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Abstract

Viruses with single-stranded (ss) DNA genomes infect hosts in all three domains of life and include many medically, ecologically, and
economically important pathogens. Recently, a new group of ssDNA viruses with chimeric genomes has been discovered through viral
metagenomics. These chimeric viruses combine capsid protein genes and replicative protein genes that, respectively, appear to have
been inherited from viruses with positive-strand RNA genomes, such as tombusviruses, and ssDNA genomes, such as circoviruses,
nanoviruses or geminiviruses. Here, we describe the genome sequence of a new representative of this virus group and reveal an
additional layer of chimerism among ssDNA viruses. We show that not only do these viruses encompass genes for capsid proteins and
replicative proteins that have distinct evolutionary histories, but also the replicative genes themselves are chimeras of functional
domainsinherited fromviruses of different families. Our results underscore the importance of horizontal gene transfer in the evolution

of ssDNA viruses and the role of genetic recombination in the emergence of novel virus groups.
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Introduction

Viruses with single-stranded (ss) DNA genomes infect organ-
isms in all three domains of life and include many widespread,
medically and economically important pathogens (Krupovic
2013). Until recently, the diversity of ssDNA viruses had
been largely restricted to several families, such as
Circoviridae, Nanoviridae, Geminiviridae, and Parvoviridae,
which infect animals and plants, as well as Microviridae and
Inoviridae, which infect bacteria. The ssDNA viruses have been
thought to be much less abundant than RNA viruses in eu-
karyotes and double-stranded DNA viruses in prokaryotes.
However, the appreciation of ssDNA viruses in the biosphere
has been dramatically boosted by numerous recent metage-
nomic studies (Rosario and Breitbart 2011; Delwart and Li
2012; Rosario et al. 2012). Two key observations have been
made: 1) ssDNA viruses are highly abundant in all studied
environments, from the human gut to terrestrial hot springs

(Rosario et al. 2009; Mochizuki et al. 2012; Roux et al. 2012;
Whon et al. 2012; Dayaram, Goldstien, et al. 2013;
Popgeorgiev et al. 2013; Yoshida et al. 2013; Zawar-Reza
et al. 2014), and 2) they are highly diverse genetically (Roux
et al. 2012; Dayaram, Potter, et al. 2013; Labonte and Suttle
2013). The global diversity of ssSDNA viruses appears to be
determined by two principal factors: Namely, extremely high
nucleotide substitution rates that approach those of RNA vi-
ruses (Duffy et al. 2008; Duffy and Holmes 2008, 2009; Firth
et al. 2009; Harkins et al. 2009, 2014; Grigoras et al. 2010;
Sanjuan et al. 2010; De Bruyn et al. 2012) and pervasive re-
combination (Martin et al. 2011; Kraberger et al. 2013;
Lefeuvre and Moriones 2015). Recombination route is espe-
cially important in the emergence of novel virus types, as ex-
emplified by members of the family Bidnaviridae which have
apparently evolved from genes of four groups of widely dif-
ferent viruses (Krupovic and Koonin 2014).
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In 2012, in the course of metagenomic exploration of viral
diversity in the Boiling Springs Lake (BSL), Diemer and
Stedman have assembled a genome of a novel virus which
they named RNA-DNA hybrid virus (BSL RDHV) (Diemer and
Stedman 2012). Unexpectedly, the BSL RDHV genome was
found to be a natural chimera: The gene for the rolling-circle
replication initiation protein (RC-Rep) is inherited from a
circovirus-like ancestor whereas the capsid protein (CP) gene
is most closely related to that of RNA viruses of the
Tombusviridae family (Diemer and Stedman 2012). ssSDNA vi-
ruses appear to have access not only to the gene pool of other
DNA viruses but also to that of viruses with RNA genomes,
further expanding opportunities for  recombination.
Subsequently, several additional chimeric virus (CHIV) ge-
nomes have been assembled from metagenomic data (Roux
et al. 2013; McDaniel et al. 2014; Kraberger et al. 2015). A
different variety of a hybrid ssDNA virus has been serendipi-
tously isolated as a contamination of nucleic acid-isolation spin
columns, including a virus named NIH-CQV (Naccache et al.
2013; Xu et al. 2013). This virus encodes a CP that is affiliated
with the CPs of parvoviruses and a replication protein that
seems to belong to a distinct group distantly related to the
replication proteins of circoviruses and nanoviruses. Thus, NIH-
CQV appears to be a chimera consisting of genes derived from
two families of ssDNA viruses.

These findings emphasize the mosaicism of ssDNA virus
genomes and the key role of recombination, sometimes be-
tween different types of viruses, in their origin and evolution
(Martin et al. 2011; Diemer and Stedman 2012; Krupovic
2013, 2012; Lefeuvre and Moriones 2015). Here, we report
the genome sequence of a new CHIV, also derived from spin
column-associated DNA (Xu et al. 2013), and examine the
evolutionary implications of this finding.

Materials and Methods

Sample Preparation and lllumina High-Throughput
Sequencing

A total of 92 sera samples from patients with non-A-E hepa-
titis, who were admitted to the Institute of Infectious Disease
of Southwest Hospital, Third Military Medical University,
China, between 1999 and 2007, were obtained and pro-
cessed as previously described (Xu et al. 2013). Briefly, ten
pools were made of sera from the 92 patients. After steriliza-
tion using Ultrafree-MC HV 0.45-um filters (Millipore), the
samples were digested with DNase and RNase to eliminate
host nucleotide contamination, and the remaining nucleic
acids were extracted using carrier RNA [synthetic poly(A)].
cDNA was synthesized from extracted viral nucleic acids and
purified using the QIAquick PCR purification kit PCR (polymer-
ase chain reaction purification kit (Qiagen). Samples were
sheared by using Covaris S2 sonicator (Covaris, Woburn,
MA) and the sheared DNAs were end-blunted using End-It

DNA End Repair Kit (Epicentre) following manufacturer’s in-
struction. A 3’-end A-tailing was performed. Following liga-
tion of paired-end (PE) adaptors (lllumina) to the repaired
ends, the viral DNA was amplified using the PE PCR primers
1.0 and 2.0 (lllumina) for 17 cycles and the resulting products
were resolved by agarose gel electrophoresis and fragments
that ranged around 200-500 bp in length were excised and
purified. The purified DNA was used directly for cluster gen-
eration and sequencing analysis using lllumina Hiseq 2000
Genome Analyzer following manufacturer’s protocol.

Overlapping PCR and Inverse PCR

In order to verify the sequence of the viral genome assembled
from the lllumina sequencing data, six sets of overlapping
primer pairs were designed to amplify the viral fragments.
To detect the circularized viral DNA, inverse PCR with a
primer pair that oriented outwardly with respect to each
other was used for amplification. PCR products were visual-
ized on an agarose gel and all PCR products were Sanger
sequenced. The complete CHIV14 genome sequence was de-
posited at GenBank under the accession number KM105952.

Evaluating Spin Columns for the Presence of CHIV14 by
Quantitative Real-Time PCR

Nucleic acids were extracted from human serum samples or
mock-extracted with water using a variety of spin columns
(table 1), including QlAamp Viral RNA Mini Kit (Qiagen, kit
catalog number 52906, lot number 436166748, and spin
column lot number 139298432) and QlAamp ultraclean pro-
duction (UCP) mini spin columns (Qiagen, reagents: catalog
number 50112, lot number 142355460; spin columns: lot
number 145033759). Nucleic acid extractions were per-
formed following the manufacturers’ instructions or, in the
case of QlAamp UCP, following a user-developed protocol
(UDP). Briefly, in the UDP, 5.6 ug carrier RNA (Qiagen), 25 ul
proteinase K, and 12.5 pl of APR buffer were added to 200 pl
of the starting material (sample). Then, 200 ul of APL2 were
added and incubated at 60°C for 15 min. After a brief cen-
trifugation, 800 pl of APB1 were added to the lysate and ap-
plied to the QIAamp UCP mini spin column in two rounds of
centrifugation. The manufacturer’s protocol was followed
thereafter to complete the DNA purification except for the
final elution step where 60 ul of the AVE buffer were applied.
In the case of QlAamp Viral RNA Mini Kit, the nucleic acids
were also eluted with 60 pl of AVE buffer. As a negative con-
trol (mock sample), water (Ultra-pure, Quality Biological, Inc.,
Catalog number 351-029-131, lot number 719790) was used
as a starting material for DNA extraction with QlAamp Viral
RNA Mini Kit as well as other kits listed in table 1 using the
protocols described above. Five microliters of the resulting
DNA were used for analysis with the viral rep primers and
rep probe (forward primer 5-GTTGGCGAGTTATGGGTAAG-
3, reverse primer 5'-TGTACCAGAGGCAGTAACAG-3/, probe
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Table 1

Kits and Spin Columns Used for Mock Extractions with Water and Water Elutions

Kit? Spin Column Catalog No. Kit Lot Column Lot CHIV14 Presence
QlAamp Viral RNA Mini QlAamp mini spin 52906 436166748 139298432 +
QlAamp Viral RNA Mini QlAamp mini spin 52904 140020818 145048587 -
UCP PurePathogen Blood Kit QlAamp UCP mini spin 50112 142355460 145033759 —
RNeasy Mini Kit (50) RNeasy mini spin 74104 142359481 142356163 —
QlAamp MinElute Virus Spin Kit QlAamp minElute 57704 145020820 145018056 -
QlAamp UltraSens Viral kit QlAamp mini spin 53704 42151888 127131210 —
RNeasy Plus Mini Kit RNeasy mini spin 74134 145019932 14503787 —
DNeasy Blood & Tissue Kit DNeasy mini spin 69506 427107496 133215292 —
PureLink Viral RNA/DNA Mini Kit (Invitrogen) Viral spin columns 12280-050 1392776 1361245 -

@Unless stated otherwise, the kits were from Qiagen.

5FAM-CGAACAGGTACCAGGCTTTATTATGC-3'IABKFQ) pur-
chased from Integrated DNA Technologies (Coralville, 1A). All
reactions were performed using the Chromo4 real-time de-
tector (Bio-Rad). The reaction started with activation of the
polymerase (PerfeCTa multiplex gPCR [quantitative real-time
PCR] SuperMix, Quanta Biosciences) at 95°C for 3 min, fol-
lowed by 45 cycles of 15 s at 94°C and 1 min at 60°C. The
guantitation of the amplicons was performed by interpolation
with the standard curve to the synthesized rep gene with serial
dilutions.

Computational Sequence Analysis

Domain recognition in the CHIV14 RC-Rep protein was per-
formed using HHpred (Soding 2005) against the PFAM data-
base. Structural modeling was performed using Modeller v9.9
(Marti-Renom et al. 2000), as described previously (Roux et al.
2013). X-ray structures of tomato bushy stunt virus (TBSV; PDB
ID: 2TBV), melon necrotic spot virus (MNSV; PDB ID: 2ZAH),
carnation mottle virus (CMV; PDB ID: 10PO), and turnip crin-
kle virus (TCV; PDB ID: 3ZXA) were used as templates.
Sequence of CHIV14 CP was aligned with the corresponding
sequences of TBSV, MNSV, CMV, and TCV, and the resultant
alignment was used to build a three-dimensional model of the
putative CP of CHIV14. The initial model was optimized
through multiple rounds of loop refinement with
MODELLER. The stereochemical quality of the model was
then assessed with ProSA-web (Wiederstein and Sippl
2007). ProSA-web quality (2) score for the CHIV14 model
was calculated to be —5.83, which is similar to the Z-scores
determined for the template structures (TBSV, —5.18; MNSV,
—6.26; CMV, —6.06; TCV, —3.39). The percent sequence
identity between the CHIV CPs was mapped onto the struc-
tural model of the CHIV14 CP.

Sequences of the previously described CHIVs (Roux et al.
2013) were retrieved as GenBank-formatted files from Dryad
Digital Repository, http://dx.doi.org/10.5061/dryad.19m2k
(last accessed March 4, 2015). For phylogenetic analysis, pro-
tein sequences were aligned using PROMALS3D (Pei et al.

2008) and columns with low information content were re-
moved from the alignment (alignments are available from
the authors upon request). All alignments generated in the
course of this study are available from the authors upon re-
guest. Maximum-likelihood phylogenetic analysis was carried
out using PhyML 3.1 (Guindon et al. 2010), with the Jones—
Taylor-Thornton model of amino acid substitutions, including
a gamma law with four substitution rate categories.

Results and Discussion

CHIV14 Discovered by Deep Sequencing Is Traced Back
to Spin-Column Contamination

De novo genome assembly and protein similarity search,
which led to the discovery of a putative circular, sSDNA virus
(CHIV14, 3141-nt) from deep sequencing data derived from
ten serum pools of 92 patients with seronegative hepatitis,
have been performed as described previously (Xu et al. 2013).
The circular structure of the complete virus genome was con-
firmed by overlapping PCR and inverse PCR (fig. 1A). The
origin of the virus was eventually traced to contaminated
silica-binding spin columns used for nucleic acid extraction.
Definitive confirmation of the origin of CHIV14 was obtained
by in-depth analyses of water that was passed through con-
taminated spin columns (fig. 1B): The test for the presence of
CHIV14 by PCR was positive for the non-A-E hepatitis sera,
healthy sera control, and mock (water) extractions obtained
using QlAamp Viral RNA Mini kit (Qiagen), but was negative
for samples extracted using UCP spin columns (Qiagen). In
addition, to support our assertion that the DNA originated
from the QiaAmp mini spin columns, we have evaluated a
variety of spin columns from different Qiagen and one
Invitrogen kits (table 1). Water as well as mock extractions
prepared following the corresponding manufacturers’ instruc-
tions were passed through the columns, collected, and eval-
uated by gPCR. CHIV14 was consistently found in only one kit,
the QIAamp RNA mini kit described above. The elution buffers
from each kit and water used for the elutions all tested
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Fic. 1.—Confirmation of contaminated columns as origin of CHIV14 DNA by qPCR. (A) Verification of CHIV14 genome assembled from the lllumina
deep-sequencing data by overlapping PCR and inverted PCR. Five sets of overlapping primer pairs and one set of inverted primer pair were designed and used
to amplify overlapping DNA fragments. (Left) Schematic diagram of the positions of primer pairs for the overlapping PCR and inverted PCR. (Right)
Amplification overlapping viral DNA fragments. The numbers above indicate the primer pair used for the PCR as illustrated on the left. The numbers on
the left indicate the molecular weight in base pairs. (B) Scatterplot showing copy number of CHIV14 per microliter of DNA extraction. DNA from patients
(n=13), healthy controls (n = 13), and water (n=31) was extracted using QlAamp mini spin columns (QlAamp Viral RNA Mini kit; Qiagen). In parallel, seven
DNA extractions for each specimen type (patients, healthy individuals, and water) were performed using the UCP columns. Each dot represents one

specimen. Bars show the average copy numbers of the viral genome.

negative for the presence of CHIV14 DNA. Based on the
above results, we conclude that CHIV14 genome is a contam-
ination specific to QlAamp mini spin columns.

All previously described CHIV genomes were recovered
from aquatic environments and it was suggested that these
viruses might infect unicellular algae (Roux et al. 2013). The
discovery of CHIV14 in spin columns further supports this pre-
diction and suggests that CHIV14 is associated with algae that
constitute the silica matrix used in the spin columns, as previ-
ously concluded for NIH-CQV (Naccache et al. 2013), or intro-
duced during the extensive water washing of the spin columns

during manufacturing. Ambiguity regarding the actual host
notwithstanding, analysis of the CHIV14 genome provided
important insights into virus evolution, as described below.

CHIV14 Is a Chimera of Genes from RNA and DNA
Viruses

The CHIV14 genome contains three predicted open reading
frames (ORF) larger than 45 codons (fig. 24). When the se-
guence of the ORF1 product (445 amino acids) was used
as a query in BLASTp search against National Center for
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Fic. 2.—Characterization of CHIV14. (A) Genome map of CHIV14. Predicted protein-coding genes are indicated with arrows, indicating the direction of
transcription. A circle indicates the position of a potential origin of replication containing the nonanucleotide motif (AAGTATTAC) which is identical to the
one found in BSL RDHV genome. (B) Maximum-likelihood phylogenetic analysis of the tombusvirus-like CPs. CHIVs are highlighted in red, tombusviruses in
green and unclassified ssSRNA viruses are either in blue when isolated, or in cyan when assembled from the Lake Needwood RNA virome. Tobacco necrosis
virus A and Olive mild mosaic virus, both members of the genus Necrovirus within Tombusviridae, have CPs lacking the projection (P) domain and were used
as an outgroup. Numbers at the branch points represent SH-like local support values. Nodes with support values less than 75% were collapsed. NCBI Gl
numbers are indicated for all reference sequences. The respective origins of the viromes from which the CHIV genomes were assembled are indicated next to
the CHIV names. (C) Structural model of the CHIV14 CP. The P and shell (S) domains are indicated. The coloring represents sequence conservation among

CHIV CPs. The color key is provided at the bottom of the panel.

Biotechnology Information (NCBI) nonredundant protein se-
guence database, the top hit was to the uncharacterized
Sewage-associated circular virus-13 (SaCV-13; E=1e-49),
whereas the second best hit (E=5e-40) was to the CP of
the unclassified comycete-infecting RNA virus Plasmopara hal-
stedlii virus A (SmV-A) (Heller-Dohmen et al. 2011). Further
hits, with somewhat lower expectation values, were to the
CP of BSL RDHV and to numerous plant-infecting RNA viruses
of the family Tombusviridae. Thus, CHIV14 ORF1 encodes a
tombusvirus-like CP, as also has been found for all BSL RDHV-
like CHIVs (Diemer and Stedman 2012; Roux et al. 2013). We
next compared the CHIV14 CP with the corresponding pro-
teins encoded by the previously reported CHIVs which are

available through the Dryad Digital Repository (Roux et al.
2013), and we found that CP of CHIV14 was most closely
related to that of CHIV10 (E=8e-65; fig. 2B). The analysis
also revealed that the history of the CHIV group included a
single event of CP gene transfer from an RNA virus. Consistent
with previous findings (Roux et al. 2013), CHIV CPs formed a
sister group to the clade consisting of SmV-A/PhV-A CPs and
sequences recovered from the Lake Needwood RNA virome
(Djikeng et al. 2009) (fig. 2B).

Tombusvirus CPs contain two jelly-roll (antiparallel eight-
stranded B-barrel) domains (fig. 2C). The shell (S) domain par-
ticipates in the formation of the icosahedral capsid, whereas
the projection (P) domain faces away from the capsid surface
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and might be involved in virus—host interactions. Multiple se-
guence alignment of CHIV CPs showed nonhomogeneous
distribution of conservation, as has been previously observed
with a smaller data set of CHIV proteins (Roux et al. 2013). To
examine the potential functional implications of this observa-
tion, we constructed a three-dimensional model of the
CHIV14 CP (see Materials and Methods) and mapped onto
it the conservation/divergence pattern of the CHIV CPs ob-
tained from the multiple sequence alignment. The sequence
conservation is markedly higher in the S-domain compared
with the P-domain (fig. 2C), consistent with the distinct func-
tional roles of the two domains. Specifically, these observa-
tions indicate that the P-domain substantially diverged in the
CHIV group following the CP gene acquisition from an RNA
virus, consistent with its predicted role in virus—host
interactions.

ORF2 is located on the complementary strand of the CHIV
genomes and encodes a putative RC-Rep (449 amino acids),
the most common replication protein in ssDNA viruses
(Krupovic 2013). An HHpred analysis revealed three domains
in the protein: The N-terminal Gemini_AL1 endonuclease
domain  (PFO0799), the central geminivirus-specific
Gemini_AL1_M domain (PF08283), and the C-terminal su-
perfamily 3 (SF3) helicase domain (PFO0910) (fig. 3A). The
fusion between the rolling-circle endonuclease domain and
the SF3 helicase domain is a signature of eukaryotic sSDNA
viruses (Koonin 1993; Rosario et al. 2012; Krupovic 2013)
and is also found in some bacterial and eukaryotic plasmids
(Krupovic et al. 2009; Dayaram, Goldstien, et al. 2013;
Krupovic 2013). All three diagnostic motifs (MI-Ill) of RC-
Rep proteins (llyina and Koonin 1992) were identified in
the N-terminal domain of the CHIV14 RC-Rep (fig. 34). In
addition, the N-terminal domain contains the geminivirus-
specific motif, GRS, which is essential for geminivirus
genome replication (Nash et al. 2011). The SF3 helicase
domain is characterized by distinct versions of the three sig-
nature motifs of P-loop NTPases (A-C), all of which are con-
served in the CHIV14 RC-Rep (fig. 3A).

ORF3, predicted to encode a short protein of 48 amino
acids, does not share sequence similarity with proteins in
public databases, nor does it contain a homolog in available
CHIV genomes. The sequence analysis described above indi-
cates that CHIV14 belongs to the expanding group of putative
BSL RDHV-like CHIVs, which evolved as the result of recombi-
nation between virus ancestors with RNA and DNA genomes.
However, like in the case of all other CHIVs, the viral nature of
CHIV14 has to be confirmed experimentally.

CHIV14 RC-Rep Is a Chimera of Domains from Different
Groups of ssDNA Viruses

Recent analysis of RC-Rep diversity in CHIVs has revealed an
unexpectedly frequent RC-Rep gene transfer in the CHIV lin-
eage (Roux et al. 2013). In contrast to the monophyly of the

CHIV CPs, the RC-Reps of these viruses segregated into three
groups with respective closest relatives in different families of
eukaryotic ssDNA viruses, namely Circoviridae, Nanoviridae,
and Geminiviridae. The BLASTp analysis of the CHIV14 RC-
Rep has shown that the N-terminal domain (residues 1-280) is
most closely related to the corresponding domain of the pro-
teins encoded by geminiviruses (fig. 3B), consistent with the
HHpred analysis (fig. 34). In contrast, when the SF3 helicase
domain (residues 280-499) was used as a seed, significant hits
to geminiviruses were not retrieved. Instead, the CHIV14 SF3
domain showed highly significant similarity to the correspond-
ing domains of the RC-Rep proteins of nanoviruses and to
some uncharacterized environmental viruses. This observation
suggests that the RC-Rep protein of CHIV14 is likely a chimera,
in which the N- and C-terminal domains have different evo-
lutionary histories.

To further investigate the provenance of CHIV14 RC-Rep,
we performed maximum-likelihood phylogenetic analysis of
the full-length RC-Reps from different groups of ssDNA viruses
and from the corresponding endonuclease and helicase do-
mains separately (fig. 3C=£). In all cases, geminiviruses, nano-
viruses, and circoviruses formed distinct clades, indicating that
the two domains in these viruses have coevolved and there
was no interfamilial exchange of either the full-length RC-Rep
genes or gene fragments encoding separate domains.
Similarly, nuclease and helicase domains of CHIV1-CHIV5,
LDMD-2013, and BSL RDHV consistently grouped with circo-
viruses; those of CHIV7, CHIV8, CHIV10, CHIV11, and CHIV12
grouped with nanoviruses; and CHIV13 branched with gemi-
niviruses (fig. 3C—E). In contrast, the endonuclease domains of
CHIV14, CHIV9, and SaCV-13 formed a deeply branching
clade with geminiviruses (fig. 3D), and their helicase domains
grouped with those of nanoviruses (fig. 3£). Consequently,
RC-Reps of the three CHIVs are chimeras that consist of en-
donuclease and helicase domains that do not share a common
evolutionary history.

Conclusions

The importance of horizontal gene transfer in virus evolution
cannot be overestimated. It has been extensively investigated
in the case of viruses with dsDNA genomes, where gene frag-
ments, individual genes, and even multigene operons are
known to have been exchanged between different viruses,
plasmids, and their hosts (Krupovic and Bamford 2007; Filée
etal. 2008; Fischer et al. 2010; Krupovic et al. 2011; Yutin and
Koonin 2012; Filée 2013; Forterre and Prangishvili 2013;
Koonin and Dolja 2014; Yutin et al. 2014; Krupovic and
Koonin 2015). However, in the case of viruses with small ge-
nomes, such as ssDNA viruses, horizontal gene transfer had
not been characterized in comparable detail although given
the small number of genes, it is expected to have a more
profound effect on the genetic “identity” (and taxonomic af-
filiation) of the small viruses. Here, we show that BSL RDHV-
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Fic. 3.—Analysis of the chimeric RC-Rep protein of CHIV14. (A) Domain organization of the CHIV14 RC-Rep. Red ellipses indicate the positions of the
three identified domains: The N-terminal endonuclease domain Gemini_AL1 (PFO0799, residues 65-191), central domain Gemini_AL1_M (PFO8283; res-
idues 196-291), and the C-terminal SF3 helicase domain (PFO0910; residues 278-390). The diagnostic motifs of the RC-Rep proteins (MI-Il) as well as Walker
A, B, and C (WA-C) motifs of the SF3 helicase domain are shown at the top. The position of the geminivirus RC-Rep-specific motif GRS (geminivirus Rep
sequence) defined by Nash et al. (2011) is also indicated. (B) Distinct sets of best BLASTp hits for two different regions of the CHIV14 RC-Rep. The N-terminal
and C-terminal domains were most similar to the corresponding regions of RC-Reps from geminiviruses and nanoviruses, respectively. Maximum-likelihood
phylogenetic analysis of the full-length RC-Rep protein (C), endonuclease domain (D), and SF3 helicase domain (E) of CHIV14. CHIVs are highlighted in red,
whereas members of the families Circoviridae, Geminiviridae, and Nanoviridae are shaded blue, cyan, and green, respectively. Numbers at the branch points
represent SH-like local support values. Abbreviations and NCBI Gl: RaCV, Raven circovirus (115334608); CaCV, Canary circovirus (18875310); SwCV, Swan
circovirus (156079716); DuCV, Duck circovirus (71658852); RfCV, Rhinolophus ferrumequinum circovirus 1 (389568560); SGCV, Silurus glanis circovirus
(365269059); PCV-1, Porcine circovirus-1(94451274); PCV-2, Porcine circovirus-2 (404553515); CyCV-TB, Cyclovirus bat/USA/2009 (318069480); DfCyV-1,
Dragonfly cyclovirus 1 (324309814); DfCyclV, Dragonfly cyclicusvirus (406870761); CircoTM-6¢, Circoviridae TM-6¢ (297598949); LDMD-2013, Circo-2
LDMD-2013 (528320274); SaCV-13, Sewage-associated circular virus-13 (664651387); BBTV, Banana bunchy top virus (81993219); SCSV, Subterranean
clover stunt virus (82005379); FBNYV, Faba bean necrotic yellows virus (20143454); MVDV, Milk vetch dwarf virus (82005916); NepaV, Nepavirus
(403044759); NimiV, Niminivirus (404352299); MSV, Maize streak virus (14794722); BamiV, Baminivirus (403044751); PGMV, Pepper golden mosaic
virus (22128601); HrCTV, Horseradish curly top virus (1255063); AbMV, Abutilon mosaic virus (39980674); JaMV, Jatropha mosaic virus (612184447);
MYSV, Macroptilium yellow spot virus (417355462); TLCV-ND, Tomato leaf curl New Delhi virus (562890733); PedLCV, Pedilanthus leaf curl virus
(224581833); BCTV, Beet curly top virus (46254388); TPCTV, Tomato pseudo-curly top virus (20564197).

like ssDNA viruses are chimeric at two levels. Not only do they
combine genes from viruses with different types of genomic
nucleic acids (RNA and DNA) but also the genes themselves in
some of these hybrid viruses are chimeric, with different func-
tional domains donated by viruses from different families.
Although genomic recombination is frequent in many
groups of eukaryotic ssSDNA viruses (Martin et al. 2011,
Lefeuvre and Moriones 2015), it is noteworthy that horizontal

gene transfer and domain shuffling described here so far have
not been observed in this class of viruses. Recombinant viruses
are likely to suffer from disruption of favorable coevolved ge-
netic interactions (Monjane et al. 2014) and are usually unfit
to compete with the parental viruses, which ultimately leads
to their elimination from the population. However, the exam-
ple of CHIVs indicates that occasionally such recombinant vi-
ruses do succeed, resulting in the emergence of multiple,
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novel groups of viruses that conceivably could occupy new
ecological niches.
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