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Abstract: The Zika crisis drew attention to the long-overlooked problem of arboviruses transmitted
by Aedes mosquitoes in Africa. Yellow fever, dengue, chikungunya and Zika are poorly controlled in
Africa and often go unrecognized. However, to combat these diseases, both in Africa and worldwide,
it is crucial that this situation changes. Here, we review available data on the distribution of each
disease in Africa, their Aedes vectors, transmission potential, and challenges and opportunities
for Aedes control. Data on disease and vector ranges are sparse, and consequently maps of risk
are uncertain. Issues such as genetic and ecological diversity, and opportunities for integration
with malaria control, are primarily African; others such as ever-increasing urbanization, insecticide
resistance and lack of evidence for most control-interventions reflect problems throughout the
tropics. We identify key knowledge gaps and future research areas, and in particular, highlight
the need to improve knowledge of the distributions of disease and major vectors, insecticide
resistance, and to develop specific plans and capacity for arboviral disease surveillance, prevention
and outbreak responses.

Keywords: Aedes aegypti; Aedes albopictus; Aedes formosus; Zika; dengue; chikungunya; yellow
fever; vector

1. Introduction and Overview

The crisis following the Zika epidemic across South America in 2015–2016 and the newly
recognised severe neurological consequences of infection have raised global awareness of Aedes-borne
arboviral diseases. Zika has also belatedly turned the scientific community’s attention to Africa, where
this virus was originally identified [1] and where the other Aedes-transmitted arboviruses also occur.
Despite its global importance [2], the extent of the dengue burden in Africa remains unknown [3],
as does the true burden of yellow fever, though tens of thousands die annually in Africa and the threat
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of outbreaks remains high [4,5], even with availability of an effective vaccine [6]. Moreover, the risk of
exporting yellow fever from Africa remains a concern, particularly to immunologically naïve Asian
populations [7,8].

Why was so little attention paid to Aedes-borne arboviruses in Africa, until they led to outbreaks
in locations outside of Africa? One explanation is that these viruses constitute greater public health
threats for immunologically-naïve non-African human populations. A second is that the magnitude
of the burden of malaria and many neglected tropical diseases in Africa detract attention from
Aedes-borne infections. A third and related factor is that accurate identification of arboviral infections in
resource-poor settings is challenging, and in Africa, many fevers of unknown origin tend to be recorded
as malaria [7]. Hence, the major arboviral infections remain neglected in Africa, while receiving
significant attention and resources for control elsewhere.

In common with Zika [8], chikungunya [9], yellow fever [10], and perhaps also dengue [11],
Aedes aegypti almost certainly originated in Africa [12–14]. Globally Ae. aegypti is the primary vector of
all of these viruses, but a range of African Aedes species are competent and epidemiologically-significant
vectors. An important addition to this vector fauna is Aedes albopictus, introduced into Africa less than
30 years ago and still increasing its range [15].

Adaptation of arboviruses to novel vectors can occur rapidly and can have significant
consequences. A single amino acid substitution facilitated efficient transmission of the chikungunya
virus by Ae. albopictus [16], permitting establishment of local transmission in many new regions
beyond Africa, following the 2005–2006 outbreak on the island of La Réunion. Simple genetic changes
can also affect the virus’s interaction with the vertebrate host, with uncertain but potentially severe
consequences [17]. The Zika virus also can be transmitted through sexual intercourse, though the
epidemiological importance of this mode of transmission remains to be determined [18].

Control of Zika and other Aedes-transmitted arboviruses is a major 21st century challenge
for global public health, exacerbated by widespread insecticide resistance in the vectors [19] and
a relentless growth in urban environments [20]. This is especially true in the resource-poor
sub-Saharan nations, which have the lowest collective Gross Domestic Product (GDP) of any region [21].
A thorough exploration of the burden, transmission biology and control of Aedes-transmitted
arboviruses is essential to define, understand and prepare for potential future threats in Africa and
worldwide [22,23]. Here, we review current information on these key topics for Aedes vectors and the
major arboviruses they transmit in Africa, highlighting knowledge gaps, and recommending priorities
for further investigation.

2. The Burden of Aedes-Borne Viral Diseases in Africa

The extent of chikungunya, dengue and Zika virus distributions in Africa is largely unknown,
and our knowledge of the variation in transmission risk within these zones, as well as within the
yellow fever risk zone [6], is hampered by a lack of disease data. Ecological models have been used to
estimate the spatial distributions of each virus [2,24–26], and we have used these maps to generate
comparable estimates for the population at risk of infection (PAR) (Supplementary Materials). Table 1
shows the estimated African PAR for chikungunya, dengue, yellow fever and Zika [24–28]. The value
for yellow fever was adjusted to take account of vaccination campaigns conducted in parts of Africa
and shows the much lower PAR for this disease since vaccination began [29]. Individual disease
distributions overlap (Figure 1), and an estimated 831 million people were living in an area at risk
of at least one of these arbovirus infections in 2015 (Table 1). However, these estimates are based on
predicted distributions within unknown disease ranges: actual PAR values cannot be estimated with
certainty until the extent of each disease has been defined and more case data are collected across the
continent. Furthermore, the number of people living in an area of risk who are actually protected
by life-long immunity conferred by previous infection with the chikungunya virus, Zika virus and
each serotype of the dengue virus is unknown but could change the PAR figures dramatically [30–32].
Outbreaks of all four diseases are characterised by large spikes in the number of cases, often preceded
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and followed by periods when no new cases are reported [33]. Therefore, the values shown (Table 1
and Figure 1) represent the presence of a transmission risk at some point in time over a number
of years, rather than a year-round or seasonal risk. As the uncertainty in the PAR highlights, there is
an urgent need to improve data availability and quality in order to map more accurately the disease
burden in Africa.

Table 1. Estimated population at risk of infection (PAR) by each arbovirus and by overlapping
arboviruses in Africa, 2015. Population estimates were calculated using the methods and data sources
as defined and cited in Figure 1a,b, respectively.

Infection Estimated Population at Risk Percentage of African Population

Chikungunya 271 million 23%
Dengue 750 million 63%

Yellow fever * 21 million 2%
Zika 406 million 34%

At least one of the above 831 million 70%

* The value for yellow fever has been adjusted to account for reductions in the population at risk following
vaccination programmes.
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in Africa. (a) Areas at risk of one, two, three or all four infections; map generated as described in
Supplementary Methods. (b) Locations of reported infections (symptomatic and non-symptomatic) of
dengue, chikungunya, Zika and yellow fever [24–28].



Int. J. Environ. Res. Public Health 2018, 15, 220 4 of 20

3. Range and Distribution of Aedes Vector Species in Africa

African ranges are unknown, even for the two major Aedes vector species, and there are insufficient
records to allow their definition either by expert opinion or any semi-quantitative method. Suitable
environments for Ae. albopictus and Ae. aegypti within Africa have been predicted using ecological
models (Figure 2) [34], and though the maps indicate extensive areas of suitability and a large potential
for sympatric occurrence, these estimated distributions need to be treated with caution. Maps show
locations where the species could potentially occur but not necessarily where they have been found.
For example, much of sub-Saharan Africa is predicted to be suitable for Ae. albopictus, but records
remain patchy [35–64]. Since the worldwide records of each species were compiled, new studies in
Africa have reported Ae. aegypti in Ghana [51], Mozambique [55] and Namibia [59], and Ae. albopictus
in Mali [57], Morocco [39], Mozambique [50] and São Tomé and Príncipe [62].
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Figure 2. Reports of mosquito occurrence and areas of predicted environmental suitability for
Aedes albopictus and Ae. aegypti in Africa [36–64]: (a) Ae. aegypti; (b) Ae. albopictus.

The areas of predicted suitability shown in Figure 2 are based on relationships with environmental
and socio-economic variables. Studies using global records of each species found that temperature is
the most influential predictor and that precipitation, vegetation indices and urban land cover also play
a role [33,65]. Few studies have looked at these relationships in African populations, but temperature
is still likely to be important [66,67] and rainfall is strongly linked to Aedes vector abundance in Kenyan
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populations [68]. Specific landscape factors are more likely to vary between different regions of the
world and the influence of some of these have been studied in African locations. In Central Africa,
Ae. albopictus preferred man-made breeding sites (tyres and tanks) surrounded by vegetation whereas
Ae. aegypti preferred man-made breeding sites in neighbourhoods with higher building density [69,70].
Similarly, in urban Cameroon, Ae. aegypti was more abundant in downtown environments in the dry
season whereas Ae. albopictus was more prevalent in the suburbs in all seasons [71]. Studies in rural
areas have found that within oil palm-dominated landscapes in Côte d’Ivoire Ae. aegypti was more
abundant in polycultures than monocultures [72].

Large gaps in reporting of each species can be seen in Figure 2, but vector presence can be inferred
from reports of locally acquired arbovirus infections (Figure 1b). These case reports show infections
occurring in a number of countries where no vector data are available, implying that one of more of the
arbovirus vectors is present. Which vectors might be found in these locations can only be addressed
by field surveys, and priority should be given to the countries reporting arbovirus infections but no
recent reports or records of vector species. Currently these are Guinea, Guinea Bissau, Sierra Leone,
Liberia, Togo, Chad, South Sudan, Ethiopia, Eritrea, Djibouti, Somalia.

4. Vectorial Capacity of Different Aedes Species in Africa

4.1. Aedes aegypti vs. Aedes albopictus

Aedes aegypti is considered the main vector of dengue viruses worldwide, largely attributable to
its higher vector competence and stronger host preference for humans compared to Ae. albopictus [73].
However, Ae. albopictus has been a driving force in the worldwide emergence of chikungunya virus
since 2004 [74], and in Central Africa it is considered to have played a key role in the 2007 emergence
of dengue, chikungunya [75,76] and possibly Zika [77]. Moreover, its ongoing range expansion across
Africa has the potential to increase the arbovirus transmission risk to areas far from urbanisation [78].
Improved knowledge of Ae. albopictus distribution and vectorial capacity in Africa is required to
enhance arbovirus surveillance and prevention [79].

4.2. Sylvatic vs. Domestic Forms of Aedes aegypti

Aedes aegypti is believed to have originated in Africa from a generalist, zoophilic tree-hole
breeder [12]. Outside Africa, Ae. aegypti populations are exclusively found in close association with
humans in the domestic environment, and this domestic form of Ae. aegypti may have originated from a
population that adapted to (i) breeding in artificial water storage containers and (ii) biting humans [80].
Domestication events involving human-feeding specialization may have occurred both outside Africa
as part of the species’ expansion, and within Africa [81], possibly, but perhaps not exclusively, on the
West African coast [82].

African Ae. aegypti breed in both the domestic environment and in the ancestral sylvatic habitat.
Whereas domestic Ae. aegypti larvae develop in artificial containers (e.g., tyres, discarded containers,
jars, flower pots, metal drums) within or in close proximity to human habitation, larvae of the
sylvatic ecotype are found in natural breeding sites (e.g., rock pools, tree holes, plant axils, fruit
husks) in forested areas [80]. Interestingly, larvae of the two Ae. aegypti ecotypes are exposed to
different bacterial communities in their respective breeding sites, potentially resulting in differences
in vectorial capacity [83]. Classically, two morphological subspecies were described in Africa that
broadly correspond with these ecotypes: Ae. aegypti aegypti and Ae. aegypti formosus. However, there is
evidence that Ae. aegypti formosus is increasingly found in urban environments [84], and the diagnostic
morphological characters (presence/absence of white abdominal scaling patterns [85]) often form a
continuum [86]. Similarly, clear genetic boundaries are absent, presumably as a result of extensive
current or recent historical gene flow [87,88]. The picture may be complicated further by introductions
of domestic Ae. aegypti into Africa and interbreeding with local populations [89,90]. The result is a lack
of clear correlation between morphology, genetics and ecology [81,90,91], which calls into question
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the utility of the simple division of the diverse African Ae. aegypti fauna into the aegypti and formosus
subspecies [80,84].

African Ae. aegypti have traditionally been considered less competent for flaviviruses than
Ae. aegypti from the rest of the world [92,93]. A global survey of 28 populations found that
sylvatic Ae. aegypti populations from West Africa were the least susceptible to yellow fever virus
infection [94]. However, more recent observations indicated that vector competence of African
Ae. aegypti is extremely variable and depends on specific pairings of mosquito population and viral
isolate [76,95–98]. Such genotype-by-genotype specificity has been widely documented in other
host-pathogen systems [99].

4.3. Other Aedes Species and Potential for Emergent Transmission Cycles

Additional Aedes species play a critical role in arbovirus transmission cycles in Africa because
(i) they are involved in sylvatic arbovirus transmission cycles and/or (ii) they bridge sylvatic and
human transmission cycles. For example, Aedes africanus is considered the main sylvatic vector of
yellow fever virus in Africa [100] and can also act as a bridge vector to humans, together with Aedes
bromeliae, Aedes furcifer, Aedes taylori, Aedes luteocephalus, Aedes metallicus, Aedes opok, Aedes vittatus,
and species of the Aedes simpsoni complex [101]. Sylvatic dengue viruses in Africa are transmitted
among non-human primates by Ae. furcifer and Ae. luteocephalus, and usually cross over to humans
through biting by Ae. furcifer [101]. Bridge vectors may initiate a human outbreak, but large epidemics
typically occur only when virus transmission involves urban populations of Ae. aegypti or Ae. albopictus,
though there may have been exceptions: Haddow [102] described Ae. simpsoni (=Ae. bromeliae [15]) as
being “the principal vector in the greatest known African yellow fever epidemic”, which occurred in
Ethiopia in the early 1960s.

The majority of these Aedes vector species are found in rural or forest areas, and so are less likely
to present a threat in the urban environments where Ae. aegypti populations thrive. Nonetheless,
increasing erosion of their natural habitats could lead to greater contact with humans, and/or formerly
obligate sylvatic species might adapt to new urban environments and hosts, potentially with a greater
role as vectors [103]. Many readily feed on both domestic and wild animals including primates, as well
as humans, hence their potential importance as bridging vectors [96,104–106]. Although a sylvatic
dengue transmission cycle is known in restricted locations like eastern Senegal [107,108], it is unclear
how important it is across the continent of Africa. All of the focal arboviral diseases circulate among
non-human primates in Africa, though the true role of animal reservoirs in the epidemiology of human
disease remains to be determined [109].

Less is known about the African vectors of Zika, and although multiple Aedes species from across
Africa have been found naturally infected with the Zika virus, this is also true for non-Aedes species,
and cannot be translated into vector competence [110,111]. In a rare demonstration, a small proportion
of Ae. vittatus and Ae. luteocephalus were found to harbour the virus in their salivary glands following
artificial infection with Zika strains, suggesting some potential for transmission [110]. With a growing
body of evidence from elsewhere showing the Zika virus’ capacity for development and transmission
by species in addition to Ae. aegypti and Ae. albopictus [112], further studies to test competence in the
African vectors from which it has been isolated should be prioritised.

Better knowledge of African transmission cycles is important to determine the risk of viruses
like Zika or chikungunya establishing similar sylvatic cycles in geographic regions where they have
newly arrived [113,114]. Recent reports from Kenya suggest that human infections may be a source of
‘spillback’ infections in baboon populations [85], demonstrating the range of potential consequences
following introduction of novel viruses or strains. Clearly, assessing the risk of human infection by
arboviruses will require more in-depth studies on the biology of sylvatic Aedes spp. in Africa [104,107].
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5. Vector Surveillance and Control of Aedes species in Africa

The majority of Aedes spp. control studies have focused on dengue outbreaks in urban sites in
Asia or Latin America, where transmission by Ae. aegypti and/or Ae. albopictus is exclusively human to
human [115,116]. Indeed, a recent systematic review of the evidence for effectiveness of vector control
in reducing dengue virus transmission included 41 trials, but none were from Africa [117].

The widespread use of the insecticide DDT (dichlorodiphenyltrichloroethane) in Ae. aegypti
eradication programmes, that led to its near elimination from South America by the late 1960s,
was never replicated in Africa [4,118]. Subsequently, factors such as increased international freight
and travel, urbanization, and vector control strategies and tools poorly suited to urban environments
or hampered by insecticide resistance [119] have resulted in the global explosion of dengue. Yellow
fever outbreaks can be prevented or controlled by mass vaccine distribution [120], but no vaccines
are available for chikungunya and Zika, and the licensed dengue vaccine offers incomplete and
serotype-specific protection [121]. Consequently, outbreak prevention and response remain reliant on
vector control.

Preventing outbreaks, or mitigating their impact, is challenging even for those countries that have
made considerable investment in capacity after fighting against dengue outbreaks for decades [122].
This scenario and the associated challenges are exacerbated in African countries where recognition
of dengue outbreaks has started relatively recently; dengue is often not a reported infection, even if
correctly diagnosed, and where surveillance and response strategies may be absent or improperly
developed [123–126]. Rolling out effective surveillance plans for Aedes-borne diseases, particularly
dengue, is a global priority [127,128] but at present, early warning systems for Aedes-borne diseases
like dengue are unreliable [129], and the standard indices used to monitor Ae. aegypti populations are
inaccurate [130].

5.1. Integrating Aedes Species Control with Malaria Vector Control: Uniquely African Opportunities?

Malaria cases and deaths have declined in Africa since 2000 but sustaining control toward
elimination remains a major focus for African healthcare [131]. Vector control has played a central role,
primarily via long-lasting insecticide treated nets (LLINs) and indoor residual spraying (IRS) [132],
and this is likely to continue. What opportunities might recognition of the importance of vector control
for both malaria and Aedes-borne arboviruses offer in Africa? Some interventions targeting African
malaria vectors are unlikely to have a significant impact on Aedes-borne arboviral transmission because
of differences in their biology. For example, LLINs primarily target nocturnal biters and zooprophylaxis
targets domestic animal-biters, neither of which typically apply to Ae. aegypti [133,134], though the
latter may be of some relevance to the more generalist feeder Ae. albopictus [135]. However, IRS targets
indoor resting; a behaviour common not only to malaria vectors like Anopheles gambiae and An. funestus,
but also to Ae. aegypti [133,136–138]. Results to date are promising [117,139–141], but to be effective
across the target species, IRS will require careful consideration of available insecticides because in both
An. gambiae and Ae. aegypti, resistance (see Section 5.2) can lead to operational IRS failure [140,142].
House screening [143] and other improvements which prevent mosquito entry [144,145] might be
effective against both Anopheles malaria vectors and Ae. aegypti, although perhaps less so against the
more exophilic Ae. albopictus.

Larval source management can be effective individually for both malaria [146] and dengue [117]
but its potential as a cross-cutting intervention is limited owing to the typically different breeding sites
of Anopheles and Aedes. Larval stages of Anopheles are usually found in ground pools or irrigated sites,
especially rice paddies, while Aedes proliferate in manmade containers or small natural sites such as
rock pools and tree holes. Nevertheless, biological and chemical larviciding formulations, such as Bti
and pyriproxyfen, represent important tools in the arsenal for control of Aedes larvae [147,148] and
in some settings, they may also be appropriate for Anopheles control [149,150], potentially offering
logistical and procurement synergies.
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There is currently little evidence to suggest efficacy of personal repellents for control of
either dengue or malaria [117,151–153]. Though promising for both Anopheles and Aedes vector
control [154,155], demonstration of the impact of volatile spatial insecticides on epidemiological
indicators is currently lacking for malaria or arboviruses. Similarly, attractive toxic sugar baits (ATSB)
might eventually prove to be effective against different diseases, although at present it is unclear
whether the same bait will attract both Aedes and Anopheles species, whilst avoiding negative impacts
of traps on economically-beneficial insects [156].

The control of Aedes spp. in Africa could benefit from association with already well-established
national malaria control programmes. This is in line with the first pillar of the global vector control
response developed by the World Health Organisation (WHO) that calls for strengthening inter- and
intra-sectoral action and collaboration [157]. Following identification of disease overlaps [158] and
control opportunities [61], provision of training will be a key issue to ensure that experienced malaria
vector control practitioners become effective arboviral disease vector controllers. In addition, funding
agreements will have to be reached to avoid diversion of resources from malaria programmes where
the perceived current disease risk may be relatively low in elimination or pre-elimination settings,
resources for which in many cases, are already inadequate to maintain a consistent downward malaria
trajectory [137].

5.2. Insecticide Resistance and Challenges to Control

Worldwide data on insecticide resistance in Ae. aegypti and Ae. albopictus are patchy, with by far
the majority of data originating from Latin America and South-East Asia [19]. This paucity is readily
evident in Africa, with just 18 published studies, of which three [44,64,159] were conducted over
30 years ago. The remainder involve WHO tube and larval bioassays on samples collected within the
last ten years from 12 countries (Table 2).

DDT resistance is widespread and has been reported from every country tested, and in both
Ae. aegypti and Ae. albopictus. Resistance to pyrethroids (primarily permethrin and deltamethrin)
appears more sporadic but there are confirmed reports in Ae. aegypti from mainland West, Central and
East Africa. It should also be noted that An. gambiae doses are almost always used for assessment of
pyrethroids and may underestimate resistance because Ae. aegypti discriminant doses are lower [160].
Pyrethroid resistance may currently be less critical than in South East Asia and Latin America [19],
but in Africa appears to be emergent, and is not limited to particular regions.

Organophosphate adulticides (malathion or fenitrothion) have been less frequently tested but only
in Madeira and Sudan has resistance been confirmed in Ae. aegypti. All studies from West Africa and
islands testing carbamates (usually propoxur) have reported resistance. Studies from other areas have
typically reported susceptibility, but very recent testing in Yaoundé, Cameroon, detected bendiocarb
resistance in both Ae. aegypti and Ae. albopictus [71], suggesting that apparent geographical patterns
may be a consequence of the limited number of studies performed to date.

Fortunately, tests of the first-line biological and chemical larvicides, Bti and temephos, have
not detected a problematic level of resistance. In dose-response assays the highest resistance ratios
(calculated from the ratio of the lethal concentration killing 50% of the test, compared to a susceptible
reference strain) are from Cape Verde and suggest little resistance [161].
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Table 2. Records of insecticide resistance in Aedes species (1990 onwards) from African mainland countries and islands. Resistance is classified according to WHO
standards as resistant (R) < 90% mortality, suspected resistance (RS) 90–97% mortality, or susceptible (S) > 97% mortality in adult (a) tube or larval (l) bioassays.
Brief details of resistance mechanisms are shown where reported. Studies are ordered by species, then from North-West toward South-East. Blank cells indicate that
the phenotype or mechanism was not investigated.

Study Year Country Area Species DDT (a) Pyr I (a) Pyr II (a) Carb (a) OP (a) Temephos
(l) Bti (l) Other (l) kdr

Mutations Metabolic Resistance

[162] 2013 Madeira Funchal, Paul
do Mar Ae. aegypti R R R R, S F1534C;

V1016I

MFO, esterases (biochemistry); PBO,
DEM significant (synergist;

metabolizing genes overexpressed)
[43] 2009 Cape Verde Santiago Ae. aegypti R S S R S

[163] 2012 Cape Verde Santiago,
Praia Ae. aegypti R S S Not detected MFO, esterases, GSTs (biochemistry)

[63] 2009 Senegal Dakar Ae. aegypti R S R, RS R S
[52] 2010 Côte d’Ivoire Abidjan Ae. aegypti S RS, S R, RS
[46] 2014 Côte d’Ivoire Abidjan Ae. aegypti R S RS RS S (DDT, Pyr)
[164] 2012–2013 Ghana Accra Ae. aegypti R R R

[51] 2013–2014 Ghana Widespread Ae. aegypti R R, RS, S F1534C;
V1016I

[51] 2013–2014 Ghana Widespread Aedes aedes
formosus R R, RS, S F1534C

[37] 2011–2012 Nigeria Lagos Ae. aegypti R S RS, S
[60] 2013 Nigeria Kwara State Ae. aegypti S S R
[49] 2007 Cameroon Widespread Ae. aegypti RS S S S S S
[71] 2015–2016 Cameroon Yaoundé Ae. aegypti R S R R, S S Not detected Limited effect of synergist PBO

[58] 2013 Central
African Rep. Bangui Ae. aegypti R, RS RS, S S S S S Not detected MFO, esterases, GSTs (biochemistry)

[49] 2007 Gabon Libreville Ae. aegypti R S S S S S
[48] 2009, 2010 Sudan Port Sudan Ae. aegypti R RS, S S R, RS
[165] 2015 Tanzania Dar es Salaam Ae. aegypti R, RS R, RS
[166] 2010–2011 Mayotte Petit Terre Ae. aegypti S S S S (multiple)
[49] 2007 Cameroon Widespread Ae. albopictus R RS, S S S S S

[71] 2015–2016 Cameroon Yaounde Ae. albopictus R R, S R, RS R, RS S Not detected Variable effect of synergist PBO among
locales

[58] 2014 CAR Bangui Ae. albopictus R, RS, S R, RS, S RS, S RS, S S S Not detected MFO, esterases, GSTs (biochemistry)
[49] 2007 Gabon Libreville Ae. albopictus S
[61] 2010–2011 Mayotte Kaweni Ae. albopictus S S S S (multiple)

Abbreviations: DDT (dichlorodiphenyltrichloroethane); Pyr (pyrethroid); Carb (carbamate); OP (organophosphates); MFO (mixed function oxidases); PBO (piperonyl butoxide);
DEM (diethyl maleate); GST (glutathione S-transferase).
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Susceptibility to Bti is expected based on its complex mode of toxicity and lack of any previous
reports of resistance in Aedes field populations [19]. In contrast, temephos resistance is extremely
common in Latin America and is found throughout Asia [19], yet apparent full susceptibility in Africa
allows temephos to be regarded as a viable option for water treatment.

There is currently very limited information on the mechanisms of insecticide resistance in
African populations of either key Aedes vector species. Knockdown resistance (kdr) mutations in
the voltage-gated sodium channel, which can generate high levels of resistance when present in
combinations [166,167], have recently been detected in West Africa, though not to date elsewhere,
albeit from very limited investigations (Table 2). High frequencies of F1534C, the only kdr mutation
known to show a worldwide distribution [19], have been found in samples from throughout Ghana [51],
whilst the Latin American V1016I variant was detected in a single Ghanaian sample. In the absence
of target site mutations, evidence for metabolic resistance via efficacy of synergists in bioassays or
elevated activity of mixed-function oxidases, esterases and glutathione-S-transferases in biochemical
assays has been suggested as at least a partial explanation for some resistant phenotypes (Table 2).

The source of resistance in African Aedes populations is less obvious than for areas of Latin
America and Asia subjected to targeted control programmes. Widespread recent use of DDT and
pyrethroids for IRS against malaria vectors might be one source; however, introductions, rather than
simply in situ selection from local genetic variation, might be important. For example, the 1534C
kdr mutation found in Africa is linked to a non-African, presumably immigrant, haplotype [34].
On Madeira, a multiple-insecticide resistant Ae. aegypti population has likely been introduced recently,
possibly from Latin America [162], ready-equipped with two kdr mutations and overexpression of
multiple pyrethroid metabolising genes [168,169].

In general, the picture of resistance suggests that viable insecticidal options remain available to
target African Aedes populations. Yet, the potential for insecticide resistant Ae. aegypti and Ae. albopictus
to be imported via human-aided movement of mosquitoes over long distances [170], rather than via
slow natural migration, is a major concern, and a challenge to curbing the spread of resistance.

6. Conclusions

Major Knowledge Gaps and Recommendations

Over 60 years ago, and with considerable prescience, Mahaffy [118] argued the case for eradication
of Ae. aegypti from Africa, writing: “A successful eradication programme of this nature carries with it
results of such profound importance, not only to Africa, but also to infectible territories outside Africa,
that it is impossible to over-emphasize the necessity for its initiation at the earliest possible moment”.
Most would agree that the prospect for elimination of Ae. aegypti from Africa is not a realistic one at
present, but that the need to reverse decades of neglect of arboviral disease in Africa is long overdue.

To build an appropriate evidence base on which disease prevention and control strategies
and policies can be founded, we recommend the following topics be prioritized for investigation:
distribution of cases of dengue, chikungunya, Zika and other arboviruses in humans; distributions
of Ae. aegypti and Ae. albopictus in Africa; updated characterization and distribution of insecticide
resistance in Ae. aegypti and Ae. albopictus, with broader geographical coverage using standardized
methodologies; development of context-specific Aedes-borne arboviral disease surveillance plans,
and of outbreak prevention and vector control response strategies.

Integral to the success of the above topics is the need for capacity strengthening in biology,
diagnosis and control of arboviral disease vectors in all African nations under threat from
these infections.

Additional topics or knowledge gaps that merit investigation should include the following:
controlled trials of vector interventions in African settings; the pros and cons of developing Aedes
control in liaison or integrated with malaria elimination programmes; vector competence, peridomestic
behaviour and biology of African Ae. aegypti, especially the ecotypes, and of the other Aedes spp.
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previously incriminated or suspected as potential vectors; and occurrence and distribution of dengue,
chikungunya and Zika virus infections in non-human primates and other potential ‘reservoir’ hosts.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Supplementary
Materials (Methods and References).
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