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EXTRA VIEW
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ABSTRACT
The nucleolus is a distinct compartment of the nucleus responsible for ribosome biogenesis. Mis-
regulation of nucleolar functions and of the cellular translation machinery has been associated with
disease, in particular with many types of cancer. Indeed, many tumor suppressors (p53, Rb, PTEN, PICT1,
BRCA1) and proto-oncogenes (MYC, NPM) play a direct role in the nucleolus, and interact with the RNA
polymerase I transcription machinery and the nucleolar stress response. We have identified Dicer and the
RNA interference pathway as having an essential role in the nucleolus of quiescent Schizosaccharomyces
pombe cells, distinct from pericentromeric silencing, by controlling RNA polymerase I release. We propose
that this novel function is evolutionarily conserved and may contribute to the tumorigenic pre-disposition
of DICER1 mutations in mammals.
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The nucleolus specializes in ribosomal transcription
and assembly

The nucleolus is the nuclear compartment in which RNA (rRNA)
is transcribed, processed, and assembled into ribosomal subunits
during interphase, that are then exported to form mature ribo-
somes. The nucleolus is formed by the process of ribosome bio-
genesis1 and organizes into 3 main zones: the fibrillar(s) center(s)
(FC), the dense fibrillar component (DFC), and the granular com-
ponent (GC). DNA (rDNA) is present within the FC, at the
periphery of which pre-rRNA is actively transcribed and elon-
gates into the DFC. RNA processing occurs co-transcriptionally
and rRNA assembles with ribosomal proteins, to form immature
ribosomes in the GC2,3 (Fig. 1). A specific RNA polymerase, RNA
polymerase I, specializes in transcription of the DNA (rDNA)
locus. The resulting 48S pre-rRNA is processed by a series of clea-
vages to obtain the 18S, 5.8S and 28S mature rRNAs, while RNA
polymerase III transcribes the fourth rRNA species, 5S rRNA,
outside the nucleolus, where it is then imported along with small
nucleolar RNAs (snoRNAs) important for rRNA processing. The
major transcriptional burden of a growing cell lies in ribosome
biosynthesis—rRNAs can represent 80% of cellular RNAs—and
is heavily correlated with rates of protein synthesis, highlighting
its central importance in cellular metabolism. Understandably,
nucleolar transcription is tightly regulated according to the phase
of the cell cycle, nutritional availability, environment, and growth
status of the cell.4 Conversely, multiple ribosomal quality control
mechanisms provide feedback for cell cycle progression.5

The rDNA promoter

The initiation of rDNA transcription requires several basal
transcription factors in addition to the multi-subunit RNA

polymerase I complex. Active rDNA promoters are organized in
a configuration free of nucleosomes,3 bound by dimers of UBF
(Upstream Binding Factor), a multi-functional HMGB-box pro-
tein which activates transcription6 and forms a structure termed
the ‘enhancosome’.7 Furthermore, UBF spreads across the rDNA
locus and contributes to its structural organization.8,9

The core rDNA promoter is bound by 2 basal transcription
initiation factors, TIF-IA/RRN3 and TIF-IB/SL1, which are
necessary for the formation of the RNA polymerase I pre-initia-
tion complex (PIC). The TIF-IB/SL1 complex comprises the
TATA-binding protein (TBP) in a specific complex with TAF
proteins (TBP-associated factors: TAF1A, TAF1B, TAF1C,
TAF1D),10 which confers promoter specificity. TIF-IA/RRN3
recruits initiation-competent RNA polymerase I complexes to
the rDNA promoter, and interacts directly with TAF1B and
TAF1C in the SL1 complex.11 Binding of SL1 to the rDNA
promoter further stabilizes UBF.12 Budding yeast and fission
yeast form a functionally equivalent TBP-TAF complex
(RRN6, RRN7, RRN11),13 while the upstream element (UCE)
of the rDNA promoter is bound by an additional complex, the
Upstream Activating Factor (UAF).14 The promoter and the
terminator regions of rDNA are brought in close contact via
binding of TTF-I, which participates in RNA polymerase I
transcription termination and re-initiation.15,16

Regulatory mechanisms of ribosomal transcription

RNA polymerase I transcription is tightly regulated to couple
the translational capability of the cell to its requirements
according to its growth status. The size and organization of the
nucleolus is particularly dependent on the phase of the cell
cycle, as well as environmental conditions.3,17 Regulation of
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RNA polymerase I transcription occurs at several key-points, in
particular at the level of the formation of the pre-initiation
complex, and it has been proposed that the rate-limiting step of
RNA polymerase I transcription is promoter clearance subse-
quent to PIC formation,18 although other studies also pointed
to transcription elongation, depending on growth conditions.19

The phosphorylation status of TIF-IA/RRN3 is regulated by
nutrient availability through the TOR signaling pathway,20,21

mitogen-activated kinase (MAPK) cascades,22 and RNA
polymerase I activity is modulated by several key signaling
pathways such as PI3K,23 AKT,24 GSK3b,25 the RAS-family
protein RasL11a.26 The inputs of these different signaling path-
ways converge to fine-tune RNA polymerase I transcription,
integrating growth factors, nutrient availability and energetic
capability.27

Another layer of regulation lies within the repetitive
structure of the rDNA. The rDNA repeats form at least 3
fractions differing in their transcriptional status: active
rDNA repeats undergoing RNA polymerase I transcription,
silent rDNA repeats packed into heterochromatin, and
poised/inactive rDNA repeats that, while not actively being
transcribed, do not present heterochromatic marks and may
constitute a readily-available ‘buffer’ of repeats.28,29 UBF is
an important player in determining the active/inactive rDNA
repeat ratio.30

Two key phases of the cell cycle when RNA polymerase I
activity needs to be regulated are mitosis and quiescence. Dur-
ing mitosis, RNA polymerase I transcription is halted until G1
via phosphorylation of UBF and the TAF1C subunit of SL1.31

Cells alternate between phases of quiescence and division, for
example, to maintain stem cell populations in mammals,32 or
to survive conditions of nutritional scarcity in microbial eukar-
yotes.33 In non-dividing quiescent cells that retain metabolic
and transcriptional activity,32,34 RNA polymerase I remains

essential for maintaining basal levels of rRNAs to ensure trans-
lation of transcripts necessary for quiescence maintenance, but
is strongly downregulated. Quiescent fibroblasts down-regulate
transcripts of genes involved in ribosomal biogenesis.35 This
regulation is conserved in eukaryotes; for example, in the fis-
sion yeast Schizosaccharomyces pombe, a model organism for
the cell cycle and cellular quiescence,33 rDNA occupancy of
RNA polymerase I is greatly decreased in quiescent cells,36 and
conversely, rDNA transcription and ribosomal proteins are
upregulated upon re-entry into the cell cycle.37

Misregulation of the nucleolus is central to cancer

Misregulation of ribosome biosynthesis, the central function of
the nucleolus, is a recurrent feature in cancer, as well as in a dis-
tinct set of rare genetic diseases known as ribosomopathies.38

Early on, an enlarged nucleolus has been recognized as a hall-
mark of cancer cells/cellular transformation,39 and higher num-
bers of silver-stained nucleolar organizer regions (NORs)
correlate with cell proliferation rate and tumor prognosis.40

This correlation can be interpreted as a cause or as a conse-
quence of the increased translational burden of cancer cells due
to their uncontrolled proliferation. On the one hand, the inabil-
ity to exit the cell cycle would leave the cell in a constant state of
growth and division, requiring heavy transcription and transla-
tion and therefore large amounts of ribosomal synthesis. On
the other hand, the existence of a nucleolar feedback on the cell
cycle4 indicates that uncontrolled rDNA transcription and mis-
regulation of RNA polymerase I activity could by itself be a
major factor promoting cellular proliferation by providing the
first step to unwarranted G0-G1 transition, a hallmark of can-
cer.41 Accordingly, recent evidence now clearly recognizes
nucleolar misregulation as an important contributor to cancer
and many key proto-oncogenes and tumor suppressors appear
to play a direct role in the nucleolus and in RNA polymerase I
transcription.17,42-46

Proto-oncogenes and tumor suppressors linked
to nucleolar function

The proto-oncogene c-Myc is a major activator of RNA pol I
transcription, is expressed in proliferating cells at a level corre-
lating with rRNA47,48 and almost absent from quiescent cells.48

c-Myc binds directly to rDNA at the promoter region and at
the transcription initiation region, as well as near a transcrip-
tion termination site, and physically associates with the TBP-
containing SL1 complex.48 Modulating c-Myc levels directly
affects levels of SL1 and UBF binding at the rDNA.48 Another
MYC family transcription factor frequently mutated in small
cell lung cancer, L-Myc, also promotes pre-rRNA synthesis.49

The nucleolar function of MYC is evolutionarily conserved as
its Drosophila ortholog dMyc also plays an essential role
controlling rRNA synthesis during development.50 In addition
to this direct role at the rDNA, MYC binds and up-regulates
ribosome biogenesis genes51 and activates RNA polymerase III
transcription of tRNAs and 5S rRNA genes.52,53 MYC therefore
appears to be a key growth regulator that directly affects tran-
scription by all RNA polymerases to modulate the translational
capacity of the cell.

Figure 1. Overview of nucleolar structure and function. RNA polymerase I transcribes
the rDNA repeats at the interface between the fibrillar center (FC) and the dense fibril-
lar component (DFC). rRNA molecules and ribosomal proteins associate in complexes
in the granular component (GC), and are exported outside of the nucleolus as imma-
ture ribosomal particles, which are then assembled into ribosomes.
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Nucleophosmin, a nucleolar proto-oncogene found mutated
in several cancer types,54 affects the nucleolar function of MYC.
In particular, c-Myc transformation is enhanced by expression
of nucleophosmin,55 and nucleophosmin is essential for c-Myc
nucleolar localization and rDNA transcription.56 An important
partner of nucleophosmin is ARF/p14, a major tumor suppres-
sor, which has recently been found to have a nucleolar function
in addition to cell cycle inhibition via the MDM2-p53 pathway.
ARF binds to the rDNA promoter,57 binds UBF in a p53-inde-
pendent manner,58 and directly affects nucleolar chromatin
organization by masking the nucleolar localization sequence of
TTF-I.59 The other major tumor suppressors Rb, and the
Rb-like protein p130, in addition to their role in G1/S cell cycle
progression inhibition via sequestering E2F factors, also
directly repress RNA polymerase I transcription by binding
and inactivating UBF.60-62

The major tumor suppressor p53 also plays an important
role coordinating ribosome biogenesis and the cell cycle/prolif-
eration via signaling nucleolar stress. Signals such as oncogenic
activation and DNA damage trigger nucleolar stress, and nucle-
olar disruption is a key event for p53 activation.63 Nucleolar
stress triggers the nucleoplasmic export of the ribosomal pro-
teins RPL5 and RPL11, which bind MDM2 and block MDM2-
mediated p53 degradation, resulting in p53 activation, cell cycle
arrest and apoptosis.64 p53 is then recruited to the FCs of the
nucleolus,65 where it represses RNA polymerase I by directly
binding to TBP and TAF-IC in the SL1 complex, disrupting its
interaction with UBF.66,67 p53 furthermore directly represses
c-Myc expression,68 along with RPL5/RPL11.69 PICT1, a nucle-
olar protein with mutations found in cancer, is a key DNA
damage sensor at the rDNA that signals nucleolar stress
through the RPL5/11-MDM2-p53 pathway70 and inhibits RNA
polymerase I transcription.71

Other examples include PTEN, a tumor suppressor that inhib-
its cellular proliferation both by inhibiting the AKT/PI3K path-
way and by affecting the rDNA occupancy of the SL1 complex,
thereby repressing RNA polymerase I transcription,72 in associa-
tion with GSK3b.25 It has also been reported that a PTEN iso-
form, PTENb, physically associates with nucleolin and the 2 core
subunits shared by RNA polymerase I and RNA polymerase III,
AC40POLR1C and AC19POLR1D to repress ribosomal transcrip-
tion.73 BRCA1, a key tumor suppressor, interacts directly at the
rDNA repeats with UBF, the SL1 complex and RNA polymerase
I, and the interaction is decreased in response to DNA damage.74

CTCF, a key insulator and multi-functional tumor suppressor
involved in chromatin organization,75 also binds unmethylated
DNA upstream of the rDNA promoter and interacts with UBF
as well as RNA polymerase I,76 and CTCF expression correlates
with pre-rRNA levels.77 In Drosophila, CTCF knock-down
results in defects of rDNA silencing and nucleolar fragmenta-
tion.78 Overall, it appears that many proto-oncogenes and tumor
suppressors have a nucleolar function and that generally, onco-
genic proteins increase RNA polymerase I transcription, while
tumor suppressors repress it.

Targeting RNA polymerase I is anti-tumorigenic

As might be expected, RNA polymerase I transcription has
emerged as a key target in cancer therapy.79 For example,

the RNA polymerase I inhibitors CX-5461 and CX-3543
(quarfloxin) have undergone early clinical trials after indica-
tions of anti-tumor activity.80,81 Both drugs bind and stabilize
G-quadruplexes at the rDNA, which in addition to inhibiting
RNA polymerase I initiation, results in the displacement of
nucleolin to the nucleoplasm, where it binds to a G-quadruplex
structure in the MYC promoter leading to repression of its
expression.82,83 CX-5461 targets MYC in myeloma in a
p53-independent manner,84 and L-Myc with strong tumor
inhibition in a mouse model of small cell lung cancer.85 The
G-quadruplex stabilization activity of CX-5461 and CX-3543
also leads to selective lethality in BRCA-deficient tumors,
including tumors resistant to PARP inhibitors.86 Several other
small molecules, BMH-9, -21, -22 and -23, which were origi-
nally identified in a screen for activators of the p53 pathway
and found to do so in a DNA damage-independent manner,87

were subsequently found to inhibit RNA polymerase I via deg-
radation of its main catalytic subunit RPA1, conferring them
potent antitumoral activity across several cancer cell types.88,89

A better understanding of nucleolar pathways in cancer will
improve our understanding of cross-reactions in combinatorial
treatments, and devise efficient and synergistic drug combina-
tions; for example, mTOR inhibitors also inhibit the p53-
dependent nucleolar stress pathway, an effect that may not be
beneficial,90 while combining RNA polymerase I inhibition
with drugs targeting MYC signaling91 or ATM/ATR signaling92

has yielded promising results.

RNA interference: A new player in nucleolar function?

We have recently discovered that Dicer plays a novel essential
function specifically in quiescent cells by targeting RNA poly-
merase I.36 The fission yeast Schizosaccharomyces pombe is an
excellent model organism for quiescence,33 and mutants in
RNA interference (RNAi) such as Dicer (dcr1D), Argonaute
(ago1D) and RNA-dependent RNA polymerase (rdp1D) lose
viability specifically in G0. Intriguingly, this novel function of
RNAi is largely independent of heterochromatin formation at
pericentromeric repeats.93 We found that in quiescence, Dicer
mutants are defective in RNA polymerase I release, resulting in
the accumulation of stalled RNA pol I over the rDNA repeats,
DNA damage (visualized using gH2AX, which is bound by
Crb253BP1), and extensive silencing of the rDNA repeats by the
H3K9 methylation machinery.36 This defect has striking paral-
lels in cycling cells, where Dicer mutants fail to release RNA
polymerase II from pericentromeres, highly expressed genes
and rDNA, also resulting in DNA damage.94,95 This parallel is
further strengthened by the observation that mutants in corre-
sponding subunits of RNA polymerase I (A12) and RNA poly-
merase II (Rpb9CTFIIS) suppress specifically Dicer’s G0 and
cycling cell silencing defects, respectively,36,96 prompting us to
propose that the RNA interference machinery is tightly associ-
ated with, and regulates, the transcription machinery of all
RNA polymerases.

Is this novel function of Dicer evolutionarily conserved? The
association of RNA polymerase I transcription with cancer,
and evidence that DICER1 is a tumor suppressor, suggest fur-
ther investigation of this possibility. Importantly this function
might be independent of Dicer’s role in the biosynthesis of
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microRNA (miRNA), which are absent from S. pombe and
most fungi. In accordance with this hypothesis, Dicer in mam-
malian cells promotes stem cell quiescence32 and can be found
in the nucleolus binding to both active and silent rDNA
repeats.97 Similarly, human AGO2 binds to numerous rRNA
sites and binding is DICER-dependent.98 While AGO2 knock-
down does not impact rRNA processing,98 Dicer and Drosha
mutants accumulate 5.8S rRNA precursors, and Dicer but not
Drosha mutants have a drastic effect on nucleolar morphol-
ogy.99 Dicer also interacts with SIRT7,100 a sirtuin that associ-
ates with RNA polymerase I and UBF in mammals.101 In
Drosophila, RNA interference is necessary for nucleolar organi-
zation,102 and in the model plant Arabidopsis thaliana, a spe-
cific set of RNA interference proteins comprising RDR2, DCL3,
AGO4, DRD1 and the specialized RNA polymerase IV co-
localize to nucleolar Cajal bodies.103,104 In Candida albicans,
Dicer is necessary for 30ETS cleavage of pre-rRNA,105 a func-
tion borne by the related RNase III enzyme Rnt1 in yeast.106

These observations strongly suggest that a nucleolar function
of RNA interference—in particular of Dicer—is conserved in
eukaryotic evolution.

Dicer is a tumor suppressor

There is now a well-described association between human
DICER1 (14q32.13) mutations and cancer risk.107 Germline
mutations in DICER1 (summarized in Fig. 2)108-117 result in a
predisposition to develop a wide variety of otherwise rare can-
cers—the “DICER1 syndrome”—such as pleuropulmonary
blastoma (PPB),118 cystic nephroma (CF),116,119 uterine cervix
rhabdomyosarcoma,120 ovarian Sertoli-Leydig cell tumors
(SL),109 thyroid cancer,121 multinodular goiter,108,122 pineoblas-
toma,123 ocular medulloepithelioma,110,124 and Wilms tumors
(nephroblastoma).120,125 In many cases of PPB and SL, there is
a frequent co-occurrence of 2 mutations;126 affected patients
most frequently inherit a null allele (frameshift or stop trunca-
tion) in the germline and subsequently acquire a mutation on
the second allele at hotspot residues in catalytic and metal-
binding residues of the RNAse IIIb domain (Fig. 2).115,127-129 In
a survey of 350 confirmed PPB cases, 66% patients carried a
germline DICER1 mutation.130 Mutations in DICER1 are fre-
quently associated with biallelic loss of TP53 in PPB131 as well
as in Wilms tumors,132 suggesting that Dicer loss may trigger
p53 activation resulting in increased selective pressure to
mutate p53 in the tumorigenic tissue. In accordance with this,

in mouse fibroblasts, Dicer deletion results in p53 activation
and induction of senescence,133 and co-ablation of Dicer and
p53 results in multiple skin carcinomas with increased DNA
damage.134 Furthermore, Dicer has been described as a key
target of the tumor suppressor p63; p63-null mice develop met-
astatic tumors with low Dicer and miR-130b expression, and
re-expression of Dicer suppresses this phenotype.135

Dicer mutants are affected in development

The frequent heterozygous profile of DICER1 mutations sug-
gests that this gene is a haploinsufficient tumor suppressor.
Dicer is essential in mammals: Dicer-null mice die before gas-
trulation.136 In a mouse model of PPB, loss of DICER1 is suffi-
cient for tumor development,137 and deletion of DICER1 in the
female reproductive tract not only impaired its development,
but also causes cystic nephromas.136 In a mouse retinoblas-
toma-sensitized model, monoallelic, but not biallelic, loss of
Dicer increases tumorigenesis,138 and complete Dicer deletion
is selected against during tumorigenesis,139-141 suggesting that
low levels of Dicer protein are able to support most of its
functions. In accordance with this, Dicer hypomorphic mice
(10–30% expression level depending on tissue) have been
reported to show few developmental defects, which were mostly
limited to pancreatic morphological abnormalities.142

Conditional Dicer knockout is lethal during the develop-
ment of many tissues, such as lung epithelia,143 Sertoli cells,144

male germ cells,145 haematopoietic stem cells and in erythroid
lineage development,146 neuronal development,147 cerebellar
development,148 and B-cell development.149 Knockdown of
Dicer results in defects in oocyte maturation.150

Which molecular function underlies Dicer’s tumor
suppressor role?

One model to explain the tumorigeneticity of DICER1 hotspot
mutations is that mutations are hypomorphic and the resulting
enzyme is still able to generate miRNAs, though with a cleavage
bias for one strand of the pre-miRNA. The RNase IIIa and
RNase IIIb domains respectively cleave the 30 (3p) and the 50
(5p) end of the double-stranded RNA in the miRNA hairpin
precursor, and the Dicer RNase IIIb mutants result in a strong
loss of 5p miRNAs.127,151,152 Conversely, Dicer RNase IIIa
mutants result in a strong loss of 3p miRNAs.151,153 Among 5p
miRNAs, the let-7 family plays a tumor suppressor role by

Figure 2. DICER1 is frequently mutated in cancer. Overview of DICER1 mutations found in several cancer types, as described in108-130 and in NCBI ClinVar. The majority of
mutations are predicted to be heterozygous germline loss-of-function alleles, while the hotspot for somatic mutations is located at the RNase IIIb domain catalytic
residues.
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repressing several targets including MYC (reviewed in154),
leading to propose that let-7 dysregulation in DICER1 mutants
is at the core of its promoting cancer stem cell stemness.155 In
C. elegans, let-7 regulates nucleolar size by affecting mRNA
levels of ncl¡1, a translational inhibitor of fibrillarin and
thereby of rRNA transcription and processing.156

While the RNase IIIb domain is a clear hotspot for second-
hit mutations in DICER1 tumors, screening of somatic muta-
tions in DICER1 syndromes should not be limited to sequenc-
ing this domain as particularly interesting mutations over the
rest of the gene have been detected. For example, a RNase IIIa
mutation was found in one Wilms tumor,125 a homozygous
G803R mutation (between the DUF283 and PAZ domains) in
another Wilms tumor,117 and a compound mutation with both
alleles truncating the protein before the RNase IIIa domain in
pineoblastoma.123 These mutations suggest that the oncogenic-
ity of DICER1 hypomorphic mutants may be more complex
than reduction of 5p miRNAs.

DICER1 is able to cleave a variety of double-stranded RNA
(dsRNA) substrates including endogenous siRNAs,157 as well
as secondary structure-forming RNAs such as RNAs containing
triplet-repeats,158 tRNAs,159 snoRNAs,160,161 the 7SL RNA
component of the signal recognition particle (SRP) com-
plex,162,163 and was shown recently to also play a role in DNA
repair via DNA damage-induced small RNAs (ddRNAs).164,165

Importantly, the biologic function of many of these substrates
is not well understood. Phenotypically, that DICER1 can have
miRNA-independent roles is also shown by its requirement for
murine oocyte development, while DROSHA is not required.166

Canonical miRNA production is abolished in DROSHA
mutant cells, while in the absence of Dicer many miRNAs are
still produced by loading pre-miRNAs directly into Argonaute,
where they are trimmed.167

Dicer in the nucleolus: A potential link underlying its tumor
suppressor role

Is there a link between the conserved role of Dicer in the
nucleolus and the pro-tumorigenic consequences of nucleo-
lar misregulation? The selection for hypomorphic RNase IIIb
mutants in DICER1 cancers is presumably explained by the
fact that Dicer is essential for cell survival, precluding bial-
lelic loss-of-function i.e. it acts as a haploinsufficient tumor
suppressor.139 But in the presence of reduced Dicer function
in polymerase release, RNA polymerase I may undergo stall-
ing and DNA damage at the rDNA, triggering activation of
the nucleolar stress pathway and p53. Selective pressure to
inactivate p53 could result in the frequent appearance of
p53 null-mutants in Dicer hypomorphs, as has been
observed.131,132 Similarly, several ribosomopathies display
both sustained activation of p53 and cancer predisposition.4

To assess this possibility, a particularly interesting line of
study would be to assay the phenotypic consequences of con-
served RNase IIIa and RNase IIIb mutations found in cancer
on nucleolar functions. In particular, as fission yeast has no
miRNA, mutants could be assayed in fission yeast for RNA
polymerase I stalling and formation of DNA damage at the
rDNA. In that regard, while the dual catalytic-mutant (IIIa C
IIIb, dcr1–5 allele in S. pombe) has an identical phenotype to

the full deletion dcr1D,36 the contribution of each RNase III
domain independently has not yet been assayed. However, it is
also possible that specific miRNAs underlie the nucleolar func-
tion of Dicer, especially given that miRNA analogs are pre-
dicted along the primary rRNA transcript.168 A set of miRNAs
is found within the nucleolus, although they appear to be
Dicer- and RNA polymerase I-independent.169 Besides, many
miRNA precursors form a structure similar to the C/D box of
snoRNAs, and are able to bind fibrillarin, including let-7 g.170

Targeting Dicer’s nucleolar function in cancer

One novel strategy for specific targeting of cancer cells is by tak-
ing advantage of negative epistatic interactions (synthetic
lethals).171 In other words, a pathway that is not essential in wild-
type can become essential in a cancerous cell; targeting this path-
way would specifically kill the cancer cell (negative epistasis is
often referred to as “oncogene addiction”). This strategy has been
successful in the identification of PARP inhibitors for targeting
tumors with BRCA1/2 mutations, leading to FDA approval of
the drug Olaparib for ovarian cancer.172 Several new negative
epistasis candidates have been proposed, through large screens
using yeast and mammalian cells in a combinatorial approach.171

Identifying genes that are negatively epistatic with DICER1
mutations would be an interesting approach toward therapeutic
prevention of DICER1 syndrome. Examples from fission yeast
suggest that DNA repair, particularly homologous recombination
repair, represents a significant negative epistatic target in Dicer
mutant cycling cells.94,173 A similar approach could be taken dur-
ing cellular quiescence, which could underlie Dicer’s tumor sup-
pressor function in regulation of RNA polymerase I. Candidates
could then be tested in mammalian cancer models.171 For exam-
ple, we have found that the G0 defects of Dicer mutants can be
rescued by alleviating RNA polymerase I stalling. One way to do
so is via lowering RNA pol I recruitment to the rDNA, for exam-
ple in the TBP mutant tbp1-D156Y.36 dcr1Dtbp1-D156Y double-
mutants show a strong reduction in DNA damage at rDNA
repeats and suppress the synthetic sickness/lethality between
dcr1D and rad51D in both dividing and non-dividing cells.36,94

Suppression was also conferred by deleting the non-essential sub-
unit Spp27 of the rDNA UAF complex (Upstream Activation
Factor), a SWI/SNF domain-containing protein that is involved
in RNA polymerase I transcription initiation (unpublished obser-
vations). Another way to alleviate stalling is to destabilize RNA
polymerase I itself, using a deletion mutant of its non-essential
subunit A12, which suppresses dcr1D G0 defects.36 Stalling of
RNA polymerase I results in the unchecked silencing of rDNA
repeats, resulting in accumulation of H3K9 methylation. Target-
ing this latter step using mutants in the H3K9 methylation path-
way, H3K9R histone substitution mutants, or HP1 mutants also
suppresses G0 lethality, although it occurs downstream and cells
therefore still undergo RNA polymerase I stalling and DNA dam-
age. Conversely, overexpression of the H3K9 methyltransferase
Clr4 (ortholog of SUV39H1) enhances the phenotype, and is
lethal in quiescent cells.36

Interestingly, no epistasis was observed between dcr1D and
the deletion mutant of the yeast ortholog of UBF, hmo1D
(unpublished observations), suggesting suppression might be lim-
ited to the TBP and UAF complexes. In an adenocarcinomal cell
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line, knock-down of Dicer results in loss of cisplatin resistance,174

potentially indicating that Dicer mutants may act independently
of UBF for RNA polymerase I transcription regulation. If this
hypothesis is true, then Dicer mutant cells may be more sensitive
to targeting the SL1 complex, or RNA polymerase I itself. Reduc-
ing the accumulation of stalled polymerases may alleviate the
tumorigenicity of Dicer-mutated cancer cells. Therefore, drugs
that inhibit RNA polymerase I transcription by targeting the SL1
complex, such as 9-hydroxyellipticin,175 or by triggering degrada-
tion of RPA1, such as BMH-9, -21, -22 and -23,88,89 would
therefore be of particular interest to test on Dicer mutant cells.
As 9-hydroxyellipticin is p53-independent175 while BMH com-
pounds trigger p53 activation,88,89 their action could be synergis-
tic, and bypass the frequent p53 loss found in Dicer tumors.131,132

Dicer has distinct roles in both quiescence
and proliferation

Epistatic interactions can be different in cycling and G0 cells.
For example, we found a very strong inhibition of growth in
double-mutants of Dicer and TTF-I, but this did not affect the
viability of quiescent cells.36 The mechanism underlying this
epistatic interaction is likely linked to DNA replication; TTF-I
bound to the rDNA terminator sites provides an unidirectional
block of the DNA replication fork, insuring that rDNA replica-
tion and rRNA transcription occur in the same direction during
S-phase to avoid replication-transcription collisions.176,177

Dicer is involved in collision resolution in fission yeast, and
could become essential for timely completion of replication in
the absence of TTF-1.94,95 It is therefore important to assay epi-
static interactions during both growth and quiescence. Ideally,
targets can be combined to achieve growth inhibition in both
actively-dividing and non-dividing cells. In the context of a
tumor, if the treatment of the majority of actively-dividing cells
does not result in complete tumor elimination, it is important
to specifically target non-dividing and slow-dividing cancer
cells responsible for relapse and metastasis.178 In this regard fis-
sion yeast would be an ideal model system for conducting such
a screen and identifying negative epistasis targets of nucleolar
functions of RNA interference and DICER1, in both cycling
and quiescent cells, which would provide potential targets of
therapeutic significance.
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