed conditions, 3 min of
hyperventilation, 10 min of recovery (post-hyperventilation), and
4-min photic stimulation (from 0.5 to 60 Hz). After recording,
whole raw data in Nihon Koden format were converted into an
EEG EDF+ format allowing their analysis into MatlabTM. Two
distinct toolboxes BIOSIG (Vidaurre et al., 2011) and EEGlab
(Delorme and Makeig, 2004), and a custom script for reading
EDF+ files (Duann and Hatz, 2012) were used to perform
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the pre-processing and processing of the data (Supplementary
Figure S2). The final processing pipeline used the EEGlab 13.4.4b
version with Matlab 2014b.

The power line interferences were removed with a Finite
Impulse Response (FIR) comb filter and electrodes with
signal-to-noise ratio over three standard errors were interpolated
by spherical splines. Then, FFTs on 1 s sliding windows
gave spectra for all electrodes. Detection of alpha peak was
automatized by computing the spectra differences between eyes
closed and eyes open periods, and then, by selecting among the
occipital and parietal sensors the one exhibiting the maximum
peak. However, to ensure the quality of the alpha peak detection,
we performed a visual inspection of each EEG spectrum by two
independent raters. Each spectrum was rated on a 4-point Likert
scale from 1 (good quality) to 4 (unusable data). For the final
analysis, we excluded the data for which one rater (or both)
considered the spectrum as unusable (score = 4) (Supplementary
Figure S1). The inter-rater agreement for qualitative items was
computed with the Bangdiwala’s test using R version 3.3.3
(2017-03-06).

Non-parametric Normative Modeling
The normative modeling (NM) approach has been introduced
in psychiatry as an alternative to the traditional case–control
contrasts. The idea consists of fitting a mathematical distribution
to a population of control group, considering its heterogeneity
across multiple dimensions. Once this model is set, it is
possible to assign to every participant, including the controls,
a score measuring their distance from the normative model
(Marquand et al., 2016). In a nutshell, NM provides a
metric similar to a Z-score, but accounts for the underlying
structure of the population across multiple covariates. The
original version of NM uses Gaussian Processes (GPs) to
model the distribution of control group measures. The major
advantage is the ability to use Bayesian optimization in the
fit of those GP. Other family of functions can be used
but for data with strong heterogeneity or with non-classic
distribution, the obtained results can become misleading. Here
we used non-parametric version using LOESS Curve Fitting
(Local Polynomial Regression). LOESS is a nonparametric
method that uses local weighted regression to fit a smooth
curve through points in a scatter plot. The procedure
was originally proposed as Locally Weighted Scatter-plot
Smoother (LOWESS) by Cleveland (1979) and further developed
by Cleveland and Devlin (1988). The normative model
was calculated by approximating the TD participants data
with a polynomial function of age (smoothing kernel of
2 years). Python code is available at https://github.com/GHFC/
SoNeTAA/.

Intracranial and Brain Volume
Estimations Based on Magnetic
Resonance Imaging
For participants with ASD included in this study, MRI
data were collected using the following parameters: spoiled
gradient recalled echo (SPGR), 1 mm isotropic, repetition time

(TR) = 25 ms, echo time (TE) = 6 ms, flip angle = 30◦.
To estimate the intracranial volume, the different datasets
were first reoriented to correspond with the orientation of
the MNI152 atlas. The brain was removed from the skull
using AFNI tools (Cox, 1996), and linearly normalized to the
(skull-less) MNI152 atlas using FSL tools (Jenkinson et al.,
2002; Smith et al., 2004). We then used the affine matrix
of this transformation to initialize the linear normalization
of the reoriented datasets (with skull) to the MNI152 atlas
(with skull). We used the inverse of the determinant of
the affine matrix produced by this transformation as an
estimation of the intracranial volume, as in Buckner et al.
(2004). All steps of the process were visually inspected
for accuracy using in-house software. In the cases where
the skull stripping was inappropriate (the most frequent
type of failure of the automatic segmentation procedure),
we manually corrected the brain extraction using in-house
software, and relaunched the processing pipeline. The estimation
of brain volume was obtained by segmenting automatically
the gray and white matter. We then labeled the frontal,
parietal, occipital, temporal lobes, and subcortical structures
by non-linearly warping the individual datasets into an atlas,
using FSL tools (Zhang et al., 2001; Smith et al., 2004)
and our own software (Toro et al., 2009). Brain volume
was calculated as the sum of gray and white matter in
the frontal, parietal, occipital, and temporal lobes excluding
ventricles and subcortical structures and the intracranial volume
estimated as the inverse of the determinant of the linear
transformation matrix of each participant’s brain into the
MNI template excluding the skull. We used a tool to visually
control the accuracy of the segmentations: https://github.com/
neuroanatomy/QCApp-vsub. The participants for whom the
segmentation not fulfilled this visual quality control were
excluded. After quality control and coupling with EEG data,
neuroanatomic analysis was done for 20 patients with ASD
(Supplementary Figure S1).

Statistical Analysis
After quality control with Bangdiwala’s test (Supplementary
Figure S3), we analyzed data for 26 participants with ASD
(128.11 m.o. ± 37.6) and for 33 participants with typical
development (125.5 m.o. ± 39.6) (Table 2 and Supplementary
Figure S1). We explored the statistical difference for alpha
peak frequency and power between the two groups. An
analysis of variance was used to control the effect on age,
status (affected or not), and the interaction age ∗ status on
the frequency and the power of alpha peak across groups.
Normative models were computed with Python 2.7. We finally

TABLE 2 | Clinical and demographic characteristics of probands with ASD and
their controls analyzed in the study for alpha waves analysis in patients and TD
participant after control quality.

ASD (n = 26) TD (n = 33)

Males, % (no.) 100% (26) 100% (33)

Current age, months m (SD) 128.1 (37.6) 125.5 (39.6)
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explored the relationship between the frequency and the power
of the alpha peak with each brain neuroanatomic structures.
Statistical analyses were performed with JMP Pro 11.2.0.
SASTM.

To check the robustness of our EEG results, we used not only
two distinct versions of Matlab but also the Python language,
since we observed divergence in the preliminary tests with
Matlab. We first performed our analysis with Matlab 2014b
with the signal processing toolbox and the 13.4.4b version
of the EEGlab toolbox. We then compared our results to
those obtained with Matlab 2013a without the signal processing
toolbox, using the 12.0.2.6b version of the EEGlab toolbox,
and to those obtained using Python. For this later analysis,
we used Python 2.7 and the MNE Python library (Gramfort
et al., 2013). Key steps of the pipeline were kept as identical as
possible between Matlab and Python pipelines. Both versions,
including the script for non-parametric normative model are
available on our GitHub repository: https://github.com/GHFC/
SoNeTAA/.

RESULTS

Alpha Waves in Patients and Typically
Developing Participants
The alpha peak characteristics extracted with Matlab 2014
and EEGlab 13.4.4b are summarized in Table 3. We did not
observe any significant difference for alpha peak frequency and
power between the groups. We were also unable to detect
any significant variance differences between groups for both
alpha frequency (F two-sided = 0.41; p = 0.66) and alpha
peak power (F two-sided = 0.42; p = 0.66) (Table 3). An
analysis of the variance (ANOVA) of the frequency of the
alpha peak was performed including age, status, and interaction
age ∗ status as independent variables (F = 0.23; R2 = 0.01;
p = 0.87). There was no significant effect of the status (F = 0.16;
p = 0.69), nor of the age (F = 0.07; p = 0.87) and the
interaction age ∗ status on the alpha frequency (F = 0.16;
p = 0.57) (Figure 1). A similar ANOVA analysis was also
run for the power of the alpha peak (F = 1.21; R2= 0.05;
p = 0.31) and showed no significant effect of age at inclusion
(F = 1.36; p = 0.24), nor of the status or of the interaction
between age ∗ status (F = 0.22; p = 0.63; F = 1.18; p = 0.28,
respectively).

We then performed a simple linear regression to model the
relationship between the frequency or the peak power of the
alpha waves and the age of the participant (Figures 1A,B). We

TABLE 3 | Alpha waves characteristics (Matlab 2014 – EEGlab13.4.4b).

ASD TD T-ratio
(p-value)

Alpha frequency (Hz) Mean (SD) 9.8 (3.1) 10.6 (2.9) 0.4 (0.7)

Alpha peak power (dB) Mean (SD) 4.5 (3.3) 4.9 (3.7) 0.42 (0.7)

ASD, autism spectrum disorder; TD, typically developing participants.

observed no significant effect of age on the alpha frequency
in TD participants [alpha frequency = 10.99–0.01 ∗ age
(R2 = 0.01; F = 0.49; p = 0.49)] nor in the ASD group
[alpha frequency = 9.41 + 0.003 ∗ age (R2 = 0.001;
p = 0.85)]. We similarly observed no significant effect of
age on the alpha peak power in TD participants [alpha peak
power = 1.95 + 0.02 ∗ age (R2 = 0.08; p = 0.08)] nor in the ASD
group [alpha peak power = 4.43 + 0.001 ∗ age (R2 = 0.0001;
p = 0.96)]. These results suggested the variability of the
alpha peak power and frequency prevents any conclusion
on the difference between patients with ASD and TD
participants.

Alpha Waves Normative Modeling in
Patients and Typically Developing
Participants
By using a linear method approach, we did not replicate
previous findings suggesting a developmental effect on alpha
characteristics, i.e., an increase of the alpha frequency and
power with the age of the participant. The potential non-linear
effects of age on the alpha characteristics may account for
the lack of association we reported with linear methods.
We thus used a normative model to better consider the
effect of age heterogeneity in our sample and its potential
non-linear effect on alpha characteristics (Figures 2, 3). All
participants with alpha characteristics fit the normative model
well, including the oldest participants whatever their status.
We identified several individuals who were outliers within
the distribution but no statistical deviation from expected
proportions in alpha frequency (Fisher exact, p = 0.08) or
amplitude (Fisher exact, p = 0.92). When quantifying the
degree of deviation from the normal distribution, we observed
that participants with ASD displayed more variability around
the normal distribution than control participants for both
frequency (F = 2.25, p < 0.05) and amplitude (F = 2.72,
p < 0.05).

Alpha Waves and Structural Brain
Volume Correlations in ASD
We then compared the alpha characteristics (based on Matlab
2014b–EEGlab 13.4.4b) to the brain structure volumes. This
analysis was performed only in the participant for which one
had excellent to good EEG recording quality (i.e., participants
with at least one unusable rating were excluded; N = 32). We
performed a simple linear regression to model the relationship
between the peak frequency or the power of alpha waves
and each structural brain volumes (Supplementary Figure S4).
There was no significant effect of each structural brain volumes
on the alpha peak power, but we observed a significant
effect on alpha frequency for: the left putamen volume [alpha
frequency = 19.03 ∗ age (R2 = 0.13; p = 0.04)], the left
accumbens nucleus volume [alpha frequency = 16.92−0.01 ∗ age
(R2 = 0.17; p = 0.002)], the left parietal gray matter
volume [alpha frequency = 27.3–0.0002 ∗ age (R2 = 0.15;
p = 0.02)], the left occipital gray matter volume (alpha
frequency = 20.19–0.0002 ∗ left occipital gray matter volume,
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FIGURE 1 | Alpha waves neurodevelopmental trajectory analyzed by Matlab 2014. (A) Alpha peak power (dB) depending on age (in months). (B) Alpha frequency
(Hz) depending on age (in months). ASD, autism spectrum disorder; TD, typically developing participants.

FIGURE 2 | Alpha waves normative modeling in patients and TD participants: effect of age heterogeneity on alpha peak power. (A) Shows the raw data with the
non-parametric normative model overlaid in blue. (B) Summarises the normative scores with an histogram. ASD, autism spectrum disorder; TD, typically developing
participants.

R2 = 0.14, p = 0.03), the right occipital gray matter volume [alpha
frequency = 21.04–0.0002− ∗ age (R2 = 0.12; p = 0.05)], the left
subcortical white matter [alpha frequency = −2.57−0.0002 ∗ age

(R2 = 0.2; p = 0.009)], the right subcortical white matter volume
[alpha frequency =−0.99−0.0002 ∗ age (R2 = 0.2; p = 0.008)] (see
Table 4 for a summary).
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FIGURE 3 | Alpha waves normative modeling in patients and TD participants: effect of age heterogeneity on alpha frequency. (A) Shows the raw data with the
non-parametric normative model overlaid in blue. (B) Summarises the normative scores with an histogram. ASD, autism spectrum disorder; TD, typically developing
participants.

Variability of the Results and Processing
Pipeline Methods
To explore the dependence of our results to the pipelines
of analysis, we re-extracted the alpha frequency and its peak
power from our dataset using first Matlab 2013a with the Signal
Processing toolbox, and then Python with the MNE Python
library. We compared these extractions to those obtained with
Matlab 2014 (Figure 4). No significant difference of alpha
frequency and its peak power was found between groups.
Only the pipeline with Matlab 2014 revealed a developmental
trajectory for alpha frequency in the TD group. Furthermore, the
relationship between left and right occipital gray matter volumes
and the alpha waves frequency appeared to be consistent among
the two versions of Matlab, independently from the use of the
Signal Processing toolbox (Table 4). Surprisingly none of those
significant associations reported with Matlab was confirmed with
Python (Table 5).

DISCUSSION

A personalized medicine approach in ASD will partially depend
on the identification of robust biomarkers that could provide
relevant information about its physiopathology or predict the
response to treatment. In this way, EEG provides a low-cost
but efficient access to brain activity (specifically the postsynaptic

potential) with a temporal resolution that go beyond most of the
neuroimaging technics (such as functional magnetic resonance
imaging) (Buzsáki et al., 2012). Numerous studies pointed
toward the alpha waves abnormalities as a robust markers of
social dysfunction, especially in ASD (Mathewson et al., 2012;
Edgar et al., 2015; Dickinson et al., 2017). Studies reported
abnormal frequency or peak power at rest in patients with ASD
(Murias et al., 2007) and a deficit in alpha waves suppression in
an observed social-communication action condition (Oberman
et al., 2005; Dumas et al., 2014b; Hobson and Bishop, 2016).
However inconsistency among reports questioned the reliability
of these results and need a better scrutiny of the methodological
and clinical heterogeneity (Takahashi, 2013). Collecting a larger
sample size than most studies of the field, we developed a
systematic analysis pipeline aiming to control the detection of the
alpha characteristics and potential-related anatomical features
that may influence the EEG signal. Nor linear regression neither
non-linear normative model did allow to identify a significant
relationship between the peak power or the frequency of the
alpha waves and the presence of autistic symptoms. Similarly,
we observed the alpha characteristics were not significantly
influenced by the volume of the white/gray cortical/subcortical
brain regions.

Our results thus contrasted with early studies supporting
either decreased (Cantor et al., 1986; Dawson et al., 1995;
Shephard et al., 2018) or increased (Ogawa et al., 1982;
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TABLE 4 | Bivariate regression analysis regarding the association between alpha characteristics (frequency and power) analyzed with Matlab 2014, Matlab 2013, and
Python related to neuroanatomic volumes.

Alpha frequency Alpha peak power

Matlab 2014 Matlab 2013 Python Matlab 2014 Matlab 2013 Python

Intracranial brain volume R2 = 0.01 R2 = 0.0001 R2 = 0.12 R2 = 0.03 R2 = 0.01 R2 = 0.11

Total brain volume R2 = 0.08 R2 = 0.09 R2 = 0.15 R2 = 0.003 R2 = 0.04 R2 = 0.04

Thalamic volume Left R2 = 0.03 R2 = 0.05 R2 = 0.48 R2 = 0.002 R2 = 0.001 R2 = 0.05

Right R2 = 0.004 R2 = 0.05 R2 = 0.38 R2 = 0.0001 R2 = 0.001 R2 = 0.05

Caudate volume Left R2 = 0.02 R2 = 0.03 R2 = 0.35 R2 = 0.01 R2 = 0.06 R2 = 0.19

Right R2 = 0.006 R2 = 0.04 R2 = 0.27 R2 = 0.005 R2 = 0.08 R2 = 0.11

Putamen volume Left R2 = 0.13∗ R2 = 0.04 R2 = 0.11 R2 = 0.002 R2 = 0.09 R2 = 0.11

Right R2 = 0.08 R2 = 0.03 R2 = 0.17 R2 = 0.0003 R2 = 0.03 R2 = 0.0003

Pallidum volume Left R2 = 0.01 R2 = 0.007 R2 = 0.41 R2 = 0.0003 R2 = 0.0009 R2 = 0.0006

Right R2 = 0.002 R2 = 0.012 R2 = 0.28 R2 = 0.02 R2 = 0.007 R2 = 0.19

Hippocampic volume Left R2 = 0.03 R2 = 0.05 R2 = 0.28 R2 = 0.05 R2 = 0.0002 R2 = 0.13

Right R2 = 0.06 R2 = 0.05 R2 = 0.12 R2 = 0.01 R2 = 0.013 R2 = 0.02

Amygdala volume Left R2 = 0.0002 R2 = 0.02 R2 = 0.36 R2 = 0.002 R2 = 6.7 × 10−5 R2 = 0.09

Right R2 = 0.006 R2 = 0.02 R2 = 0.38 R2 = 0.005 R2 = 5.3 × 10−5 R2 = 0.05

Accumbens nucleus volume Left R2 = 0.17∗ R2 = 0.07 R2 = 0.18 R2 = 0.005 R2 = 0.06 R2 = 0.09

Right R2 = 0.07 R2 = 0.01 R2 = 0.24 R2 = 0.002 R2 = 0.02 R2 = 0.28

Frontal gray matter volume Left R2 = 0.08 R2 = 0.05 R2 = 0.02 R2 = 0.05 R2 = 0.03 R2 = 0.44

Right R2 = 0.09 R2 = 0.07 R2 = 0.04 R2 = 0.035 R2 = 0.001 R2 = 0.13

Parietal gray matter volume Left R2 = 0.16∗ R2 = 0.09 R2 = 0.17 R2 = 0.07 R2 = 0.06 R2 = 0.007

Right R2 = 0.08 R2 = 0.14∗ R2 = 0.01 R2 = 0.01 R2 = 0.04 R2 = 0.18

Occipital gray matter volume Left R2 = 0.15∗ R2 = 0.16∗ R2 = 0.23 R2 = 0.04 R2 = 0.11 R2 = 0.05

Right R2 = 0.05∗ R2 = 0.12∗ R2 = 0.31 R2 = 0.05 R2 = 0.09 R2 = 0.0009

Temporal gray matter volume Left R2 = 0.06 R2 = 0.02 R2 = 0.29 R2 = 0.05 R2 = 0.01 R2 = 0.14

Right R2 = 0.02 R2 = 0.007 R2 = 0.38 R2 = 0.001 R2 = 0.009 R2 = 0.005

Subcortical gray matter volume Left R2 = 0.004 R2 = 0.02 R2 = 0.05 R2 = 0.005 R2 = 0.04 R2 = 0.002

Right R2 = 0.06 R2 = 0.04 R2 = 0.12 R2 = 0.008 R2 = 0.02 R2 = 0.06

Frontal white matter volume Left R2 = 0.01 R2 = 1.9 × 10−6 R2 = 0.17 R2 = 0.009 R2 = 0.08 R2 = 0.07

Right R2 = 0.07 R2 = 0.006 R2 = 0.29 R2 = 0.008 R2 = 0.05 R2 = 0.05

Parietal white matter volume Left R2 = 0.02 R2 = 0.002 R2 = 0.22 R2 = 0.009 R2 = 1.7 × 10−5 R2 = 0.002

Right R2 = 0.04 R2 = 0.002 R2 = 0.01 R2 = 003 R2 = 0.007 R2 = 0.05

Occipital white matter volume Left R2 = 0.0009 R2 = 0.002 R2 = 0.11 R2 = 0.09 R2 = 0.04 R2 = 0.24

Right R2 = 0.001 R2 = 0.002 R2 = 0.42 R2 = 0.01 R2 = 0.0007 R2 = 0.03

Temporal white matter volume Left R2 = 0.005 R2 = 0.0002 R2 = 0.002 R2 = 0.01 R2 = 0.02 R2 = 0.01

Right R2 = 2.4 × 10−9 R2 = 0.09 R2 = 0.05 R2 = 0.02 R2 = 0.01 R2 = 0.03

Subcortical white matter volume Left R2 = 0.2∗ R2 = 0.16 R2 = 0.06 R2 = 0.03 R2 = 0.12 R2 = 0.02

Right R2 = 0.2∗ R2 = 0.09 R2 = 0.68 R2 = 0.03 R2 = 0.06 R2 = 0.13

∗p < 0.05. Colors indicate inconsistents results, with statistically significant and non statistically significant differences respectively in green and orange.

Chan and Leung, 2006; Murias et al., 2007) power in alpha waves
activity. Those discrepancies among studies may rely on a higher
variability of brain patterns in ASD patients compared to TD
participants (Hahamy et al., 2015), with even sometimes the
juxtaposition of opposite effects (at the sample level) (Jung et al.,
2017). Interestingly, the variability appears correlated to the
severity of autistic symptoms entailing greater deviations, both
positive and negative, in participant with ASD. These results
encouraged the development of new approaches like normative
models to move away from the traditional case vs. control
approach and tackling heterogeneity (Marquand et al., 2016).
This also encourages a better account of EEG complexity such
as the spatial and electrophysiologic properties of information

transfer between brain regions (Mohammad-Rezazadeh et al.,
2016). For example, graph methods were recently used to test
both the temporal synchronization and the spatial organization
of the resting state signal (Zeng et al., 2017). They observed
a deficit in synchronization between regions in ASD, mainly
affecting the theta (fronto-occipital pathways) and the alpha
bands (inter-hemispheric desynchronization), associated with
a more significant deficit in the local clustering than in the
long-range connections.

In contrast to our initial hypothesis, we did not observe
a specific relationship between the thalamus and the alpha
characteristics (Zotev et al., 2018). However, there was a trend
for an association between the striatum and the alpha frequency:
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FIGURE 4 | Alpha waves characteristics analyzed by Matlab 2013 versus Matlab 2014. (A) Alpha peak power (dB). (B) Alpha frequency (Hz).

TABLE 5 | Bivariate regression analysis regarding the association of alpha
characteristics (frequency and power) related to participants age.

Matlab 2014 Matlab 2013 Python 2.7

Alpha frequency ASD R2 = 0.001 R2 = 0.01 R2 = 0.01

TD R2 = 0.001 R2 = 0.1∗ R2 = 0.04

Alpha power ASD R2 = 0.08 R2 = 0.06 R2 = 0.08

TD R2 = 0.0001 R2 = 0.08 R2 = 0.02

ASD, autism spectrum disorder; TD, typically developing participants. ∗p < 0.05.

the left putamen volume located in its dorsal region (p = 0.04) and
the left nucleus accumbens from its region were both associated
with alpha frequency (p = 0.002). These results provided
additional evidence suggesting the involvement of the striatum
in low-frequency oscillations. At rest, a recent study showed the
fMRI BOLD activity of the posterior nodes of the default mode
network (which includes the dorsal striatum) was significantly
correlated to the alpha waves oscillations (Zotev et al., 2018).
Also, theta-alpha oscillations correlate with the striatum activity
in recollection and reinforcement learning tasks (Herweg et al.,
2016), in line with recent EEG results showing a dynamical
interplay between reinforcement learning and memory processes
(Collins and Frank, 2018). In our study, we also observed that
the volumes of the left parietal gray matter (p = 0.02) and
the bilateral occipital gray matter (respectively, p = 0.03 and
p = 0.05) were associated with the alpha waves frequency. These
results corroborated those obtained by magnetoencephalography
showing that the alpha activity was associated with part of
the occipital lobe (around the Calcarine Sulcus region) and
the parietal association cortices (Edgar et al., 2015). Specifically
in patients with ASD, these two distinct regions displayed
specific pattern of activation in the alpha band, suggesting an
intra-parietal or intra-occipital functional dysconnectivity, but
also between these two brain structures or between these two
regions and widespread brain regions (Ye et al., 2014). The
functional dysconnectivity between occipital and parietal regions,
which are involved in the observation of human biological

motion, may result in an abnormal information processing in
ASD (Dumas et al., 2014b; Keehn et al., 2017).

One of the aims of the study was also to further explore the
developmental effect on alpha waves, i.e., the effect on age on
the alpha frequency and power, suggesting a major interaction
between both. The linear method we used first with Matlab 2013
found no statistically significant difference between the ASD and
TD groups, nor the effect of age. However, repeated analyses
with Matlab 2014 only found a developmental trajectory for the
alpha peak frequency (r2 = 0.1) in the TD group (Table 4) which
were coherent with developmental differences already reported,
namely an increase of the alpha frequency and power with the age
of the participant (Dustman et al., 1999; Marshall et al., 2002).

Our sample size did not account for a difference in this trend
contrary to previous reports (Tierney et al., 2012). Since there was
a significant interactions with age in the neurotypical population,
we nevertheless developed a non-parametric normative models
aiming at renormalizing alpha characteristics by taking into
account potential non-linear effects of age (Marquand et al.,
2016). Even after such correction, we did not observe any
difference between the two groups.

Phenotypic heterogeneity of ASD might be the cause for
the lack of significant association despite our methodological
account of the confounding effects of brain volume and
age variability. The difference of deviation from normal
distribution after non-parametric normative modeling reflects
this increased heterogeneity in both alpha frequency and
amplitude. Autism, as a spectrum, is known to display strong
heterogeneity. For instance, Charman et al. (2017) with the
largest longitudinal cohort in autism research in Europe
(LEAP) highlighted how this phenotypic heterogeneity include
variations both in core ASD symptom severity and in commonly
co-occurring psychiatric symptoms, even with a systematic
account of sex, age, and IQ. Other studies reported how this
heterogeneity is also observable at the genetic (Huguet et al.,
2013), neuroanatomical (Lenroot and Giedd, 2006; Lefebvre
et al., 2015), and neurofunctional (Hahamy et al., 2015;
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Kitzbichler et al., 2015) levels. Development of stratification
biomarkers and international collaboration to gather large
cohort is thus a priority to decipher this heterogeneity (Loth
et al., 2016). The reproducibility crisis recently mediatized in
psychology and neurosciences also shows the importance to
increase sample sizes (Smith and Nichols, 2018), the level of
statistical practices (Kriegeskorte et al., 2009), and the publication
of negative results (Button et al., 2013). Here we also showed
that the choice of software also introduced another form of
heterogeneity, leading to non-replicable results on the same data.
In our case, the proprietary software Matlab and the EEGlab
toolbox were introducing an unexpected change in spectral
analyses depending on the presence of the Signal Processing
toolbox. We addressed this issue in bioinformatics recently (Kim
et al., 2018) and neuroinformatics is not an exception to this
underestimated problem. While there is not much discussion
of the EEG literature, the observations that different operating
system for deriving neuroanatomical volume from automated
brain segmentation might be a source of heterogeneity have been
already described in the MRI literature (Gronenschild et al., 2012;
Glatard et al., 2015).

Another source of confound may lie in the measure
considered here. Despite alpha being a tentative biomarker
because of its link with social cognition (Tognoli et al.,
2007; Dumas et al., 2010) and its robust detection and
ability to classify other disorders (Engemann and Gramfort,
2015), disentangling ASD from neurotypical population may
require the use of more advanced metrics such as functional
connectivity (Murias et al., 2007; Khan et al., 2013) or entropy
(Bosl et al., 2011; Zeng et al., 2017). Even the structure of
alpha rhythm appears more complex than expected with fine-
grained sub-components differing in frequency and spatial
characteristics (Barzegaran and Knyazeva, 2017). A better
understanding of the alpha rhythm – in both health and
diseases – will thus also require identification of those
components through their differential dynamics and source
reconstruction.

CONCLUSION

The key findings of our study are the confirmation of the
higher variability in ASD group thanks to the normative
models’ approach, and the demonstration that variation of
pipeline and software could lead to large inconsistency, even
on the same data. This may explain our inability to replicate
previous results supporting differences in alpha between ASD
and controls. This also suggests the need for more sophisticated
analytic approaches, although they may require higher-density
EEG recording, finer grain anatomical measures, and better
experimental design.

Identify novel paradigms may indeed represent the most
promising development to uncover relevant biomarkers in
ASD. Beside a more precise account of brain activity at
both temporal and spatial scales (Dumas et al., 2014b), the
challenge will be to study brain activity in individuals with

ASD during relevant ecological tasks such as real-time social
interaction (Dumas et al., 2014a). We recently proposed to
explore the EEG physiological basis of social interactions in
specific and restrain conditions, i.e., by studying the interactions
between a human and an empirically grounded computational
model of human brain and behavior (Dumas et al., 2014b).
Participants had to interact directly with a virtual partner,
which reacts in real time to the behavior of the participant.
Preliminary findings in adults from the general population
led to the identification of electrophysiological features that
would have been not apparent in real-time human social
interactions and allowed the detection of their neuroanatomical
brain correlates (Dumas et al., 2014b). Similar explorations in
patients with ASD will probably provide new avenues in the
field.
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