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Abstract

Multiple genome maintenance processes are coordinated at the replication fork to preserve genomic integrity. How
eukaryotic cells accomplish such a coordination is unknown. Swi1 and Swi3 form the replication fork protection complex
and are involved in various processes including stabilization of replication forks, activation of the Cds1 checkpoint kinase
and establishment of sister chromatid cohesion in fission yeast. However, the mechanisms by which the Swi1–Swi3 complex
achieves and coordinates these tasks are not well understood. Here, we describe the identification of separation-of-function
mutants of Swi3, aimed at dissecting the molecular pathways that require Swi1–Swi3. Unlike swi3 deletion mutants, the
separation-of-function mutants were not sensitive to agents that stall replication forks. However, they were highly sensitive
to camptothecin that induces replication fork breakage. In addition, these mutants were defective in replication fork
regeneration and sister chromatid cohesion. Interestingly, unlike swi3-deleted cell, the separation-of-functions mutants
were proficient in the activation of the replication checkpoint, but their fork regeneration defects were more severe than
those of checkpoint mutants including cds1D, chk1D and rad3D. These results suggest that, while Swi3 mediates full
activation of the replication checkpoint in response to stalled replication forks, Swi3 activates a checkpoint-independent
pathway to facilitate recovery of collapsed replication forks and the establishment of sister chromatid cohesion. Thus, our
separation-of-function alleles provide new insight into understanding the multiple roles of Swi1-Swi3 in fork protection
during DNA replication, and into understanding how replication forks are maintained in response to different genotoxic
agents.
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Introduction

A variety of agents, including environmental toxins or drugs,

can cause DNA damage and lead to arrest of DNA replication

forks. Arrested forks are among the most serious threats to

genomic integrity because they can collapse, break, or rearrange

[1,2,3]. To circumvent these problems, cells are equipped with a

DNA replication stress response pathway, termed the DNA

replication checkpoint or the S-phase checkpoint. This checkpoint

is activated by impeded replication forks and arrests the cell cycle

while reducing the rate of DNA synthesis in order to coordinate

with DNA repair and preserve genomic integrity [4,5,6].

In the fission yeast Schizosaccharomyces pombe, atop the replication

checkpoint system stands a protein kinase, Rad3, which is

homologous to human ATM and ATR [7,8,9]. Rad3 controls

downstream effector kinases Cds1 (functional homolog of human

Chk1) and Chk1 (functional homolog of human Chk2), both of

which are also conserved throughout evolution [7,8,9]. Chk1

promotes the DNA damage checkpoint pathway while Cds1 acts

as the master kinase for activation of the replication checkpoint to

phosphorylate Cdc25, thereby inhibiting the Cdc2 (Cdk1) kinase

and facilitating DNA repair and recombination pathways

[7,8,9,10,11,12,13]. Another important function of the replication

checkpoint is to stabilize replication forks by maintaining proper

assembly of replisome components and preserving DNA structures

when problems are encountered during DNA replication

[14,15,16,17,18]. In fission yeast, we have demonstrated that

Cds1 prevents fork collapse in response to hydroxyurea (HU) [19],

a compound that arrests replication forks, indicating that Cds1 is

required for stabilization of stalled replication forks in a replication

competent state. However, the precise molecular mechanisms by

which stalled forks activate the replication checkpoint are not

completely understood.

In our previous studies concerning the mechanisms of the

replication checkpoint, we found that Swi1 is required for proper

activation of Cds1 in response to HU and for stabilization of

replication forks in fission yeast [19]. Further investigation has

revealed that Swi1 interacts with Swi3 and travels with the
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replication fork as a replisome component [20]. In the absence of

Swi1 or Swi3, cells accumulate Rad22 DNA repair foci in S-phase

[19,20]. These foci correlate with the Rad22-dependent appear-

ance of Holliday junction (HJ)-like structures [20]. Rad22 is a

Rad52 homolog and is known to bind single-stranded DNA

(ssDNA) regions at the site of DNA damage [21,22]. Thus, our

results suggest a high rate of fork abnormalities in swi1D and swi3D
mutant cells, generating ssDNA regions near the replication fork,

which induces accumulation of HJ-like structures [19,20]. Based

on our results, we have referred to the Swi1–Swi3 complex as ‘‘the

Replication Fork Protection Complex’’ (FPC) [20]. The Swi1–

Swi3 complex is evolutionarily conserved and is homologous to the

Tof1-Csm3 complex in Saccharomyces cerevisiae and the Timeless-

Tipin complex in humans [20,23,24,25,26]. Tof1-Csm3 has been

shown to be part of the replisome or the replisome progression

complex (RPC) and is involved in Rad53 activation [27,28,29,30].

In humans, Timeless-Tipin interacts with Chk1 and ATR to

control activation of checkpoint kinase Chk1 [31,32,33,34]. We

have also demonstrated that Timeless-Tipin moves with replica-

tion forks, functions to stabilize replication forks, and facilitates

sister chromatid cohesion in human cells [35]. However, it

remains unclear how Swi1–Swi3 related complexes interact with

and stabilize replication forks and coordinate with multiple

genome maintenance processes. Therefore, it is important to

understand the functions of Swi1–Swi3, by dissecting molecular

pathways that require this protein complex.

In the present studies, we have carried out a mutational analysis

of S. pombe Swi3 to further understand the functions of the Swi1–

Swi3 replication fork protection complex. We identified separation-

of-function mutations of Swi3, which leads us to propose that Swi3

utilizes different molecular mechanisms to regulate the replication

checkpoint and sister chromatid cohesion. Swi3 appears to use the

replication checkpoint pathway to stabilize stalled replication forks.

However, when broken forks are present, Swi3 functions to restore

forks using a checkpoint-independent pathway, which is also

important for proper establishment of sister chromatid cohesion.

Results

Isolation of swi3 mutants
To understand the roles of the Swi1–Swi3 complex in the S-phase

stress response, we isolated a number of swi3 mutants using error

prone PCR (swi3 E-series). The wild-type swi3 gene was replaced

with mutagenized swi3-5FLAG genes at the swi3 genomic locus, and

mutants were tested for their viability in YES medium containing a

high dose of hydroxyurea (HU, 10 mM) or camptothecin (CPT,

10 mM). HU depletes the dNTP pool and causes an arrest of

replication fork progression, while CPT traps topoisomerase I on

DNA and induces replication fork breakage. Among 20 HU and/or

CPT-sensitive mutants, 12 mutants failed to express Swi3 as a

5FLAG fusion protein, suggesting that these mutants contain non-

sense or frame-shift mutations that cause early termination of Swi3

translation (data not shown). Therefore, we decided to further

characterize the remaining 8 mutants and swi3-NBT7, which was

individually isolated as a mating-type switching defective mutant

(see Materials and Methods). These mutants were more carefully

examined for sensitivities to HU and CPT. For sensitivity assays, we

also included methyl methanesulfonate (MMS), which causes

replication fork arrest by alkylating template DNA. The 9 mutants

were categorized into four groups according to their drug sensitivity.

Class I mutants (swi3-E40 and NBT7) showed strong sensitivity to

2 mM HU, 0.0025% MMS and 2 mM CPT (Figure 1A), which was

comparable to that of swi3D cells. Class II mutant (swi3-E31) was

sensitive to 5 mM HU, 0.005% MMS and 5 mM CPT (Figure 1A).

Class III mutants (swi3-E1, E39, E59 and E68) were not significantly

sensitive to HU and MMS, but did show significant sensitivity to

5 mM CPT (Figure 1A). Class IV mutants (swi3-E10, and E42) were

only sensitive to HU, MMS or CPT at very high doses (10 mM HU,

0.01% MMS and 10 mM CPT, data not shown) where wild-type

cells start to decrease their viability. Drug sensitivities of swi3

mutants are summarized in Table 1.

Effects of swi3 mutations on the formation of the Swi1–
Swi3 complex

Swi1 is known to co-purify with Swi3 from S. pombe cell extracts

[20,24]. Therefore, to address the effect of Swi3 mutations on

Swi1–Swi3 complex formation, we performed immunoprecipita-

tion assays to examine the ability of the Swi3 mutant proteins to

interact with Swi1. Cells expressing Swi3-5FLAG mutant proteins

were engineered to produce Swi1-13Myc from its genomic locus.

As shown in Figure 2A, all mutant cells expressed Swi1-13Myc

and Swi3-5FLAG proteins from their endogenous promoters.

Swi1-13Myc consistently showed a series of degraded bands

possibly due to proteolysis at specific sites in Swi1 (Figure 2).

Interestingly, swi3-E31, E40 and NBT7 mutant cells reproducibly

expressed reduced amounts of the Swi3 protein compared to swi3+

cells, although they are readily detectable (Figure 2A). Accord-

ingly, Swi3-5FLAG was immunoprecipitated, and Swi1 associated

with Swi3 was examined by immunoblotting using the anti-FLAG

and Myc antibodies. As shown in Figure 2A, considerable amounts

of Swi3 mutant proteins were recovered from all mutants except

for swi3-E10. Although the amount of Swi3 recovered from swi3-

E10 cells was much less than other mutants, it was still detectable.

Notably, there was no detectable interaction of Swi1-13Myc and

Swi3-5FLAG in swi3-E31, E40 and NBT7 (Classes I and II) cells,

whereas other mutants retained significant levels of Swi1–Swi3

complex formation (Figure 2A). Considering that swi3-E31, E40

and NBT7 are significantly sensitive to HU, MMS and CPT

(Figure 1A and Table 1), these data suggest that Swi1–Swi3

complex formation is required for tolerance to replication fork

arrest and damage. We also observed that swi3-E1, E39, E59 and

E68 (Class III), which retained Swi1–Swi3 complex formation,

were only sensitive to CPT (Figures 1A and 2A); suggesting that

CPT sensitivity is not caused uniquely by a defect of formation of

the Swi1–Swi3 complex, and that Swi1–Swi3 possesses at least two

separate functions in the preservation of genomic integrity.

DNA sequencing analysis of swi3 mutants isolated by error

prone PCR (swi3-E series) revealed that many of them contained

multiple mutations in swi3 (Table 1). Therefore, we employed site-

directed mutagenesis to introduce single-point mutations at sites

found in swi3-E10, swi3-E31, swi3-E40, and swi3-E68 (Table 1).

These mutants and swi3-NBT7 (L112R) were expressed from the

swi3 promoter as TAP fusion proteins in swi3D swi1-3FLAG cells.

As shown in Figure 2B, swi3-D84H (from swi3-E31), swi3-W95R

(from swi3-E40), and swi3-L112R (from swi3-NBT7) mutant cells

expressed somewhat lower amounts of Swi3-TAP protein.

Moreover, Swi3-D84H, Swi3-W95R, and Swi3-L112R proteins

failed to interact with Swi1 (Figure 2B). These data are consistent

with the results of the original mutants (swi3-E series) that showed

strong sensitivity to genotoxic agents (Figure 1A and 2A, and

Table 1). Interestingly, when the two mutations (Y111C and

K47N) present in Swi3-E68 were characterized individually, we

found that the expression level of Swi3-Y111C was lower than

wild-type and that Swi3-Y111C failed to interact with Swi1

(Figure 2B). In contrast, Swi3-K47N expression and its ability to

interact with Swi1 were indistinguishable from the wild-type Swi3

protein (Figure 2B). We obtained similar results when the single-

point Swi3 mutants were expressed as FLAG-fusion proteins (data

Swi3 in Replication Recovery
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not shown). Taken together with the fact that the original mutant

(Swi3-E68) retained ability to interact with Swi1 (Figure 2A), these

results suggest that the conformational change induced by Y111C

abolishes the interaction with Swi1, which is compensated by the

K47N mutation. More importantly, all of the single-point

mutations that eliminate Swi1–Swi3 complex formation are

located within the central ‘‘Swi3 domain’’ region (52–116 amino

acids), which shows significant homology throughout evolution

(Figures 3A) [20]. Consistently, Swi3-D84H, W95R, Y111C and

L112R mutants were all highly sensitive to HU, MMS and CPT

(Figure 1B), suggesting that complex formation is important for

cellular tolerance to S-phase stressing agents.

Structural prediction of Swi3
To understand the molecular basis of the Swi1-Swi3 replication

fork protection complex, we performed structural analyses of the

Swi3 protein at the amino acid sequence level. We used ClustalW

multiple Sequence Alignment of Swi3-related proteins, including

human Tipin, Drosophila Swi3 (dmSwi3), C. elegans Swi3 (ceSwi3), S.

pombe Swi3 and S. cerevisiae Csm3. This analysis predicted that

dmSwi3 and Csm3 have stretches of amino acid sequences that

may divide Swi3-related proteins into at least 4 functional domains

(Figure 3B and 3C). The N-terminal domain (Domain I: 1–34

amino acids) had weak similarity among the species and contained

acidic amino acid-rich sequences. The central domain (Domain II:

35–117 amino acids) possessed significant homology throughout

evolution. We have also found a putative nuclear localization

signal (NLS: 42–49 amino acids) using the PredictNLS program

provided by Columbia University. Although the NLS was only

found in S. pombe Swi3, the corresponding regions from other

species were rich in basic amino acids. Interestingly, using the

Jpred3 secondary structure prediction program provided by

Figure 1. Sensitivity of swi3 mutants to S-phase stressing agents. (A, B) Five-fold serial dilutions of cells of the indicated genotypes were
incubated on YES agar medium supplemented with the indicated amounts of HU (top panels), MMS (middle panels) and CPT (bottom panels) for 3 to
5 days at 32uC. In A, classes (C I to C IV) of swi3 mutants are indicated in parentheses. In B, original swi3 alleles from which the single point mutations
were derived are also indicated in parentheses. Representative images of repeat experiments are shown.
doi:10.1371/journal.pone.0013379.g001
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University of Dundee, we found that Domain II contained three

alpha helices, which were also conserved among the species.

Although, the third domain (Domain III: 118–149 amino acids)

was only weakly conserved, Jpred3 found that N-terminal part of

this domain contained a conserved alpha helix structure. The

fourth domain (Domain IV: 150–181 amino acids) appeared not

to be conserved and varied in their length between species.

Interestingly, the RPA-binding motif found in mammalian Tipin

[25,33] was not conserved in S. pombe, S. cerevisiae, C. elegans and

Drosophila (Figure 3A and 3C). It is important to note that all the

mutations that disrupted Swi1–Swi3 complex formation (D84H,

W95R, Y111C and L112R) were found in one of the alpha helices

within the central conserved Swi3 domain, suggesting that alpha

helix structures in Domain II play a role in interacting with Swi1

(Figure 3B and 3C).

Cellular phenotypes of swi3 mutants
We have previously shown that swi1D and swi3D cells are

moderately elongated with mild growth defect and that this

mitotic delay requires Chk1 but not Cds1 [19,20]. Therefore, we

determined growth rates and cell lengths of swi3 mutants. The

growth rates of swi3-E1, E10, E31, E39, E42, E59 and E68

(Classes II, III and IV) cells were comparable to that of wild-type

cells, whereas swi3-E40 (Class I) showed mild growth defects

similar to swi3D (Figure 4A). Interestingly, swi3-NBT7 (Class I)

had slower growth rate than swi3D (Figure 4A). Consistent with

these results, swi3-E40 and NBT7 cells (Class I) showed moderate

but statistically significant cell elongation phenotype in the

absence of genotoxic agents, which was similar to that of swi1D

and swi3D (Figure 4B). We then treated swi3 mutants with CPT

and measured their dividing cell length (Figure 4C). Wild-type

cells showed mild elongation, probably due to a cell cycle delay

provoked by replication fork breakage (Figure 4B and 4C. non-

treated: 11.80 mm; CPT-treated: 14.12 mm; p-value = 0.0013).

Consistent with the fact that CPT activates the Chk1-dependent

checkpoint pathway [36], chk1D cells failed to show a significant

elongation phenotype (non-treated: 12.07 mm; CPT-treated:

12.57 mm). Rad3, which is known to activate Chk1, also appear

to be important for this cell cycle delay (non-treated: 11.76 mm;

CPT-treated: 11.50 mm). In contrast, cds1D cells showed mild

elongation phenotype similar to wild-type (non-treated:

12.13 mm; CPT-treated: 14.84 mm; p-value = 0.0006), indicating

that Cds1, a master kinase required for the replication

checkpoint, does not have a major role in CPT-dependent cell

cycle delay. When treated with CPT, Class I mutants (E40 and

NBT7) were significantly more elongated than wild-type cells.

This elongation was similar to that of swi3D and swi1D cells

(Figure 4C), suggesting that Class I mutant cells experience severe

difficulty in recovering broken replication forks. Class IV mutants

(E10 and E42) were similar to wild-type. However, in response to

CPT, swi3-E39 (Class III) and E68 (Class III) also displayed

statistically stronger elongation phenotype, and swi3-E31 (Class

II) and E59 (Class III) reproducibly showed somewhat more

elongated phenotype when compared to wild-type. These results

suggest that Class II and III mutants might have difficulty in

recovering broken replication forks after CPT exposure, and they

are consistent with the camptothecin sensitivity of the swi3

mutants (Figure 1C).

Table 1. Summary of swi3 mutants characterized in this study.

Growth rate

Strain Class Mutation(s) YES
YES
HU

YES
MMS

YES
CPT

Swi1
interaction

Cds1
activity

Rad22
foci

wild-type none +++ +++ +++ +++ +++ ++++ 2

swi3D deletion +++ 2 2 2 N/A + +++

swi3-E1 III R125H,A170V +++ +++ +++ + +++ ++++ N/D

swi3-E10 IV K78R,Y111N,R124L +++ +++ +++ +++ +++ ++++ N/D

swi3-E31 II D84H, F171L +++ + + + 2 +++ +

swi3-E39 III W128R +++ +++ +++ + +++ ++++ +/2

swi3-E40 I N17I, W95R +++ 2 2 2 2 ++ +++

swi3-E42 IV M91I +++ +++ +++ +++ +++ ++++ N/D

swi3-E59 III I94K,K68E,D177N +++ +++ +++ + +++ ++++ N/D

swi3-E68 III K47N,Y111C +++ +++ +++ + +++ ++++ N/D

swi3-NBT7 I L112R +++ 2 2 2 2 + +++

swi3-D84H D84H +++ + + + 2 N/D +++

swi3-F171L F171L +++ +++ +++ +++ +++ N/D +

swi3-N17I N17I +++ +++ +++ +++ +++ N/D +

swi3-W95R W95R +++ 2 2 2 2 N/D +++

swi3-Y111C Y111C +++ 2 2 2 2 N/D +++

swi3-K78R K78R +++ +++ +++ +++ +++ N/D +/2

swi3-K47N K47N +++ +++ +++ +++ +++ N/D +

swi3-L112R L112R +++ 2 2 2 2 N/D +++

swi3-Y111N Y111N +++ +++ +++ +++ +++ N/D +/2

swi3-R124L R124L +++ +++ +++ +++ +++ N/D +

doi:10.1371/journal.pone.0013379.t001
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Effects of swi3 mutations on the recovery of broken
replication forks

We have previously shown that Swi1 and Swi3 are required for

stabilization of replication forks [19,20,37]. To investigate the

effect of Swi3 mutations on replication fork stability, we examined

the recovery of DNA replication after fork breakage induced by

CPT treatment. We chose representative swi3 mutant(s) from each

swi3 mutation class, including swi3-NBT7 and swi3-E40 (Class I),

swi3-E31 (Class II), and swi3-E39 (Class III). Class IV mutants

were not included because they were not significantly sensitive to

genotoxic agents (Figure 1). Chromosome samples of wild-type

and swi3 mutant cells were prepared before and at 3 h after CPT

treatment, and at different time points during recovery after the

removal of CPT. These chromosomes were then resolved by PFGE,

which allows only a fully replicated chromosomes to appear in the gel

(Figure 5A, the top and middle panels). Intact chromosomes from

exponentially growing cells (log) in wild-type and all mutant strains

migrated into the gel. CPT treatment causes replication fork

breakage, leading to the reduction in the amount of intact

chromosomes that migrated into the gel in wild-type and all swi3

mutant cells. When cells were returned into fresh medium without

CPT, intact chromosomes from wild-type cells re-appeared in the gel

at 1.5 h after CPT removal due to the completion of DNA synthesis.

Figure 2. Effects of swi3 mutations on the formation of the Swi1-Swi3 complex. (A) Protein extracts were prepared from cells expressing
the indicated fusion proteins. Swi3-FLAG (Swi3-FL) was precipitated, and associated proteins were probed with the anti-Myc 9E10 and anti-FLAG M2
antibodies. Classes (C I to C IV) of Swi3 mutants are indicated in parentheses. The appearance of two to three bands in Swi1-Myc Western blots is due
to degradation of the fusion protein [20,24]. The Swi3-E40 mutant protein showed slower mobility, which is possibly due to mutational effects.
Although only small amount of the Swi3-E10 protein was recovered by immunoprecipitation, Swi1-13Myc was efficiently co-precipitated with Swi3-
E10. Western blotting of tubulin was performed as a loading control. (B) Protein extracts from the indicated strains were subjected to Swi3-TAP
precipitation experiments, and associated proteins were probed with the anti-FLAG M2 and PAP antibodies. Original swi3 alleles from which the
single point mutations were derived are also indicated in parentheses. Although reduced amount of Swi3 were recovered by immunoprecipitation in
swi3-D84H, L112R and R124R, they were all readily detected. Asterisk indicates non-specific bands. Representative results of repeat experiments are
shown. IP, immunoprecipitation; WB, Western blotting; WCE, whole cell extract.
doi:10.1371/journal.pone.0013379.g002
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However, intact chromosomes from all swi3 mutant cells failed to

migrate into the gel at 1.5 h and 3 h during recovery, indicating that

Swi3 is required for the recovery of DNA replication after fork

breakage. In addition, all swi3 mutants contained excessive amounts

of fragmented chromosomes during and after CPT exposure

(Figure 5A, the top and middle panels), suggesting that Swi3 might

be involved in efficient repair of broken replication forks.

Swi3 plays a role in recovery of broken replication forks
in a manner independent of checkpoints

It is known that Swi3 is important for efficient activation of the

Cds1-dependent replication checkpoint [20]. Therefore, we

compared the replication recovery defect of swi3 mutants with

that of checkpoint mutants (Figure 5A, the bottom panel). cds1D
cells failed to show significant defects in replication recovery after

CPT exposure, indicating that Cds1 does not have a major role in

the recovery of broken replication forks. It is known that Chk1 has

a major function in the DNA damage checkpoint but also plays a

redundant role with Cds1 in DNA replication checkpoint [12].

When chk1D cells were tested, a mild defect in replication recovery

was observed in response to CPT. This is consistent with the fact

that CPT activates the Chk1-dependent DNA damage checkpoint

[36]. However, chk1D cells were able to recover replication more

efficiently than any of the swi3 mutants tested. In addition, there

was much less accumulation of CPT-dependent fragmented

chromosomes in both cds1D and chk1D cells compared to the

swi3 mutants. We also examined chromosomal DNA isolated from

rad3D cells (Figure 5A, the bottom panel). rad3D cells failed to

recover replication and accumulated fragmented chromosomes as

expected from the role of Rad3 in activation of both Cds1 and

Chk1. These results suggest that the replication checkpoint

function of Swi3 does not have a major role in the recovery of

broken replication forks induced by CPT. To further address this

possibility, we directly compared swi3D and rad3D cells in the

recovery of broken forks, using a lower dose of CPT and longer

recovery time points (Figure 5C). In this condition, rad3D cells

were able to recover broken replication forks more efficiently than

swi3D cells (Figure 5C). In addition, swi3D cells accumulate

significantly more fragmented DNA during recovery when

compared to rad3D cells. Furthermore, swi3D rad26D cells were

much more sensitive to CPT than either single mutant (Figure 5D).

We also obtained similar results with swi1D rad26D cells in a CPT

sensitivity assay (Figure 5D). Rad26 is essential for activation of

Rad3, which is required for both Cds1 and Chk1 activities [38,39].

Therefore, our results suggest that Swi3 has a specific role in

replication recovery after fork breakage, which is independent of

Cds1 or Chk1 activation.

Effects of swi3 mutations on the replication checkpoint
The Cds1-dependent replication checkpoint is required for the

resumption of stalled replication forks in response to HU

[9,13,19]. Since Swi3 is important for the full activation of Cds1

and for the stabilization of stalled replication forks in response to

HU that activates Cds1 [20], we also monitored replication

recovery after fork arrest due to HU exposure. swi3-NBT7 (Class

I), swi3-E31 (Class II), swi3-E39 (Class III), and swi3-E40 (Class I)

cells were treated with HU for 3 h and released into fresh medium

to allow resumption of replication. As expected, swi3D, cds1D and

rad3D cells, which all have defects in Cds1 activation, were not

able to properly resume stalled forks after HU exposure

(Figure 5B). swi3-NBT7 and E40 cells also showed resumption

defects similar to swi3D (Figure 5B), suggesting the failure in Cds1

activation in these mutants. swi3-E31 had mild defect in recovery

from HU, which is consistent with its mild sensitivity to HU

(Figure 1). Interestingly, swi3-E39 cells were able to resume

replication (Figure 5B) at the wild type level, suggesting that the

Cds1-dependent replication checkpoint is still functional in this

mutant.

Taken together, our present data indicate that Swi3 has a

replication function that is independent of Cds1 activation.

Therefore, we have examined the effects of swi3 mutations on

Cds1 activity. As shown in Figure 6A and Table 1, although there

was a variation, Class I swi3 mutants (swi3-NBT7 and E40) had the

most significant defects in Cds1 activation, which is consistent with

the results of PFGE after HU treatment (Figure 5B). Class II

mutants (swi3-E31) also displayed a slight decrease in Cds1

activation. However, Class III (swi3-E1, E39, E59 and E68) and

Class IV (swi3-E10 and E42) appeared to have wild-type levels of

Cds1 activity (Figure 6A and Table 1). These results indicate that

Class I and II mutants but not Class III and IV mutants have a

defect in the Cds1-dependent replication checkpoint. Taken

together with the fact that swi3-E39 (Class III) mutants failed to

recover replication after fork collapse provoked by CPT

(Figure 5A, middle panel), our results also indicate that Swi3’s

role in Cds1 activation is independent of the function of Swi3 in

the recovery of broken replication forks.

Replication abnormalities in swi3 mutants
To further evaluate replication abnormalities in swi3 mutants,

we also monitored the formation of Rad22-YFP DNA repair foci

in the absence of genotoxic agents. Rad22 is a homolog of budding

yeast Rad52 and has been shown to bind ssDNA at the site of

DNA damage [21,22]. Depletion of swi3 was shown to be

associated with replication fork abnormalities, resulting in the

strong accumulation of spontaneous Rad22-YFP DNA repair foci

during unperturbed S-phase [20] (Figure 6B). Therefore, we

monitored the formation of spontaneous Rad22-YFP foci in the

swi3 mutants. As shown in Figure 6B, we observed dramatically

elevated levels of Rad22-YFP foci formation in swi3-NBT7 (Class

I) and swi3-E40 (Class I) and significantly increased levels in swi3-

E31 (Class II) (Figure 6B), suggesting that these mutants

accumulate DNA damage probably during normal DNA replica-

tion. It is important to note that these mutants are defective in

Swi1-Swi3 complex formation (Figure 2A). Interestingly, swi3-E39

Figure 3. Structure of Swi3 related proteins. (A) Schematic drawing of Swi3 homologs from S. pombe (Sp Swi3), S. cerevisiae (Sc Csm3) and
humans (Hs Tipin). Gray boxes indicate regions of amino acid sequences that are highly conserved throughout evolution. This region in each protein
is called the Swi3 domain. The RPA-binding motif is found only in human Tipin. Mutation sites found in swi3 alleles are indicated. aa, amino acid.
(B) The Swi3 polypeptide was divided into 4 putative functional sub-domains. The dark gray box (Domain II) indicates the region with amino acid
sequences that are conserved throughout evolution. This region contains a putative NLS (42–49 aa) and the Swi3 domain (52–116 aa), the latter of
which includes three conserved a-helices: h1 (63–69 aa), h2 (81–97), and h3 (105–114 aa). The light gray box (Domain III) has amino acid sequences
that are weakly conserved among species and contain a conserved a-helix (h4, 119–131 aa). Swi3 also has a stretch of acidic amino acids at 26–32
within Domain I. The positions of mutations that abolish Swi1–Swi3 complex formation are indicated. aa, amino acid. (C) Multiple sequence
alignment of Swi3 homologs from S. pombe (Sp Swi3), humans (Hs Tipin), C. elegans (Ce Swi3), Drosophila melanogaster (Dm Swi3) and S. cerevisiae (Sc
Csm3). Locations of the putative NLS, the conserved acidic region, the conserved a-helices, and mutations found in our swi3 mutant collection are
shown.
doi:10.1371/journal.pone.0013379.g003
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(Class III) cells failed to show a significant increase in spontaneous

DNA damage foci (Figure 6B), suggesting that these cells are

proficient in normal DNA replication. Since swi3-E39 (Class III) is

largely defective in the recovery of broken replication forks

(Figure 5A), the results suggest that Swi3 has a specific function in

facilitating repair of broken forks. We have also monitored Rad22-

YFP in single-point swi3 mutants and found that swi3-D84H (E31),

swi3-W95R (E40), swi3-Y111C (E68) and swi3-L112R (NBT7) cells

have greatly increased DNA repair foci formation (Figure 6B). All

these mutants were defective in Swi1-Swi3 complex formation,

suggesting the importance of the Swi1–Swi3 complex in

suppression of spontaneous DNA damage during unperturbed

DNA replication.

Sister chromatid cohesion abnormalities in swi3 mutants
We have previously found that Swi1 and Swi3 are required for

proper establishment of sister chromatid cohesion [37]. There-

fore, we examined the effect of swi3 mutations on sister chromatid

cohesion. To monitor cohesion defects in swi3 mutants, we used a

strain that has the bacterial LacO tandem repeat sequences

inserted at the lys1 locus located in the vicinity of the centromere

on chromosome I. This strain is engineered to express the LacI

repressor fused to GFP-NLS, which is recruited to LacO repeat

sequences, allowing us to visualize centromere 1 [37,40]. If sister

chromatids are properly adhered to one another, the GFP signal

should resolve as a single focus in the nuclei until cells enter

anaphase when cells separate two sister chromatids. However, if

sister chromatids are prematurely separated, two distinct GFP

foci would occur before cells enter anaphase. Using this system,

we determined the effect of swi3 mutations on cohesion at the

centromere region. For synchronization, we used nda3-KM311

cold-sensitive background to arrest cells at prophase/metaphase

by culturing cells at 20uC [41]. Because sister chromatids are still

attached to one another at prophase/metaphase, the majority of

wild-type cells showed a single centromere focus in nuclei

(Figure 7A). In contrast, the experiments revealed a significant

increase in the number of nuclei with two foci in swi3-NBT7,

swi3-E31, swi3-E39 and swi3-E40 cells (Figure 7A and 7B). This

indicates that these mutants have a defect in efficient establish-

ment of sister chromatid cohesion. Moreover, considering the fact

that swi3-E39 has defects in replication recovery after fork

breakage but not in Cds1 activation (Figure 5A and 6A), our

results are consistent with the notion that the checkpoint role of

Swi3 is not sufficient for proper establishment of sister chromatid

cohesion. The data also suggest that swi3-E39 has a defect in a

specific function that is required to coordinate with cohesion

processes.

We have previously shown that swi3D is synthetically lethal with

deletion of ctf18, which encode the largest subunit of an alternative

replication factor C complex (RFCCtf18) required for establishment

of sister chromatid cohesion [37,42,43]. swi3-NBT7 and swi3-E40

were found to be synthetically lethal with ctf18D (data not shown).

This is consistent with the fact that these mutants displayed

phenotypes similar to those of swi3D cells. Although swi3-E31

ctf18D and swi3-E39 ctf18D cells were viable, these double mutants

were much more sensitive to CPT compared to either single

mutant (Figure 7C). Importantly, although swi3-E31 and swi3-E39

were not sensitive to 15 mg/ml of thiabendazole (TBZ), swi3-E31

ctf18D and swi3-E39 ctf18D showed TBZ hypersensitivity

(Figure 7C). TBZ sensitivity is found among mutants that affect

general sister chromatid cohesion and segregation [44,45,46,47].

Therefore, these results strengthen the fact that the cohesion

function of Swi3 is defective in swi3-E31 and E39.

Figure 4. Effects of swi3 mutations on cell growth and length.
(A) Cells of the indicated genotypes were grown in YES media at 30uC
and measured for OD600 nm values at the indicated times. (B, C) Cells of
the indicated genotypes were grown in YES supplemented with 0 (B) or
30 mM (C) CPT for 7 h at 25uC, and cell length at septation was measured.
At least 25 septated cells were measured for each strain. Error bars
correspond to standard deviations. * P-values (,0.01) determined by
paired Student’s t-test indicate that these mutants show statistically
significant elongation phenotype compared to wild-type cells.
doi:10.1371/journal.pone.0013379.g004
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Discussion

Programmed fork pausing and replication termination events

near the mating-type (mat1) locus are needed to create an imprint

and initiate a gene conversion event that switches mating-type in

fission yeast [48,49]. These events require swi1+ and swi3+ genes

[48]. Since mutations in these genes were found to be synthetically

lethal with a mutation in DNA polymerase a, the role of swi1+ and

swi3+ in DNA replication was proposed [48]. Accordingly, Swi1

and Swi3 have been identified and shown to form a stable complex

that plays critical roles in stabilization of replication forks, activa-

tion of the replication checkpoint, and coordination of leading-

and lagging-strand DNA synthesis [19,20,23,24,48,50,51]. In

addition, Swi1 and Swi3 are required for proper establishment

of sister chromatid cohesion [37]. However, the molecular

mechanisms by which Swi1 and Swi3 stabilize replication forks

and contribute to various replication-associated events remain

elusive. Therefore, in this report, as an initial step toward

dissecting the molecular pathways that require the Swi1–Swi3

replication fork protection complex, we performed mutational

analyses of Swi3. Accordingly, we found separation-of-function

mutations that led us to the conclusion that Swi3 utilizes different

pathways to regulate the replication checkpoint and replication-

dependent sister chromatid cohesion.

Roles of Swi1–Swi3 complex as a checkpoint mediator
Our investigation suggest that the central conserved region of

Swi3 is essential for interacting with Swi1 (Figure 2 and 3 and

Table 1) and that Swi1–Swi3 complex formation is required for S-

phase stress response (Figures 1A and 1B). Mutations that abolish

Swi1–Swi3 complex formation sensitize cells to many different S-

phase stressing agents. swi3-NBT7, E40 and E31 mutants (Classes I

and II), all of which have a defect in Swi1-Swi3 complex

formation, showed significant sensitivity to HU, MMS and CPT

(Figure 1A). HU and MMS cause an arrest of the replication fork,

which in turn activates the Cds1-dependent replication check-

point. Consistently, swi3-E31, swi3-NBT7 and E40 had impaired

Cds1 activity (Figure 6A) and had significant defects in resumption

of replication after HU treatment (Figure 5B). Since replication

resumption from HU arrest requires Cds1 [9,13,19], our data

suggest that Swi1–Swi3 complex formation plays a critical role in

activation of the replication checkpoint and stabilization of stalled

replication forks in response to HU. In addition to the checkpoint

defect in swi3-NBT7, E40 and E31, these cells showed strong

accumulation of spontaneous Rad22 DNA repair foci, indicative

of DNA damage (Figure 6B). Consistently, when we examined

single-point mutants defective in Swi1–Swi3 complex formation,

cells showed dramatic accumulation of Rad22-YFP DNA repair

foci in the absence of genotoxic agents (Figure 6B and Table 1).

Therefore, although there is a possibility that these mutants might

not be solely defective in Swi1–Swi3 complex formation, our

results are consistent with the notion that Swi1–Swi3 complex

formation is also important to prevent DNA damage, probably

during normal DNA replication.

Intriguingly, all mutations affecting Swi1–Swi3 complex

formation were located in one of the putative alpha helices found

in the central conserved domain (Figure 3B, Domain II),

suggesting that such alpha helix structures play an important role

in protein-protein interaction. Interestingly, Swi3-E68 (K47N,

Y111C) retained the ability to interact with Swi1 (Figure 2A), and

corresponding mutant cells were sensitive to CPT, but not HU

and MMS (Figure 1A). In contrast, swi3-Y111C mutant cells were

highly sensitive to HU, MMS and CPT (Figure 1B), and the Swi3-

Y111C protein failed to interact with Swi1 (Figure 2B). This

indicates that the K47N mutation alleviates the defect of swi3-E68

cells in Swi1–Swi3 complex formation and restores tolerance to

HU and MMS, agents that activate the replication checkpoint.

These results further support the idea that Swi1–Swi3 complex

formation is essential for its function as a mediator of the

replication checkpoint.

Roles of Swi3 in the recovery of broken replication forks
It is important to note that some of the swi3 mutants (Class III

mutants: swi3-E1, E39, E59 and E68) were only sensitive to CPT,

which causes replication fork breakage (Figure 1). In these

mutants, Swi1–Swi3 complex formation was unaffected, and cells

failed to show significant HU sensitivity (Figures 1A, 2A and

Table 1). Consistently, all Class III mutants had robust Cds1

activation in response to HU (Figure 6A and Table 1). In addition,

swi3-E39 cells were able to normally resume DNA replication after

HU-dependent fork arrest (Figure 5B). Since swi3-E39 cells were

not able to recover damaged replication forks provoked by CPT

(Figure 5A), our results suggest that Swi3 regulates at least two

separate pathways. The first pathway is checkpoint-dependent,

which is to promote Cds1 activation and stabilize stalled

replication fork in response to HU-dependent fork arrest

(Figure 8). The second pathway is to promote efficient DNA

replication and/or replication recovery after CPT-dependent fork

breakage, which is independent of the Cds1-dependent replication

checkpoint (Figure 8). This model is consistent with the previous

study that reported the role of Swi3 in survival of MMS, which is

also independent of Cds1- and Chk1-mediated checkpoints [23]. It

has been known that Cds1 is involved in replication fork

stabilization in response to HU in S. pombe [9,13,19]. It has also

been reported in S. cerevisiae that Rad53 (Cds1 homolog) is required

to prevent accumulation of unusual DNA structures at the

replication fork in response to fork arrest induced by HU or

MMS [14,16,17]. Since Swi1–Swi3 is required for the chromatin

association of Mrc1, which is essential for Cds1 activation [52],

Swi1–Swi3 may regulate the replication checkpoint pathway by

recruiting Mrc1 to activate Cds1 and promote fork stabilization in

response to HU (Figure 8). However, in the presence of CPT,

Cds1 is dispensable when cells restore broken replication forks

(Figure 5A). Therefore, fork stabilization function of Cds1/Rad53

may be important when the fork is arrested by dNTP depletion

(HU) or alkylation of template DNA (MMS), and this function is

checkpoint-dependent. However, when cells are treated with CPT,

replication forks must be recovered by a different mechanism that

utilizes Swi1–Swi3, but is independent of the replication

checkpoint (Figure 8). It is possible that Swi1–Swi3 facilitates

efficient repair of broken replication forks, although further

investigation is needed to address this possibility. It is also feasible

that Swi1–Swi3 promotes DNA replication after DSBs at forks

Figure 5. Effects of swi3 mutations on the recovery of replication forks. (A, B, C) Chromosome samples from cells of the indicated
genotypes were examined by PFGE. Cells were grown until mid-log phase and then incubated in the presence of 30 mM CPT (A), 20 mM HU (B) or
15 mM CPT (C) for 3 h at 30uC. Cells were then washed and released into fresh medium. Chromosomal DNA samples were prepared at the indicated
times. swi3 (except for swi3-E39) and cds1 mutants appeared to harbor a shorter chromosome III, which is probably due to recombination at rDNA
repeats [23,37,66]. Representative results from repeat experiments are shown. (D) Five-fold serial dilutions of cells of the indicated genotypes were
incubated on YES agar medium supplemented with the indicated amounts of CPT for 3 days at 32uC.
doi:10.1371/journal.pone.0013379.g005
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have been repaired. Therefore, we propose a model in which

Swi1–Swi3 is involved in at least two processes during fork

recovery. First, Swi1–Swi3 is required to resume arrested

replication fork in a replication checkpoint-dependent manner.

This process can be referred to as ‘‘fork stabilization’’ (Figure 8).

Second, Swi1–Swi3 may also be important to re-capture

replication fork and/or re-assemble replisome components when

forks are broken. This ‘‘fork regeneration process’’ is independent

of the replication checkpoint (Figure 8). Our results are consistent

with the idea that Class I and II mutants have defects in both ‘‘fork

stabilization’’ and ‘‘fork regeneration’’ processes, while swi3-E39

mutant (Class III) is proficient in ‘‘fork stabilization’’ but defective

Figure 6. Effects of swi3 mutations on Cds1 kinase activity and DNA repair foci formation. (A) Cells of the indicated genotypes were
incubated in YES medium supplemented with 12 mM HU for 0 (open bars) and 2 h (closed bars) at 30uC. Kinase activity of immunoprecipitated Cds1
was measured using myelin basic protein (MBP) as a substrate. MBP was separated on 15% polyacrylamide gels and detected by Coomassie Brilliant
Blue staining. The gel was dried, and radioactivity levels (cpm) of MBP were determined in a liquid scintillation counter. Relative radioactivity levels of
Cds1 were calculated by setting the radioactivity of MBP from the HU-treated wild type sample to 100%. Error bars correspond to standard deviations
obtained from three independent experiments. (B) Cells of indicated swi3 mutants were engineered to express Rad22-YFP and grown in YES medium
at 25uC until mid-log phase. The percentages of nuclei with at least one focus are shown. At least 200 cells were counted for each strain. Error bars
correspond to standard deviations obtained from at least three independent experiments. This analysis shows that a large increase in Rad22-YFP foci
accumulation was observed in swi3 mutants that have a defect in Swi1–Swi3 complex formation.
doi:10.1371/journal.pone.0013379.g006
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in ‘‘fork regeneration’’. In budding yeast, it is proposed that Tof1-

Csm3-Mrc1 form a ‘‘fork pausing complex’’, which is required to

stabilize stalled replication forks [28]. In this model, the fork

pausing complex is involved in coupling of polymerases and

helicases at stalled replication forks. However, in S. pombe, Swi1–

Swi3 (Tof1-Csm3 homolog) only weakly associates with Mrc1,

while the interaction between Swi1 and Swi3 is tight [20,52]. In

addition, our data strongly support the idea that Swi1–Swi3 also

plays a role in fork-recapture and/or -reassembly when forks are

actually broken. Therefore, we prefer the model in which Swi1–

Swi3 functions as a ‘‘fork protection complex’’ that promotes both

fork-stabilization and fork-regeneration processes in response to

various genotoxic agents (Figure 8).

Roles of Swi3 in replication-coupled sister chromatid
cohesion

The present studies revealed that a separation-of-function

mutation of Swi3, which render cells sensitive specifically to

CPT, also caused sister chromatid cohesion defects comparable to

swi3 deletion mutants. This mutant (swi3-E39) also had defects in

recovery of broken replication forks but not in resumption of

arrested forks (Figure 5), the latter of which is dependent on the

Cds1-dependent replication checkpoint. It has been thought that

proteins involved in replication checkpoint safeguard sister

chromatid cohesion [53]. While this is true, our present results

are consistent with the notion that the checkpoint and cohesion

roles of Swi3 are separable, and that the replication checkpoint

function of Swi3 is not sufficient for cohesion process. Intriguingly,

fork-regeneration function of Swi3 is coupled with sister chromatid

cohesion (Figure 8). Therefore, we propose that the replication

checkpoint and chromosome cohesion function in separate

pathways. We also propose that Swi1–Swi3 has a key role in

replication-coupled sister chromatid cohesion established at the

replication fork. Consistently, we have shown that Timeless

interacts with cohesin subunits in human cells [35]. Moreover,

Timeless downregulation led to dissociation of cohesin subunits

Figure 7. Effects of swi3 mutations on sister chromatid cohesion. (A) Cells of the indicated genotypes were grown to mid-log phase and
incubated at 20uC for 3 and 5 h to obtain prophase/metaphase cells. All cells contain the nda3-KM311 mutation and LacO repeats near centromere 1
and express LacI-GFP-NLS. Representative images at 5 h are shown for cells of indicated genotypes. (B) Quantification of prophase/metaphase cells
that had two GFP foci shown in A. At least 200 cells were counted for each strain. Error bars correspond to the standard deviations obtained from at
least three independent experiments. (C) Five-fold serial dilutions of cells of the indicated genotypes were incubated on YES agar medium
supplemented with the indicated amounts of HU, CPT, and TBZ for 3 to 5 days at 32uC. swi3-E31 and swi3-E39 has synergistic genetic interaction with
ctf18D in CPT and TBZ sensitivities. However, swi3-E31 but not swi3-E39 had additive genetic effect with ctf18D in HU sensitivity, strengthening the
idea that swi3-E39 is proficient in the Cds1-dependent replication checkpoint. Representative images of repeat experiments are shown.
doi:10.1371/journal.pone.0013379.g007
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from chromatin and defects in sister chromatid cohesion in human

cells [35]. Interestingly, we have also demonstrated in both S.

pombe and human cells that Swi1–Swi3Timeless-Tipin acts together

with Chl1ChlR1, a DNA helicase known to be required for

establishment of sister chromatid cohesion [35,37]. Therefore, we

suggest that Swi1–Swi3Timeless-Tipin and Chl1ChlR1are in the same

pathway to control fork regeneration and cohesion processes

(Figure 8).

Recent studies have shown the role of sister chromatid cohesion

in the repair of DSBs [54,55]. Therefore, we also speculate that

improper cohesion in the absence of Swi3 can affect efficient

repair of DSBs at replication forks when cells are treated with

camptothecin. Therefore, it is possible that Swi1–Swi3 facilitates

sister chromatid cohesion to promote efficient recapture of the fork

during recombination processes, which also contribute to the

regeneration of replication forks (Figure 8).

Materials and Methods

General Techniques
The methods used for genetic and biochemical analyses of

fission yeast have been described previously [56,57]. PCR

amplification of DNA was done using EX taq DNA polymerase

(TaKaRa, Ohtsu, Japan). Accurate PCR reactions were confirmed

by DNA sequencing analyses. Western blotting, Cds1 kinase assay,

and drug sensitivity assays were performed as described in our

earlier studies [37,58]. For immunoblotting, Myc, TAP, and

FLAG fusion proteins were probed with the anti-c-Myc 9E10

monoclonal antibody (Covance, Berkeley, CA), PAP (Peroxidase

Anti-Peroxidase Soluble Complex antibody) (Sigma-Aldrich, St.

Louis, MO), and the anti-FLAG M2 monoclonal antibody (Sigma-

Aldrich), respectively. TAT-1 [59] was used to detect tubulin.

Microscopic analyses of green fluorescent protein (GFP) and

yellow fluorescent proteins (YFP) were performed using Olympus

PROVIS AX70 microscope equipped with a Retiga EXi camera

(QImaging, Surrey, BC, Canada). Images were acquired with

Ivision software (BioVision Technologies, Exton, PA).

Plasmids
Genomic DNA was isolated from S. pombe cells containing the

swi3-TAP-kanMX6 gene [20]. The 1.7 kb swi3-TAP genomic

fragment including the swi3 promoter region was amplified by

PCR from this genomic DNA preparation, and subsequently

cloned into the XbaI/KpnI site of pJK148 [60] to generate

pJK148-swi3-TAP. The 1.3 kb mutant swi3-5FLAG fragments

were amplified by PCR from genomic DNA prepared from swi3

mutants, and cloned into the XbaI/BamHI site of pJK148 to

generate pJK148-swi3-5FLAG. The 1.5 kb NotI-BglII fragment

containing a C-terminal rad22 region fused with YFP cDNA

[19,61] was introduced into the NotI/BamHI site of pJK210 [60],

resulting in pJK210-rad22-YFP-CT.

S. pombe strains
The S. pombe strains used in this study were constructed using

standard techniques [56], and their genotypes are listed in

Supplementary Table S1. swi1-13Myc (swi1-13Myc-hphMX6),

swi3-13Myc (swi3-13Myc-hphMX6) and ctf18D (ctf18::hphMX6) were

generated by a one-step marker switch method [62] using the swi1-

13Myc-kanMX6, swi3-13Myc-kanMX6 and ctf18::kanMX6 strains,

respectively. Single-point swi3 mutants were generated by Kunkel

site-directed mutagenesis [63] in pJK148-swi3-TAP, and integrat-

ed at the leu1 locus of the swi3::kanMX6 swi1-3FLAG-kanMX6

strain. To visualize Rad22-YFP in swi3 mutants, pJK210-

Rad22YFP-CT was integrated at the rad22 locus of the swi3

mutant strains. To monitor cohesion defects, pJK148-swi3 (wild-

type or mutants)-5FLAG was integrated at leu1 locus of an S. pombe

strain containing nda3-KM311, swi3::KanMX6, lys1+:LacO repeat

and his7+:GFP-LacI-NLS.

Mutations and epitope-tagged genes have previously been

described for swi1D (swi1::kanMX6) [19]; swi1-13Myc (swi1-13Myc-

kanMX6), swi1-3FLAG (swi1-3FLAG-kanMX6), swi3D (swi3::-

kanMX6), swi3-TAP (swi3-TAP-kanMX6), swi3-3FLAG (swi3-

3FLAG-kanMX6), swi3-13Myc (swi3-13Myc-kanMX6) [20], cds1D
(cds1::kanMX6), chk1D (chk1::kanMX6), rad3D (rad3::kanMX4), ctf18D
(ctf18::kanMX6) [37], rad26D (rad26::ura4+) [64], nda3-KM311 [41],

and lys1+-LacO repeat his7+-dis1promoter-GFP-LacI-NLS [40].

Isolation of swi3 mutants
Genomic DNA was isolated from S. pombe cells containing the

swi3-5FLAG-kanMX6 gene [20]. The 2.9 kb swi3-5FLAG-kanMX

genomic fragment was amplified from this genomic DNA

preparation by PCR, and subsequently cloned into the AdhI site

of pBluescript II TKS (+) [65] to generate the pTKS-swi3-

5FLAG-kanMX construct. Error-prone PCR was performed using

five- and threefold higher than recommended concentrations of

EX taq DNA polymerase and dNTPs, respectively. The wild-type

swi3+ gene was replaced with the mutagenized swi3-5FLAG-

kanMX6 gene at the swi3 locus by a standard transformation

method. Kanamycin-resistant colonies were isolated and their

growth was examined to select for hydroxyurea- and camptothe-

cin-sensitive mutants. This method generated eight swi3 mutants,

which are designated swi3-E1, swi3-E10, swi3-E31, swi3-E39, swi3-

E40, swi3-E42, swi3-E59 and swi3-E68. We also isolated the swi3-

NBT7 mutant by selecting for mating-type switching defective

mutants.

Figure 8. Models for Swi1–Swi3 dependent preservation of
genomic integrity in S. pombe. Swi1–Swi3 complex is involved in
both checkpoint-dependent and -independent pathways to maintain
genomic integrity. Swi1–Swi3 regulates Mrc1 and Cds1 to promote
checkpoint activation and fork stabilization in response to HU-
dependent fork arrest. Swi1–Swi3 uses a checkpoint-independent
mechanism to regenerate broken replication forks when cells are
treated with CPT. Swi1–Swi3 may regulate Chl1 to promote efficient
establishment of sister chromatid cohesion, which might also be
involved in fork regeneration.
doi:10.1371/journal.pone.0013379.g008
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Precipitation of TAP and FLAG-tagged proteins
Precipitation of TAP-tagged proteins were performed using

immunoglobulin G-Sepharose beads (GE Healthcare, Piscataway,

NJ) as previously described [37]. For precipitation of FLAG-

tagged proteins, cells expressing FLAG-fusion proteins were

cultured in YES medium and collected when an optical density

of 1.2 at 600 nm was reached. Cells were then lysed with glass

beads in lysis buffer A {50 mM Tris-HCl (ph 8.0), 150 mM NaCl,

0.1% NP-40, 10% glycerol, 50 mM NaF, 1 mM Na3VO4, 5 mM

EDTA, 5 mM N-methylmaleimide, 1 mM microcyctin, 0.1 mM

okadaic acid, 0.2 mM p-4-amidoinophenyl-methane sulfonyl

fluoride hydrochloride monohydrate (p-APMSF) and Roche

complete EDTA-free protease inhibitor cocktail} using a FastPrep

cell disrupter (Qbiogene, Irvine, CA) for two cycles of 20 seconds

each at speed 6, with a one-minute interval on ice between the two

cycles. Protein extracts were clarified by centrifugation at

13,000 rpm in an Eppendorf microcentrifuge 5415D for 10 min

at 4uC, mixed with anti-FLAG M2 agarose (Sigma-Aldrich) and

incubated for 2 hr at 4uC. The agarose beads were collected and

washed three times in lysis buffer A. Proteins associated with the

beads were analyzed by Western blotting.

Pulsed-field gel electrophoresis (PFGE)
Exponentially growing cells were treated with the indicated

amount of camptothecin (CPT) or hydroxyurea (HU) for 3 h at

30uC, and then they were washed and released into fresh YES

medium. Cells were collected at the indicated times, and chromo-

somal DNA samples were prepared in agarose plug and analyzed

with CHEF-DRII system (Bio-Rad) as previously described [37,58].

Detection of Rad22-YFP DNA repair foci
Cells expressing Rad22-YFP foci from its own promoter were

grown at 25uC in YES liquid medium until mid-log phase, and

then Rad22-YFP localization was analyzed as previously described

[37,58]. At least 200 cells were counted for each strain in each

experiment.

Chromosome cohesion assay
Chromosome cohesion assay was performed as described

previously [37]. We used a cold-sensitive nda3-K311 strain

harboring bacterial LacO tandem repeat sequences inserted in

the vicinity of the centromere on chromosome 1 [40]. This strain is

engineered to express the LacI repressor fused to GFP-nuclear

localization signal (NLS), which is recruited to LacO repeat

sequences, allowing to visualize the centromere 1 [40]. The nda3-

K311 cells were grown to mid-log phase at 30uC and shifted to a

restrictive temperature, 20uC. At the indicated time, GFP foci

were monitored and imaged. Quantification of GFP foci has been

performed at least three times, and at least 200 cells were counted

for each strain in each experiment.

Supporting Information

Table S1 S. pombe strains used in this study.

Found at: doi:10.1371/journal.pone.0013379.s001 (0.05 MB

DOC)
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