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Abstract
Members of the Anopheles gambiae species complex are primary vectors of human malaria

in Africa. Population heterogeneities for ecological and behavioral attributes expand and

stabilize malaria transmission over space and time, and populations may change in

response to vector control, urbanization and other factors. There is a need for approaches

to comprehensively describe the structure and characteristics of a sympatric local mosquito

population, because incomplete knowledge of vector population composition may hinder

control efforts. To this end, we used a genome-wide custom SNP typing array to analyze a

population collection from a single geographic region in West Africa. The combination of

sample depth (n = 456) and marker density (n = 1536) unambiguously resolved population

subgroups, which were also compared for their relative susceptibility to natural genotypes

of Plasmodium falciparummalaria. The population subgroups display fluctuating patterns of

differentiation or sharing across the genome. Analysis of linkage disequilibrium identified 19

new candidate genes for association with underlying population divergence between sister

taxa, A. coluzzii (M-form) and A. gambiae (S-form).

Introduction
Throughout sub-Saharan Africa, members of the Anopheles gambiae species complex are pri-
mary vectors of the human malaria parasite, Plasmodium falciparum, which is responsible for
extensive human morbidity and mortality. Heterogeneity within the A. gambiae complex for
ecological preference, feeding behavior, and Plasmodium susceptibility stabilize and expand
the malaria vectorial system in nature [1, 2]. Phenotypic differences for these traits can vary
between population subgroups or among individuals within a subgroup, and are influenced by
genetic variation [3–9].
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Previous studies have characterized population structure of the A. gambiae species complex,
focusing on the ‘chromosomal forms’ carrying non-random combinations of segregating para-
centric inversions [6–8], and also on the reproductively isolated subgroups originally named
the M and S molecular forms [10–12]. The latter were recently renamed as A. coluzzii and A.
gambiae, respectively, sister taxa within the A. gambiae species complex that also contains 6
additional species [13]. To date, most studies have examined population structure by genotype
analysis of candidate loci using panels of microsatellite markers [11, 14, 15]. Genotyping using
single-nucleotide polymorphism (SNP) array technology was first explored in a study of geno-
mic regions that are differentiated between sympatric A. coluzzii and A. gambiae, termed speci-
ation islands (SI) [16–18], although the role of these islands in population differentiation or
speciation remains unresolved [19]. A custom SNP array, similar to the one used here but
focusing mainly on candidate insecticide resistance loci, was used to screen large numbers of
samples for novel insecticide resistance loci as well as for assessment of population subdivision
[18, 20].

The distribution of A. coluzzii and A. gambiae across West Africa is correlated with ecologi-
cal factors [21–23], and the two species display different frequencies of the kdr insecticide-
resistance allele, a coding SNP (variant L1014F) of the para gene encoding a voltage-gated
sodium ion channel [24]. Genetic analysis reveals additional levels of substructure within A.
coluzzii [11] and A. gambiae populations [15], which has not yet been fully characterized. A.
coluzzii and A. gambiae were initially thought to be highly reproductively isolated, but elevated
rates of hybridization between them were described in certain geographic zones [25–27], and
more recent work has shown that introgression between the two sister species is widespread
and extensive [28] as is introgression with another closely related species, A. arabiensis [29].

Mosquito sampling strategies for studies of vector populations vary widely, from punctual
collections representative of a particular geographic location at one time point (e.g. [30]) to
repeated sampling of a site over time (e.g. [28]). Most population studies of the A. gambiae spe-
cies complex have sampled broadly across geography but not deeply, that is, sample sizes per
site tend to be relatively small [21, 31]. As our goal was comprehensive analysis of a local mos-
quito population, we generated large collections from a single local population in Burkina Faso
over two transmission seasons. Initial analysis of this population using a limited number of
microsatellite loci identified, in addition to A. coluzzii and A. gambiae, a novel subgroup
named Goundry [14], an apparent founder population that may have originated by introgres-
sion between A. coluzzii and A. gambiae [28], followed by establishment of mating barriers
between Goundry and the sympatric A. coluzzii and A. gambiae. The latter two species share
extensive variation, cluster closely together [29], and display a deeper separation from the
Goundry subgroup than from each other [14, 28].

Here, we designed a custom SNP array using the Illumina Golden Gate genotyping platform
to analyze additional population samples and their metadata, including resting behavior and
malaria susceptibility. Resting behavior is important because most vector control tools target
indoor-resting mosquitoes [7]. Our goal was a comprehensive analysis of population structure
within a deeply sampled local vector population. Given the higher density of SNP markers
used as compared to a previous analysis of the same local population [14], we were also able to
examine variation of differentiation patterns across the genome. Genotyping of a medium den-
sity SNP marker set (n = 1536) in a large number of individual samples occupies an efficient
analytical niche that balances cost and effort. A high-density Affymetrix array [32] or whole
genome sequencing provide more information per sample, but high per-sample cost limits the
practical sample size and may diminish the attractiveness of these approaches for population-
based studies. The feature density of the current study was more than sufficient for
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identification of population substructure. We present an approach to acquire genome-wide
variation data from deep samples, while balancing cost and effort.

Results

Comprehensive detection of subdivision in a local population
Using a custom designed SNP chip we analyzed population subdivision in a deeply sampled
local vector population in Burkina Faso. We first hybridized a pilot (n = 96) and then an
expanded (n = 384) set of samples. The first 96 samples were used to validate array perfor-
mance and included duplicates (n = 24) to verify reproducibility of genotype calls. The 72
unique samples in the pilot set included indoor-resting collections of A. coluzzii (n = 11), A.
gambiae (n = 12), larval collections of Goundry (n = 19) as well as sibling species A. arabiensis
(n = 30). Importantly, the expanded set of 384 samples were chosen based solely on their par-
ticipation in a successful experimental feeding on malaria-infective blood and thus, aside from
taking a bloodmeal, constituted an unbiased set of population samples.

Genotypes generated by the uniformly-spaced genome-wide marker set revealed four dis-
tinct clusters when analyzed by principal component analysis (PCA). Overlay of species diag-
nostic results (Fig 1A) indicates the presence of A. coluzzii, A. gambiae, A. arabiensis, and a
cluster where both A. coluzzii and A. gambiae species markers are present, the Goundry form,
a discrete group with undetermined taxonomic status [14, 28]. Behavioral metadata (Fig 1B)
indicate that the clusters of pure A. coluzzii and A. gambiaemosquitoes include individuals
captured both from larval pools and as indoor-resting adults, while mosquitoes of the Goundry
form were found in larval pools but were absent from collections of indoor-resting adults, con-
sistent with their apparently exophilic behavior [14]. Samples were also overlaid with the kar-
yotype of the paracentric 2La inversion (Fig 1C) as determined by a molecular diagnostic assay
[33], and the genotype for the nucleotide mutation of the para gene associated with pyrethroid
insecticide resistance (kdr, Fig 1D) [34]. The same four major population groups are detected
using half the number of markers (n = 400 randomly chosen SNPs, Fig 2). Similarly, analysis of
samples by individual year (i.e., malaria transmission season) yields the same population clus-
ters (Fig 3) with no detectable difference in the relative proportions of the three population
groups across the two transmission seasons (chi-square = 0.457, df = 2, p = 0.796). The stability
of the PCA results indicates that identification of major subgroups for this local population is
comprehensive, and that it is unlikely that other major genome wide subdivision is present in
the population sample.

Genetic association for susceptibility to P. falciparum
The Goundry subgroup displays significantly higher susceptibility to infection with wild P. fal-
ciparum as compared to A. coluzzii and A. gambiae (p<1�10−4), consistent with previous
observations [14] but here confirmed with independent samples. We also find no difference for
P. falciparum infection susceptibility between A. coluzzii and A. gambiae (p = 0.31), which is in
accord with multiple published reports [35–39].

Genomic patterns of LD and recombination within population subgroups
Genome-wide marker density in the current study is substantially higher than the density of
microsatellites previously employed in population-level studies using similarly large sample
sizes [11, 14], and consequently permits examination of finer patterns of genomic differentia-
tion between taxa. Markers on chromosome 3 have been previously employed as essentially
neutral loci to estimate genome-wide differentiation, independent of potentially confounding
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features such as inversions or major A. coluzzii/gambiae-related elements such as SI [10, 11, 14,
40]. Non-overlapping sliding window analysis of uniformly spaced SNPs across chromosome 3
indicates that there is little or no differentiation between A. coluzzii and A. gambiae across
most of the genome (Fig 4A and 4D), consistent with reports of extensive gene flow between
them [14, 16, 17, 32, 41]. The greatest levels of differentiation between A. coluzzii and A. gam-
biae are localized in the centromeric SI (Fig 4B and 4C). In distinction, the Goundry group
diverges sharply from A. coluzzii and A. gambiae across the genome, even in the windows that
do not separate A. coluzzii and A. gambiae (Fig 4A and 4D).

We scanned the genomes of the A. coluzzii and A. gambiae for signals of population genetic
differentiation, in order to identify positions displaying long-range LD beyond the well-studied
SI of the centromeric regions. Local correlation due to physical linkage on the chromosome is
evident across centromeric regions (Fig 5, boxes), consistent with the low recombination rates
in centromeres. Marked linkage disequilibrium is also detected across chromosomes between
physically unlinked sites (Fig 5, circles), consistent with locations of the centromeric SI [42].
Because the X-chromosome SI is the main driver of the observed genome-wide disequilibrium
between A. coluzzii and A. gambiae ([28] and Fig 5) we screened for genome-wide SNPs that

Fig 1. A comprehensive image of population structure is provided by genome-wide SNP typing in a local Anopheles population. Principal
component analysis (PCA) was performed on 812 genome-wide, uniformly spaced SNPs typed in 422 individual mosquitoes collected in the village of
Goundry, Burkina Faso over two years. A-F, Symbol color represents genetic attributes determined by molecular assays. A) species, B) collection method,
C) genotype of 2La inversion, and D) genotype of kdr insecticide resistance-associated SNP. Axis labels for (A-D) as in (A). E) The cumulative variance of the
PCA explained as a function of the number of principal components. The first two components explain greater than 25% of the variation. F) Distribution of
SNPmarkers across the genome. Vertical blue bars indicate the number of SNPs per Mb, vertical black bars indicate the breakpoints between chromosome
arms. The circled cluster in all panels indicates those individuals belonging to the Goundry form.

doi:10.1371/journal.pone.0145308.g001
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Fig 2. Identical population substructure is detected with half the number of SNPs. The same PCA analyses as in Fig 1 were repeated with 400
randomly sub-sampled SNPs, revealing the same four population subgroups. Panel labels (A-F) as in Fig 1. Note the Principal Component 2 is in opposite
polarity to Fig 1, hence the presence of the A. arabiensis cluster in the lower right hand corner. Circled cluster indicates individuals belonging to the Goundry
form.

doi:10.1371/journal.pone.0145308.g002

Fig 3. Population subdivision is comparable across twomalaria transmission seasons. Samples are
colored by collection year, 2007 (red) and 2008 (blue). The 96 pilot samples used for initial quality control are
indicated in gray. There is no significant difference in the composition of the local mosquito population across
years (chi-square = 0.457, df = 2, p = 0.796).

doi:10.1371/journal.pone.0145308.g003
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display high r2 values with the subgroup-diagnostic X-chromosome SI. Measuring LD of
genome-wide SNPs with positions highly diagnostic for the underlying population subdivision
should be more informative than simple genome-wide FST measurement. We identified 66
SNPs that met the selection and quality criteria (Fig 5 and S2 Table). The candidates are dis-
tributed over 45 genes, thus some genes carry multiple SNPs. Of these, 24 SNPs in 20 genes lie
outside the previously identified centromeric SIs. Only one of these genes (Tep3) has been pre-
viously implicated in A. gambiae/A. coluzzii differentiation [43], and thus the other 19 repre-
sent novel candidate genes associated with population differentiation between the two species.
Known or predicted gene functional categories include immunity, nervous system and devel-
opment (S2 Table), and offer multiple plausible candidates for follow-up studies, including
testing within A. coluzzii and A gambiae populations at other sites where they are sympatric. In

Fig 4. Sliding window PCA indicates that differentiation between A. coluzzii and A. gambiae is restricted to centromeric chromosome regions.
Chromosome 3 is analyzed as four non-overlapping windows of 115 uniformly spaced SNPs each, as follows: A) Telomeric and central region of
chromosome 3R, B) centromeric region of chromosome 3R, C) centromeric region of chromosome 3L, and D) central and telomeric region of chromosome
3L. Sliding window analysis indicates that A. coluzzii (blue) and A. gambiaemosquitoes (red) cluster together as an apparently panmictic population when
typed using non-centromeric markers. In contrast, the Goundry form (turquoise) is distinct from A. coluzzii and A. gambiae across the entire length of both
chromosome arms, at both centromeric and non-centromeric sites.

doi:10.1371/journal.pone.0145308.g004

Fig 5. Signals of population differentiation between A. gambiae and A. coluzzii.We screened for
genome-wide linkage disequilibrium (LD) outside the centromeric Speciation Islands (SI). The individual SNP
that is the most informative for the observed genome-wide disequilibrium between A. coluzzii and A. gambiae
is position X.23852135, located within the X-chromosome SI (see Methods). This SNP was tested for LD with
all other genome wide SNPs at an r2>0.5, minor allele frequency�10%. The plot indicates SNPs highly
correlated with X.23852135 under these parameters. 66 SNPs outside of centromeric SI met selection and
quality criteria as new candidate markers of subgroup/sister taxa differentiation (S2 Table). Circles highlight
linkage patterns across chromosomes, while squares indicate the high-LD centromeric regions of each
chromosome.

doi:10.1371/journal.pone.0145308.g005
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contrast to the above among-subgroup analysis, LD signals within population subgroups
appeared as expected for the SNP marker density, detectable mainly at centromeres and segre-
gating inversions (Fig 6).

Candidate diagnostic SNPs for molecular attributes
We identified a set of 21 candidate SNPs that were highly informative for the detection of mos-
quito genetic attributes. Seven highly informative SNPs were identified for each attribute, i)
karyotype of the 2La inversion, ii) genotype of the para gene kdrmutation associated with
pyrethroid resistance, and iii) A. gambiae/A. coluzzii differentiation. Sequenom genotyping
assays were developed and 80 individual samples were genotyped (S3 Table). Genotype calls
from Illumina and Sequenom were highly concordant. The SNPs represent a candidate diag-
nostic set highly efficient for the local population in Burkina Faso, but as yet untested for sam-
ples from other geographic sites. Diagnostic utility of these candidate SNPs for the research
community will thus require additional confirmation in other populations.

Discussion

Population structure determined by local population sampling
We sampled a local West African mosquito population over time and genotyped it with a large
number of genome-wide markers selected for information content, but without regard to gene
functional category. This approach yielded a comprehensive characterization of local popula-
tion substructure, an important prerequisite for accurate assessment of vector control interven-
tions, as well as for association studies linking measured phenotype to underlying genotype.
The use of 800 markers in a ~280 Mb genome was more than sufficient to detect the level of
population subdivision that, if left undetected, would likely lead to spurious results in a genome
wide association study [45]. As few as 400 random markers (~2 markers/Mb) were adequate to
detect the same major subdivisions.

Although whole-genome resequencing has become more accessible, nevertheless the analy-
sis of>400 mosquitoes from one geographic site by resequencing for a single project would be
costly. The SNP genotyping results obtained here have been used to identify small numbers of
candidate ancestry-informative SNPs for different attributes (S3 Table). However, general
applicability of this SNP set for other mosquito populations will require additional validation
using samples collected over the species/attribute range. In the end, simplified, ideally field
deployable assays allow routine acquisition of deep population genetic information from large-
scale field surveys done for biological studies or evaluation of vector control.

Regarding the Goundry form, the desirable SNPs for a diagnostic assay would be the fixed
differences present in Goundry and absent from non-Goundry individuals. SNPs identified
from the current study were ascertained from available A. gambiae and A. coluzzii genome
sequence. Some of these variants display under or over enrichment in Goundry and can be
used for a partially-efficient probabilistic assay, but by definition the Goundry fixed differences
that would be most informative tool cannot be identified from non-Goundry sequence, and
must await whole genome sequences from Goundry mosquitoes.

New candidate loci for population differentiation between A. coluzzii and
A. gambiae
The mechanisms of mating isolation and assortative mating between A. coluzzii and A. gam-
biae are not known, but appear to be largely prezygotic because the species hybridize in the
laboratory [46, 47]. The known genomic regions of highest genetic differentiation between A.
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Fig 6. Genome wide linkage disequilibrium within population subgroups. LD was measured by r2 for A) A. coluzzii, B) A. gambiae and C) the Goundry
form. At the study site, the 2La inversion is nearly fixed in A. coluzzii and A. gambiae but segregates in the Goundry form, hence the detectable LD across the
2La inversion only in Goundry. Also, the centromeric region of the second chromosome carrying the insecticide resistance mutation, kdr of the para gene [44]
is largely fixed in A. gambiae but segregates in both A. coluzzii and Goundry forms. These plots include all SNPs that passed quality control and were not
fixed within population taxa.

doi:10.1371/journal.pone.0145308.g006
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coluzzii and A. gambiae are the SI in the centromeres [17, 32], but this likely stems from
ascertainment bias because previous studies used minimal marker density and/or sample
depth, and under those conditions the power to detect differentiation is largely limited to
regions of extended LD, such as centromeres. It is also likely that centromeric regions will
retain a historic signal of differentiation longer due to the diminished rates of recombination.
We now find 24 SNPs in 20 genes outside of the centromeric regions that highly correlate
with the X chromosome diagnostic for A. coluzzii and A. gambiae. None of these SNPs occur
in the 2R non-centromeric island published by Turner et al. [17]. Five of these SNPs occur in
a single gene, Tep3, and a 100kb genomic region containing Tep3 was previously highlighted
as differentiated between A. gambiae and A. coluzzii by White et al. [43]. Thus, we report pre-
viously unrecognized cases of 19 genes that contain a significantly differentiated SNP and
represent new candidate loci for association with population differentiation phenomena such
as reproductive isolation and subgroup-specific adaptation between A. coluzzii and A. gam-
biaemosquitoes.

Of the 19 newly-identified non-centromeric genes (S2 Table), one has predicted function
in wing imaginal disc development. There are reported differences in wing morphology
between A. coluzzii and A. gambiaemosquitoes that are proposed to underlie the production
of different wingbeat harmonic frequencies, thus permitting mate discrimination by A. coluz-
zii and A. gambiaemosquitoes [48, 49]. Two new candidates have established roles in immu-
nity (Toll1A, SRPN4 [50–53]), along with Tep 3. These immune genes could be associated
with the previously hypothesized exposure of the population subgroups to distinct pathogen
profiles in different ecological habitats [43, 54, 55]. Finally, four other candidates with pre-
dicted central nervous system functions could underlie observed behavioral differences tied
to ecological specialization between A. coluzzii and A. gambiae for oviposition site choice,
formation of mating swarms, or other phenotypes [21, 23, 56]. The twelve other candidate
genes have little functional data. Together, these genes represent new candidate loci located
outside the previously-studied centromeric SI intervals, potentially associated with features
of population differentiation between A. coluzzii and A. gambiae. Because we analyzed sym-
patric mosquitoes collected from a single defined geographic region, geographic variables do
not underlie the differentiation signal, although the results cannot necessarily be generalized
to populations in other regions of West Africa without sampling and testing at other sympat-
ric sites.

Materials and Methods

Mosquito sampling and P. falciparum infection
Mosquitoes were sampled as larvae using the standard dipping method or as adults by aspirator
catch, as previously described in detail [14]. Mosquitoes were collected in the Sudan Savanna
region of Burkina Faso in the village of Goundry (12°30´N, 1°20´W), 30 km N of the capital
city, Ouagadougou, across months of the rainy season during the 2007 and 2008 malaria trans-
mission seasons [57]. Permission was obtained from Goundry village authorities to collect
mosquitoes in the village. Larval-caught A. gambiae species complex mosquitoes were brought
to the insectary in Ouagadougou where they were raised under standard laboratory rearing
conditions to adulthood. Following emergence, 3 day old adults were challenged with wild P.
falciparum by experimental infection. Feeding was done on an artificial membrane in a water-
jacketed feeding device as described previously using gametocytemic blood obtained from
study participants [35]. Unfed mosquitoes were excluded from analysis and infection levels for
fed mosquitoes were determined by counting midgut oocysts 7–8 days post infection. Genomic
DNA was extracted from carcasses for genotyping.
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Illumina chip design and hybridization
To design the custom SNP chip, polymorphism data were combined from individual sources
[54, 55, 58] as well as an analysis of the A. coluzzii and A. gambiae genome sequences available
at Vector Base. At the time of the chip design, the A. coluzzii and A. gambiae genome assem-
blies were not available at VectorBase and raw sequence read data was used for SNP design.
SNPs were identified by alignment of the A. coluzzii and A. gambiae sequence reads against the
assembled genome of the PEST strain using BLAST. We summarized all high confidence align-
ments in a simple frequency table. For every position in the PEST genome we recorded the
number of A,G,C,T nucleotides observed for that position. To be considered viable for inclu-
sion on the chip, a SNP had to meet the following criteria: i) have a minimum read depth of 10,
ii) be surrounded by ~200 bp of SNP free-sequence, iii) be variable across any set of samples
used for SNP ascertainment, iv) have a minor allele frequency of at least 15%. We submitted to
Illumina 5995 candidates, 4840 from shotgun sequence and 1155 from 3 independent deep re-
sequencing projects. The final catalog of 1536 SNPs was selected from 3394 SNPs that passed
Illumina design criteria, 1358 from shotgun sequence and 178 from deep sequencing projects.
The complete set of SNPs typed on the Illumina chip and their primers is available in S1 Table.
The chip includes a uniformly-spaced genome-wide marker set (n = 812), as well as additional
marker coverage (n = 724) within certain genomic features such as chromosomal Speciation
Islands (SI). Overall, the chip types 1536 SNPs, with an average density of 1 marker every ~340
kb for the uniformly-spaced set. The chip is thus well-powered for accurate and comprehensive
detection of population stratification and related genome features, although not for genome-
wide association given that linkage disequilibrium (LD) in A. gambiae decays to uninformative
levels on average within<500 bp [54]. Hybridization of the chips was done using standard Illu-
mina procedures in the Boston Children’s Hospital Molecular Genetics Core Facility (IDDRC).

Genotyping and data analysis
Due to the low quantity of DNA available from individual mosquitoes, all DNA samples were
subjected to whole genome amplification (Genomiphi, GE Health Sciences) using supplied
protocols. DNA was then ethanol precipitated, concentrations determined by the Picogreen
method [59] and 500 ng submittted for Illumina chip hybridization. We used a two stage
approach, hybridizing a pilot (n = 96) and an expanded (n = 384) set of samples. The first 96
samples were used to validate array performance and included duplicates (n = 24) to verify
reproducibility of genotype calls and provide quality control metrics. All mosquitoes genotyped
in the larger expanded set of samples came from five successful experimental infections as
defined previously [4, 60], briefly, sessions with oocyst infection prevalence�30% and oocyst
intensity in at least one individual mosquito in the infected group of�10 oocysts. This infec-
tion quality-control cutoff assures that all analyzed individuals were exposed to an experimen-
tal infection with the power to distinguish levels of susceptibility, free from confounding
technical or other factors influencing infection success. Of the 456 unique samples genotyped
here, only 160 samples (35%) were previously genotyped and analyzed, using<10 microsatel-
lites on chromosome 3 [14]. Thus, genotyping in the current study was carried out at much
higher marker density than in the previous study.

Data were analyzed using the BeadStudio package (Illumina) following the manufacturer's
guidelines [61]. Quality control was carried out in two steps: i) Manual curation. Following
standards recommended by the manufacturer, boundaries of poorly clustered SNPs were either
manually redefined or the SNPs were removed. Because we expected distinct population sub-
groups segregating within our overall sample, we used Hardy Weinberg Equilibrium (HWE)
statistics as a trigger for manual inspection but we did not reject well-clustered SNPs violating
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HWE. In addition, samples with low call rate were removed, which left more than 88% of sam-
ples showing a call rate higher than 85%. ii) SNP call rate. SNPs were removed if they failed in
more than 25% of the mosquitoes, which resulted in removal from the analysis of only 89 SNPs
(~6%). After application of all QC filters, high-quality data remained for 422 mosquito samples
for 1447 genome-wide SNPs, yielding a 94% SNP conversion rate. These 422 samples included
56 A. coluzzii, 52 A. gambiae, 284 Goundry form, and 30 A. arabiensis. The distribution of
GenTrain scores, a metric of genotype quality for GoldenGate assays (produced by an algo-
rithm implemented in the Illumina software application, BeadArray GenCall [61]) is shown
for SNPs passing the above QC filters (S1 Fig). For PCA analyses presented in Figs 1–4, stan-
dard multidimensional scaling as implemented in R (cmdscale in the Stats package) was used
for clustering.

A subset of samples (n = 24) were hybridized in duplicate, and over 99% of called genotypes
were concordant. For additional validation of genotype calls using an independent technology
and to test a set of SNPs with high informative value for molecular attributes, a subset of 21
SNPs were converted to Sequenom assays and 80 mosquito samples genotyped by this inde-
pendent method. Across all 21 SNPs, the genotype concordance between Illumina and Seque-
nom averaged 95.5%, ranging from 89% to 99% (S2 Fig). SequenomMass Array genotyping
was done at the University of Minnesota Genomics Center.

Analysis of infection phenotypes
To test for differences in infection susceptibility across subgroups, analyses were carried out
with infection as a blocking factor, and p-values were determined for each individual infection
using the Chi Square test and combined p-values across infections via the method of R.A.
Fisher [62]. Most of the individuals in the expanded sample set (n = 335) had accompanying
infection phenotype data. The phenotyped sample set of 335 were generated from five indepen-
dent experimental infections, with each infection averaging 67 individuals (range 39–89 indi-
viduals). Each experimental infection included individuals from each of the 3 population
groups, A. gambiae, A. coluzzii and the Goundry form.

Population subgroup differentiation and detection of differentiated SNPs
Linkage disequilibrium (LD), as analyzed and depicted in Figs 5 and 6, was computed using the
LD() function from the genetics package in the R statistical package. For plotting the LD map,
the image() function was used. The scale bar was drawn with the function image.plot() from
within the fields package in R.

To identify SNP genetic correlation across chromosomes as shown in the centromeric
regions (boxes in Fig 5), a selection filter was applied to all A. coluzzii and A. gambiaemosqui-
toes. Centromeric regions were defined as +/-5Mb from the centromere for a total area of
10Mb, 5Mb on each chromosome arm. Initially, we determined the individual SNP that was in
LD (r2>0.8) with the maximum number of other SNPs across the genome, imposing a SNP
inclusion cutoff at minor allele frequency�10%. This SNP was on the X chromosome at posi-
tion 23852135. This region of the X chromosome is the most informative for assignment of
A. coluzzii and A. gambiae [28]. This SNP was then used in a second screen to find all other
genome wide SNPs in LD with this SNP (X.23852135) at an r2>0.5, minor allele frequency
�10%. These SNPs, each individually highly correlated with the X.23852135, are presented in
S2 Table. The 66 SNPs that mark differentiation outside speciation islands were specifically
quality-controlled by examining the distribution of their GenTrain scores, and there was no
difference between the distribution of these 66 markers and the rest of the markers that passed
controls (Wilcoxon rank test p = 0.26 and S1 Fig).
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Ethical considerations
For collection of blood from P. falciparum gametocyte carriers for experimental membrane
feeder infection of mosquitoes, the study protocol was reviewed and approved by the national
health ethical review board IRB (Commission Nationale d’Ethique en Santé) of Burkina Faso,
which issued ethical protocol N° 2006–032 for the described studies. The study procedures,
benefits and risks were explained to subjects and their written informed consent was obtained.
The consent procedure was approved by the IRB. Subjects who had given consent were brought
to CNRFP the day of the experiment for gametocyte carrier screening. All children were fol-
lowed and symptomatic subjects were treated with the combination of artemether-lumefan-
trine (Coartem) according to relevant regulations of the Burkina Faso Ministry of Health.

Supporting Information
S1 Fig. Distribution of GenTrain scores for SNPs passing QC filters and used in subsequent
analyses. SNPs indicated in red are the set of 66 that show greatest differentiation between A.
coluzzii and A. gambiae (see S2 Table).
(EPS)

S2 Fig. High concordance of genotype calls for SNPs typed by Illumina chip and Sequenom
mass array. Twenty-one SNPs were typed on a set of 80 individual mosquito samples. Individ-
ual SNPs are shown on the x-axis, and concordance rates between genotype calls from the two
distinct technologies are indicated on the y axis.
(EPS)

S1 Table. Catalogue of polymorphic SNPs typed by Illumina Golden Gate Assays.
(XLSX)

S2 Table. Catalogue of genome wide SNPs displaying maximum r2 with the X chromosome
speciation island SNP most diagnostic for differentiation of A. coluzzii and A. gambiae.
(DOCX)

S3 Table. SNPs derived from Illumina chip data with high informative value for detection
of mosquito attributes.
(DOCX)

S4 Table. Genotype data for mosquito individuals typed on the Illumina chip.
(XLSX)
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