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Abstract Biological membranes create compartments, and are usually formed by lipid bilayers.

However, in hyperthermophilic archaea that live optimally at temperatures above 80˚C the

membranes are monolayers which resemble fused bilayers. Many double-stranded DNA viruses

which parasitize such hosts, including the filamentous virus AFV1 of Acidianus hospitalis, are

enveloped with a lipid-containing membrane. Using cryo-EM, we show that the membrane in AFV1

is a ~2 nm-thick monolayer, approximately half the expected membrane thickness, formed by host

membrane-derived lipids which adopt a U-shaped ‘horseshoe’ conformation. We hypothesize that

this unusual viral envelope structure results from the extreme curvature of the viral capsid, as

‘horseshoe’ lipid conformations favor such curvature and host membrane lipids that permit

horseshoe conformations are selectively recruited into the viral envelope. The unusual envelope

found in AFV1 also has many implications for biotechnology, since this membrane can survive the

most aggressive conditions involving extremes of temperature and pH.

DOI: 10.7554/eLife.26268.001

Introduction
Many viruses, including some of the most devastating human pathogens such as Ebola virus, are

enveloped with a lipid membrane. The membrane is considered to be an adaptation to the host that

has been convergently acquired in different virus orders (Buchmann and Holmes, 2015). Some

groups of evolutionarily related viruses contain both enveloped and non-enveloped members. One

example is provided by hyperthermophilic archaeal viruses of the order Ligamenvirales

(Prangishvili and Krupovic, 2012) which contain non-enveloped, rigid rod-shaped viruses of the

family Rudiviridae and enveloped, flexible filamentous viruses of the family Lipothrixviridae. Viruses

from these two families have many homologous genes and build their virions using structurally simi-

lar major capsid proteins. The ~4 Å-resolution cryo-EM structure (DiMaio et al., 2015) of a less-com-

plex rudivirus, the Sulfolobus islandicus rod-shaped virus 2 (SIRV2) (Prangishvili et al., 1999), has

shown that the viral double-stranded (ds) DNA is completely insulated from the external medium by

the single capsid protein which transforms the viral DNA into A-form, explaining the stability of rudi-

viruses in extremely aggressive (80˚C, pH 3) natural habitats. Virions of lipothrixviruses are more

complex and are built from two paralogous major capsid proteins (MCP1 and MCP2) which bind

dsDNA to form the nucleocapsid (Goulet et al., 2009). The nucleocapsid is enveloped by a lipid
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membrane and the termini of the virion are decorated with specialized structures involved in host

recognition (Bettstetter et al., 2003).

Membranes of hyperthermophilic archaea often consist of unusual tetraether lipids, which form

monolayers rather than bilayers typical of bacterial and eukaryotic membranes (De Rosa and Gam-

bacorta, 1988; Valentine, 2007). It has been demonstrated that such membranes are more rigid

and stable than typical bilayers, a property with considerable biotechnological appeal. However,

molecular details of membrane remodeling in archaea remain grossly understudied, and how a virus

captures a non-bilayer membrane from its host is virtually unknown and is conceptually difficult to

reconcile with our current understanding of membrane remodeling by viruses infecting eukaryotes

(Harrison, 2008, 2015; Hurley and Hanson, 2010). Comparison of the organization of rudiviruses

and lipothrixviruses provides an opportunity to probe structural changes permitted by envelope

acquisition and can also explain how the lipid envelope may contribute to resisting stresses posed

by the extreme geothermal environment.

Results
To better understand the evolutionary relationship between enveloped and non-enveloped viruses,

we used cryo-EM (Figure 1) to determine the structure of Acidianus filamentous virus 1 (AFV1), the

prototypical lipothrixvirus infecting the hyperthermophilic and acidophilic archaeon Acidianus hospi-

talis (Bettstetter et al., 2003), and compared the resultant structure to that of SIRV2.

Determining the structure of AFV1 was complicated by the fact that the virions are significantly

more flexible, both with respect to bending as well as extension and compression, than those of

SIRV2. Segments could be classified by the pitch of the prominent helix which ranged from 39 to 47

Å (Figure 2), in contrast to the rather fixed pitch of 42 Å in SIRV2 (DiMaio et al., 2015). A three-

dimensional reconstruction (Figure 3) of AFV1 not only reveals the gross morphology but also has

allowed us to build a full atomic model for both the two MCP subunits and the DNA. While the Four-

ier Shell Correlation (FSC) is frequently used as the measure of resolution, numerous concerns have

been raised about this metric since it is really a measure of self-consistency and not resolution

eLife digest Virtually every environment on the planet is home to some form of life, even places

that, at first glance, appear to be too harsh for any organism to survive in. For example, a

microscopic organism known as Acidianus hospitalis thrives in highly acidic environments that are

hotter than 80˚C, conditions that would kill humans and many other species.

Acidianus hospitalis has many adaptations that allow it to survive in its extreme environment. For

example, the membrane that surrounds its cells has a different structure to the membranes that

surround the cells of most other species. Membranes are made of molecules known as lipids.

Generally these lipids assemble into two distinct layers (known as a bilayer) to form the membrane.

However, in A. hospitalis the membrane contains only a single layer of lipids that resembles a bilayer

in which lipids in opposite layers have fused together to make longer molecules.

A virus known as AFV1 is able to infect A. hospitalis. Like many other viruses, AFV1 steals part of

its host cell’s membrane when it leaves the cell in search of new cells to infect. This stolen

membrane helps to protect the virus from its surroundings, however, the structure of the membrane

surrounding AFV1 was not known.

Kasson et al. combined a technique called cryo-electron microscopy with computer simulations to

study the membrane surrounding AFV1. The study shows that this membrane is only half as thick as

the membrane that surrounds A. hospitalis. To make this thinner membrane, flexible lipid molecules

from the A. hospitalis membrane bend into a U-shape.

These findings reveal a new type of membrane structure not previously seen in the natural world.

In the future, this thinner membrane could have many uses in biotechnology, such as to make

probes for medical imaging in patients or to deliver drugs to specific sites in the body. Enveloped

by this unusual membrane, these structures may be more resistant to the normal processes that

degrade and destroy foreign materials in humans and other organisms.

DOI: 10.7554/eLife.26268.002
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(Subramaniam et al., 2016). Nevertheless, the ‘gold standard’ FSC (Figure 4) yields an overall reso-

lution of 4.1 Å. We think that this is overly optimistic, and may arise from strong features in the DNA

(Figure 5) (given the higher MW of the phosphates, the contrast is greater than for protein). A rea-

sonable estimate (based upon comparison with the atomic model) is ~4.5 Å, but it is clear that parts

of the complex (such as the outer helices facing the membrane, Figure 3b) are at a worse resolution,

while other parts (such as the helix-turn-helix motifs on the very inside, Figure 3c) are at a better

resolution.

The outer diameter of the virion is ~185 Å, while the diameter of the nucleoprotein core alone

(excluding the membrane) is ~135 Å. Surprisingly, the membrane is only ~20–25 Å thick, compared

to ~40 Å found for archaeal tetraether monolayer (Valentine, 2007) membranes (Chong et al.,

2003; Chugunov et al., 2014) and the 40–60 Å found for other cellular membranes and the viral

envelopes derived from them (Hollinshead et al., 1999), but a crude calculation done by integrating

the cryo-EM density (which corresponds to the Coulombic potential but will be roughly proportional

to mass) suggests that ~40% of the total mass of the virion is due to the membrane. The buoyant

density for the AFV1 virions was previously determined using a CsCl gradient (Bettstetter et al.,

2003), and it was consistent with other membrane-enveloped dsDNA viruses (King et al., 2011).

The helically-averaged membrane shows two clear density peaks, with the highest one on the out-

side and a lower one at inner radius (Figure 3a). This can be seen more easily in the cylindrically-

averaged density distribution of the virion, which yields the radial mass distribution (Figure 7a).

It is unlikely that any details of the membrane structure are lost due to the fact that either the

helical symmetry of the nucleocapsid has been imposed upon the membrane (Figure 3a) or the

membrane has been cylindrically averaged (Figure 7a) since the membrane is most likely a two-

dimensional fluid. If there were some fine structure in the membrane (e.g., a liquid-crystalline phase

with a spacing of ~5 Å) then this would be lost by the helical symmetrization (lost as well, of course,

by cylindrical averaging) but would appear in averaged power spectra. Since the membrane

accounts for ~40% of the mass of the virions, and since there are no features in the averaged power

spectra arising from any liquid crystalline features of the membrane, all evidence suggests that it is

fluid. What we have been able to observe is that if we compare the membrane with helical symmetri-

zation with a membrane generated by cylindrically-averaging the helical density, or with that

obtained from an ab initio cylindrical symmetry reconstruction (see Materials and methods), we see

Figure 1. Cryo-EMs of AFV1. Arrows point to regions where the virions have been demembranated. This leads to a narrower diameter of the virions

and a greatly increased flexibility, as seen by the loops in a,b. The loss of the membrane does not necessarily occur over the whole virion, as can be

seen in c where a membrane-enveloped region in the center is bracketed by two regions with no membrane. The scale bar (b) is 1,000 Å.

DOI: 10.7554/eLife.26268.003
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no systematic differences. This excludes the possibility that the membrane is deformed locally by the

protein in a way that the membrane would deviate from cylindrical symmetry by the presence of cer-

tain amino acid residues either facing the membrane or inserted into the membrane.

In SIRV2, the radius of the DNA is ~60 Å, while in AFV1 the supercoiling is tighter and the radius

is ~30 Å. The twist of the A-form DNA in SIRV2 is 11.2 bp/turn (DiMaio et al., 2015) while in AFV1 it

is 10.8 bp/turn: in 10 right-handed turns of the 43 Å pitch AFV1 helix, there are 93 repeats of the

DNA, each with 12 bp, so there are 1116 bp per 103 (=93 + 10) right handed turns. These two val-

ues (11.2 and 10.8) bracket the ‘canonical’ value of 11 bp/turn frequently given for A-DNA

(Vargason et al., 2001). Interestingly, the helical pitch in both SIRV2 and AFV1 is ~42–43 Å, but in

SIRV2 there are 14.7 homodimers per turn, while in AFV1 there are only 9.3 heterodimers. It is this

looser packing in AFV1 that appears responsible for the greater flexibility and disorder. It also

explains why the two viruses with linear dsDNA genomes of very different sizes – 35,450 kb for

SIRV2 (Peng et al., 2001) and 20,080 for AFV1 (Bettstetter et al., 2003) – have virions of approxi-

mately the same length (about 900 nm). In SIRV2 there are tight contacts across the helical turns,

while in AFV1 such contacts are absent (Figure 3b), allowing the virions to bend, extend, and
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Figure 2. The distribution of segments sorted against references containing 1-start helices with different pitch values. The validity of this sorting was

confirmed by taking power spectra from different bins, which behaved as expected and showed the helical pitch of the corresponding reference. The

reconstruction was generated using segments from the central three bins.

DOI: 10.7554/eLife.26268.004
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Figure 3. Three-dimensional reconstruction of AFV1. (a) A slice perpendicular to the filament axis. The red arrows define a distance of 20 Å, the

approximate thickness of the membrane enveloping the virions. The membrane has a denser outer component and a less dense inner part, separated

by a region of lower density. (b) A view of the protein core, looking from the membrane. The asymmetric unit in the virus is a pseudo-symmetric

heterodimer of MCP1 (red) and MCP2 (yellow). (c) A view looking down the filament axis (perpendicular to that in b) with the model for the DNA

phosphodiester backbone underneath the protein in blue. The helix-turn helix motif of each subunit faces into the narrow lumen. The resolution is

good enough in this region that some bulky amino acids can be unambiguously located, and three Tyr21 residues are labeled. (d) The heterodimer in

AFV1 has a pseudo-2-fold symmetry, in contrast to the homodimer in SIRV2 (e) which has strict 2-fold symmetry. In both, A-form DNA is bound within

the central cleft. The N- and C-terminal ends in both (d) and (e) are labeled Nt and Ct, respectively.

DOI: 10.7554/eLife.26268.005
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Figure 4. (a) An FSC curve between two reconstructions from completely independent sets of segments (having no overlap), each started

independently from a full reconstruction filtered to 7 Å resolution. The FSC falls to 0.143 at 1/ (4.1 Å).

DOI: 10.7554/eLife.26268.006

Figure 5. Packing of the DNA in the virion. (a) The phosphate backbone of the DNA model can be fit nicely into the density map, as most of the

phosphate groups are well resolved. (b) A slice perpendicular to the DNA axis through the map and model. As expected for A-form DNA (and in

contrast to B-form), a hole is seen along the DNA axis, with the bases surrounding this cavity. (c) The Coulombic potential for the AFV1 capsid

heterodimer shows significant positive regions (blue) surrounding the DNA, with negative regions (red) away from the DNA.

DOI: 10.7554/eLife.26268.007
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compress. At the same time, due to looser protein packing, the AFV1 genome is not completely cov-

ered by the protein, while it is in SIRV2. Consequently, the lipid envelope provides a necessary pro-

tection to the AFV1 genome in the highly acidic environment of the natural habitat, rationalizing the

presence of the envelope in lipothrixviruses. When the membrane is removed (we assume as an arti-

fact of specimen preparation) the virions become much more flexible (Figure 1). Since the mem-

brane, which has fluid-like properties, is unlikely to be directly responsible for the increased rigidity

of the enveloped virions, it suggests that the presence of the membrane constrains the protein and

thus indirectly imparts rigidity to the structure.

It was originally proposed from a crystallographic study that the two capsid proteins MCP1 and

MCP2 would be packed very differently in the virion (Goulet et al., 2009). A model, based upon

crystal structures of most of one capsid protein and a fragment of the second one, proposed that

one of the capsid proteins formed an inside core of the virion, with DNA wrapping around it, while

the other subunit was on the outside of the DNA and partially inserted into the membrane. Surpris-

ingly, we find that the two capsid proteins form a pseudo-symmetric heterodimer (Figure 3d) that

resembles in many ways the symmetric homodimer found in SIRV2 (Figure 3e), and that both inter-

act with the DNA in an equivalent manner. We have accounted for all of the amino acids in the two

capsid proteins with the exception of 5 N-terminal residues in both MCP1 and MCP2. However,

these residues would be too far from the membrane to contact it. Further, we see no density extend-

ing from the protein to the membrane.

There are two main differences between the AFV1 and SIRV2 dimers: (1) In SIRV2 the N-terminal

tail forms a long helix with a kink that allows it to continuously wrap around the DNA (Figure 3e),

while in AFV1 the N-terminal region of both MCP1 and MCP2 form helix-turn-helix motifs which fold

back to cover the DNA on both sides (Figure 3d); (2) In SIRV2 the 2-fold axis of the dimer is perpen-

dicular to the helical axis (and goes through the 2-fold axis in the DNA), generating an overall bipo-

lar symmetry for the virion, while in AFV1 the pseudo-2-fold axis of the heterodimer is tilted by 25.7˚
and does not intersect the helical axis, so that the virion has an overall polarity visible at fairly low

resolution. Details of the wrapping of the A-form DNA by the heterodimer are shown in Figure 5,

where it can be seen that a positive Coulombic potential would surround the negatively-charged

phosphate backbones of the DNA.

The fact that the membrane is only 20–25 Å thick, half of regular lipid membranes, has led us to

investigate the membrane further. Since the membrane lipids would not be synthesized by the virus

but must come from the host, we first compared the distribution of lipids (Figure 6a) found in the

host with those found in the virion membrane (Figure 6b). There is a striking difference in the distri-

butions showing that the incorporation of the glycerol dibiphytanyl glycerol tetraether (GDGT) lipids

from the host is highly selective. While the single most dominant species in the host is GDGT-4 (con-

taining 4 cyclopentane moieties), in the virion it is GDGT-0 (containing no cyclopentane moieties),

found as only a few percent of the total host membrane lipids. Nevertheless, GDGT-0 is actually one

of the most common archaeal membrane lipids (Schouten et al., 2013; Villanueva et al., 2014). Fur-

thermore, it is generally the dominant, or one of the dominant, archaeal lipids in environmental sam-

ples taken from soils, rivers, lakes and oceans accounting for >40% of all GDGTs detected

(Schouten et al., 2013). The selective incorporation of host lipids in a viral membrane has previously

been described, for example, in influenza budding from mammalian cells (Gerl et al., 2012), or in a

virus budding from algae (Maat et al., 2014). Such selective incorporation could be driven by direct

lipid binding by capsid proteins, enrichment of certain lipid species at sites of viral budding, or phys-

ical properties of the viral envelope that cause partitioning of lipids into or out of the nascent enve-

lope during viral budding. Because GDGT-0 is more flexible than the cyclopentane-containing

GDGT lipids (Schwarzmann et al., 2015), it can better adopt the horseshoe conformations that

have a lower free energy in the highly curved AFV-1 envelope (Galimzyanov et al., 2016). We there-

fore hypothesize that selective partitioning of GDGT lipids due to the curvature of the envelope is

the mechanism for GDGT-0 enrichment in the AFV-1 membrane.

Knowing the lipid composition of the virion, we used molecular dynamics (MD) to model the viral

membrane. Multiple simulations were performed of GDGT-0 lipids arranged cylindrically around the

capsid assembly in different densities and orientations. Lipids were modeled with a single phosphoi-

nositol headgroup, as this is the smallest headgroup commonly found on GDGT lipids in the A. hos-

pitalis host (the others are dihexose and sulfonated trihexose headgroups). These lipids frequently

adopted a U-shaped or horseshoe conformation, and these horseshoe-rich envelopes with a mix of
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‘inward-facing’ and ‘outward-facing’ lipids were the only ones that stably maintained the curvature

and thickness observed in the radial density profile from cryo-EM. These lipids still form a monolayer

one lipid thick, but the lipids in the monolayer have a mixed orientation. A horseshoe lipid conforma-

tion from simulation was therefore used to fit the cryo-EM radial density profile; the best-fit arrange-

ment features 40% of lipids with headgroups facing inwards towards the nucleocapsid and 60% of

lipids with headgroups facing towards the outside (Figure 7). Structural models simulated with this

lipid orientation maintained a stable envelope structure with the thickness, curvature, propensity to

horseshoe conformations, and the slight ~8 Å water-filled gap between envelope and capsid

observed by cryo-EM, similar to a surface-supported membrane. The density in this gap observed

Figure 6. Lipid distribution of virions different from host cells. (a) Chemical diagrams for the lipids found in

Acidianus hospitalis and AFV1. (b) The distribution of lipids in the host membrane (red) differs significantly from

the distribution found for AFV1 (blue). The scale is in percentage.

DOI: 10.7554/eLife.26268.010
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by cryo-EM was the same as the solvent outside

the virus, further suggesting that the region

between the envelope and the polar capsid sur-

face and the envelope is similar to that between

a supported lipid bilayer and its planar support

(Ajo-Franklin et al., 2005; Koenig et al., 1996).

Simulations very robustly reproduced the

width and placement of the envelope density

compared to the cryo-EM data, and the density

was stable over the course of multiple indepen-

dent simulations. However, the lipids in the sim-

ulations were somewhat more disordered than

suggested by the cryo-EM density, such that the

double-peak density profile from cryo-EM was

smoothed into a broader single peak, and most

but not all simulated lipids were in horseshoe

conformation. This could result from one of

three factors: (1) a slight mismatch in the esti-

mated density of lipids in the viral envelope

Figure 7. Modeling the viral membrane. (a) The cylindrically averaged density profile from EM (blue curve) is well fit by a cylindrical envelope (green

curve) of phosphoinositol-GDGT0 lipids in horseshoe conformations (b) with 60% having headgroups facing away from the capsid and 40% having

headgroups facing towards the capsid. Molecular dynamics simulations of the protein capsid and phosphoinositol-GDGT0 lipids constructed in this

arrangement produced a stable envelope rich in horseshoe-conformation lipids (c), while all other envelope arrangements tested failed to maintain the

experimentally-derived thickness of 20–25 Å. The density peak at ~30 Å radius (a) arises from the DNA. The central cryo-EM density (radius <15 Å) could

not be explained by the capsid proteins, and most likely involves either a minor viral protein or a host protein (Figure 7—figure supplement 1). Since

the symmetry of the virion was imposed on this density, which likely does not have such a symmetry, the density was uninterpretable and removed from

the other figures. Reconstructed density profiles from the simulations are shown in Figure 7—figure supplement 2, accompanied by movies of 20

envelope lipids in Video 1 and of the entire envelope and interfacial water layers in Video 2.

DOI: 10.7554/eLife.26268.011

The following figure supplements are available for figure 7:

Figure supplement 1. A central disconnected density (yellow arrow) cannot be explained by the two capsid proteins and most likely involves either a

minor viral protein or a host protein.

DOI: 10.7554/eLife.26268.012

Figure supplement 2. Computed radial density from molecular dynamics simulations.

DOI: 10.7554/eLife.26268.013

Video 1. Conformational dynamics of 20 lipids from

the simulated AFV1 envelope. Rendered in this movie

are 20 sequential lipids from the simulated AFV1

envelope in stick form and the capsid protein in

cartoon form. Frames are at nanosecond intervals.

DOI: 10.7554/eLife.26268.008
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leading to lateral pressure stresses in the enve-

lope, (2) a larger lipid headgroup present in

AFV-1 envelopes than those used in simula-

tions—the simulations used a phosphoinositol

headgroup and glycerol backbone as the mini-

mal headgroups found on host lipids, but larger

headgroups are also possible, or (3) factors inter-

nal to the simulation such as insufficient sam-

pling time or slight mismatches in lipid

parameterization. Despite this minor disordering

of the lipid tails, the simulated AFV-1 envelope

stably maintained a thickness consistent with a

single horseshoe-conformation lipid with a thin

layer of water between the capsid and envelope.

Control simulations that used either incorrect

lipid density or single-orientation lipids rather

than an ‘in/out mix’ of headgroup orientations

did not maintain these features over equivalent

simulation timescales. These findings are thus

robust and highly consistent with the experimen-

tal data.

The simulation models therefore suggest that a mixture of inward-facing and outward-facing lip-

ids primarily in horseshoe conformations is physically stable surrounding a highly curved polar cap-

sid. These simulations match the thickness of the envelope in the electron-density profile and well

explain the gap between capsid and envelope as a water layer, but they are not sufficiently powered

to distinguish between some-horseshoe and all-horseshoe conformational distributions due to slow

conformational relaxations of the lipids and initial-value sensitivity. We have tested sufficient initial

conditions to say with confidence that (1) a canonical ‘straight’ tetraether lipid conformation is not

compatible with the cylindrical curvature of the capsid; (2) an in/out orientational mix is necessary to

capture the gap in density between the capsid and the envelope; and (3) multiple starting conditions

with in/out horseshoe start states all produce a stable envelope with a thickness matching that

observed experimentally.

These simulations thus provide a specific structural model for the lipids to fit our experimental

findings that GDGT-0 lipids in the envelope must occupy a horseshoe conformation based on the

cryo-EM density profile of the envelope. The models also predicted that the membrane would

account for ~43% of the total mass of the virion, in excellent agreement with the ~40% estimate

from the cryo-EM density integration.

Discussion
AFV-1 is striking because its envelope differs substantially in composition and structure from those

of previously described viruses. Because we have combined multiple experimental approaches with

computational modeling to analyze the AFV-1 envelope, we briefly recapitulate the lines of evidence

for each major finding before going on to discuss some of the important implications of this previ-

ously unappreciated envelope structure. Our cryo-EM density data show an envelope surrounding

the viral capsid that is ~20 Å in thickness; our mass spectrometry data show that this envelope is

composed predominantly of lipids with a GDGT-0 core. The only known conformation of GDGT-0

lipids to form a layer that is <40 Å in thickness is the horseshoe conformation, which has been char-

acterized previously at fluid-air interfaces. Our cryo-EM density data further show an 8 Å region with

density corresponding to water between the protein capsid and the lipid, and the structural refine-

ment of the capsid yields a hydrophilic surface. Our computational models then explain these find-

ings via a horseshoe-conformation monolayer with mixed orientation such that (1) GDGT-0 acyl tails

are not fully exposed to the external solvent or the polar capsid and (2) the tight curvature of the

capsid is well matched by the envelope (which has a radius of curvature on the inside of the mem-

brane of ~70 Å). Thus, the horseshoe-conformation lipid envelope is strongly supported by the

Video 2. Conformational dynamics of AFV1 envelope

lipids and interfacial water. Rendered in this movie are

the simulated AFV1 envelope in stick form, all water

molecules within 10 Å, and the capsid protein in

cartoon form. Frames are at nanosecond intervals.

DOI: 10.7554/eLife.26268.009
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experimental data themselves, while the computational model specifies the likely orientation of lip-

ids within this envelope and provides a detailed model of molecular structure.

Despite extensive exploitation of archaeal tetraether lipids for therapeutic purposes, such as

archaeosome-based delivery of drugs, cancer vaccines, antigens, genes, etc. (Kaur et al., 2016)

remarkably little is known about the actual structure of membranes in Acidianus specifically and Sul-

folobales in general. The studies on membranes of Sulfolobales have thus far largely focused on lipid

composition in different organisms and on investigation of lipid mixtures in in vitro systems. The lipid

composition of Acidianus hospitalis, which we report in this study, is very similar to that previously

determined in a related organism, Sulfolobus solfataricus (Quemin et al., 2015) which has a ~5 nm-

thick membrane. Interestingly, it has been shown that a spindle-shaped virus SSV1 released from Sul-

folobus cells by budding, similar to AFV1, has a membrane enriched in GDGT-0 which is also consid-

erably thinner compared to the host membrane (Quemin et al., 2016). However, this observation

remained unexplained. It thus appears that the lipid conformation described in our current study

might be more general in enveloped viruses of archaea.

A number of in vitro studies have described archaeal lipids forming U-shaped structures at an air-

water interface (Gliozzi et al., 1994; Köhler et al., 2006; Melikyan et al., 1991; Patwardhan and

Thompson, 2000; Tomoaia-Cotisel et al., 1992). Since air is extremely hydrophobic, the acyl chains

face the air while the polar headgroups of these lipids face the water. The presence of cyclopentane

rings (found in the main host species, GDGT-4) has been suggested to rigidify the lipids, making

them unable to form a horseshoe (Gliozzi et al., 1994), in agreement with another study which

found that more rigid tetraether lipids could not form a horseshoe at the air-water interface while

the more flexible lipids did (Patwardhan and Thompson, 2000). Furthermore, theoretical studies

suggest that membranes formed from horseshoe conformation lipids have lower curvature energies

(Galimzyanov et al., 2016) and would thus be energetically favored on the highly curved AFV-1 sur-

face. This may be the main driving force for the exquisite selectivity seen for the incorporation of

host lipids in the viral membrane. A biological role for such a horseshoe conformation has not previ-

ously been suggested or found. Our study demonstrates that besides the canonical bacterial/eukary-

otic membrane bilayer and archaeal monolayer, there is a third type of biological membrane, the

viral horse-shoe membrane layer.

The observation that a membrane that envelops a virus can be formed from lipids in such a con-

formation opens the door to designing such membranes for applications from drug delivery to nano-

technology. Since the archaeal lipids have been shown to resist phospholipases, extremes of

temperature and pH, and can even survive autoclaving, the membrane described here has many

potential applications (Patel and Sprott, 1999).

Materials and methods

Sample preparation, Cryo-EM and Image Analysis
The virus AFV1 was purified for electron microscopy as described earlier (Bettstetter et al., 2003);

for lipid analysis additional purification was performed on a sucrose gradient (Quemin et al., 2015).

The purified virus preparation (3 mL, 1–2 mg/ml) was applied to lacey carbon grids that were plasma

cleaned (Gatan Solarus) and vitrified in a Vitrobot Mark IV (FEI, Inc.). Grids were imaged in a Titan

Krios at 300 keV, and recorded with a Falcon II direct electron detector at 1.05 Å per pixel, with

seven ‘chunks’ per image. Each chunk, containing multiple frames, represented a dose of ~20 elec-

trons/Å2. A total of 557 images (each 4 k x 4 k) were selected that were free from drift or astigma-

tism, and had a defocus less than 3.0 mm. The program CTFFIND3 (Mindell and Grigorieff, 2003)

was used for determining the Contrast Transfer Function (CTF) and the range used was from 0.6 to

3.0 mm. The SPIDER software package (Frank et al., 1996) was used for most subsequent steps. The

CTF was corrected by multiplying each image by the theoretical CTF, both reversing phases where

they need to be reversed and improving the Signal-to-Noise ratio. This multiplication of the images

by the CTF is actually a Wiener filter in the limit of a very poor SNR. The program e2helixboxer

within EMAN2 (Tang et al., 2007) was used for boxing long filaments from the micrographs, and

546 such boxes of varying length were extracted. Overlapping boxes, 384 px long with an 8 px shift

between adjacent boxes (~twice the axial rise per subunit) were extracted from these long filaments,

yielding 215,549 segments that were padded to 384 � 384 px. The CTF determination and particle
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picking came from the integrated images (all seven chunks), while the segments used for the initial

alignments and reconstruction came from the first two chunks.

The determination of the helical symmetry was by trial and error, searching for a symmetry which

yielded recognizable secondary structure (Egelman, 2014). The IHRSR algorithm (Egelman, 2000)

was used for the helical reconstructions, starting from a solid cylinder as an initial model. Once the

correct symmetry was determined (an axial rise of 4.6 Å and a rotation of 38.7˚ per subunit) it was
apparent that the pitch was quite variable, and segments were sorted using references that had a

continuous 1-start helix with different pitch. Segments were excluded if they corresponded to a pitch

less than or equal to 40.5 Å or greater than or equal to 44.1 Å (Figure 2), reducing the number of

segments to 119,495. The final reconstruction was generated by imposing the helical parameters

found for each segment using the first two chunks on segments containing only the first chunk (~20

electrons/Å2) and using these for the back-projection in SPIDER. The variability in the structure was

further overcome by only symmetrizing the central third (128 px) of the 384 px long asymmetric

reconstruction.

Since the images had been multiplied by the CTF twice (once by the microscope and once by us

in phase correction), the amplitudes of the final volume were divided by the sum of the squared

CTFs. The reconstructed volume (which has a very high SNR from the extensive averaging) is cor-

rected only in Fourier amplitudes by dividing by the sum of the squared CTFs. This is a Wiener filter

in the limit of a very high SNR. The map was also sharpened using a negative B-factor of 220.

Resolution was estimated by dividing the data set into two independent halves, such that there

was no overlap in segments between one set and the other. These were used to iteratively generate

(after 20 cycles) two reconstructions for a Fourier Shell Correlation (FSC), starting with a reference

volume for each set that was filtered to 7 Å. Choosing the FSC = 0.143 threshold yielded a resolu-

tion of 4.1 Å (Figure 4).

The radial density profile was generated by cylindrically averaging the reconstructed volume,

since the cylindrically-averaged radial density distribution after helical symmetrization is actually the

same as the unsymmetrized mean radial density distribution. Cylindrically-symmetrizing the IHRSR

helical reconstruction (Figure 7a) leaves only the equatorial terms in a Fourier-Bessel synthesis. That

is the same as the approach of reconstructing by assuming cylindrical symmetry, which is the J0

Fourier-Bessel transform of the equator using Fourier methods. We have done this in real space

using ~9000 segments classified as having an out-of-plane tilt of <0.5˚, and treated these as cylindri-

cally-symmetrical objects, reconstructed them using standard back-projection methods and then cor-

rected for the CTF. The density profile for the membrane is the same as in Figure 7a.

A small central density within the lumen of the reconstruction (Figure 7—figure supplement 1)

with no connectivity to the nucleocapsid could not be explained by the capsid proteins, and most

likely involves either a minor viral protein or a host protein. Since the symmetry of the virion was

imposed on this density, which likely does not have such a symmetry, the density was uninterpret-

able and removed from the other figures.

Model-building with Rosetta
Models were initially constructed using RosettaCM (Song et al., 2013). As template structures we

considered the cryoEM structure of SIRV (PDB id: 3J9X) as well as the crystal structures of the two

components (PDB ids: 3FBZ and 3FBL). Sequence alignments for both molecules in the asymmetric

unit were generated with hhsearch (Söding et al., 2005). Threaded models were then docked into

density. Initially, visual inspection was used to assign each of the two components into the asymmet-

ric unit. Modelling was carried out in the context of the entire assembly, using the helical parameters

determined from map construction. Using RosettaCM, a total of 5000 models were generated, of

which the top 10% were chosen by energy and the top model was chosen by agreement to density.

Following the procedures from SIRV (DiMaio et al., 2015), we also built models for the A-form

DNA present. Initially, models with 11 and 12 base pairs of DNA per repeat were docked into the

density map. Then, these models were randomly perturbed and minimized in Cartesian space with

Rosetta, to correct the geometry at the junction between asymmetric units, as well as to better

improve the local fit of model to density. As with SIRV, a fit of 12 base pairs per repeat showed the

best agreement with the data, with the top five models showing very good convergence on a single

conformation (Figure 8a). An additional refinement step in RosettaCM modeled the protein and
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DNA simultaneously; for this step the DNA was held fixed and only protein conformation was

optimized.

Validation of molecule assignment
Unlike SIRV, the asymmetric unit contains two different molecules. While the assignment was first

visually assigned, using the density of aromatic residues – particularly W88 – to place the subunits

(Figure 8b), we wanted to quantify the degree of fit of the two. Therefore, we set up an additional

RosettaCM run where the order of chains was reversed. Such modeling gave a clear signal for our

initial assignment, with an integrated FSC (10–4.8 Å) of 0.532 for our original assignment versus

0.495 for the flipped assignment, and a Rosetta energy of �11534 for the original assignment versus

�11467 for the flipped assignment. Following these experiments we were confident in our original

assignment of subunits to density.

The presence of an outer membrane in AFV1 suggested a possible conformational change where

hydrophobic residues in the outermost helices faced outward. In order to precisely identify this con-

formational change, we sampled all possible outer helix registry shifts by ±4 residues for each of the

4 helices, giving a total of 94 = 6561 possible starting models. Each of these starting models was

refined against the density and assessed by fit to the data in high-resolution shells (integrated FSC

from 10 to 4.8 Å). A total of 5 models were generated from each starting point. The best 10 models

by the FSC were then subject to additional rounds of refinement, where the connecting loops were

rebuilt in RosettaCM, followed by all-atom refinement. Rescoring these full-length models again

gave a strong signal for the top placement from the original 6561 placements.

"#$!

%##!

!"# $"#

Figure 8. Details of the modeling. (a) Convergence of DNA model refinement results. Sampling DNA conformations revealed a very tight cluster of

models with 12 bp/repeat, showing good agreement with the density. (b) Two corresponding residues that helped guide initial placement of the two

distinct subunits: the extra density visible around W88 compared to the corresponding residue, L84, where no sidechain density is visible.

DOI: 10.7554/eLife.26268.014
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Lipid analysis
The freeze-dried host-cell preparation and the virion preparation were directly acid hydrolyzed by

refluxing with 5% HCl in methanol for 3 hr following Pitcher et al. (Pitcher et al., 2011) to release

GDGT lipids. GDGT lipids were analyzed by high-performance liquid chromatography/atmospheric

pressure chemical ionization-mass spectrometry (Hopmans et al., 2016). The mass spectrometer

was operated in single ion mode (SIM) to monitor GDGTs with 0 to 8 cyclopentane moieties. Rela-

tive abundances of GDGTs were determined by integrating peak areas of the SIM signal.

Modeling the membrane
Simulations were performed using the GROMACS molecular dynamics package (Pronk et al., 2013)

using the CHARMM36 parameter set (Best et al., 2012; Klauda et al., 2010) modified to include

GDGT-0 lipids following the example of previous work on tetraether lipids (Shinoda et al., 2004). In

the absence of definitive mass spectrometry data on the headgroups of the GDGTs in the viral enve-

lope, phosphoinositol was selected as a common archaeal tetraether lipid headgroup. To construct

models of the AFV1 envelope, lipids were placed in a cylindrically symmetric arrangement around a

capsid cylinder 10 nm in length. The lipid lateral density, fraction inward versus outward facing, and

radius of the envelope cylinder were all systematically varied in initial system setup, and the resulting

simulations were assessed with regard to physical stability and maintenance of the capsid thickness

observed on cryo-EM. After lipid placement, the system was energy-minimized and then placed in a

26 � 26�10 nm water box with 150 mM NaCl and sufficient counterions to neutralize the system.

Molecular dynamics simulations were run using 1 fs time step with a 1.2 nm cutoff, with long-range

electrostatics calculated using Particle Mesh Ewald (Darden et al., 1993). Simulations were also per-

formed with and without positional restraints of 1000 kJ mol�1 nm�2 on the capsid protein non-

hydrogen atoms to enforce the cryoEM-refined structure. The capsid maintained both its structure

and agreement with the EM radial density distribution well even in the absence of such restraints.

Temperature was maintained at 310K using the velocity rescaling thermostat (Bussi et al., 2007);

simulations were also run at 277K to approximate storage conditions and 353K to approximate phys-

iological temperature with no gross structural changes, as anticipated from previous studies of

archaeal tetraether lipids (Koga and Morii, 2005). A total of 30 such simulations were run, with

envelope arrangements that were stable and consistent with cryo-EM-derived widths continued >60

ns each. Density profiles are shown for envelope models containing ~500 phosphoinositol-GDGT-0

lipids in a 60:40 inward:outward facing arrangement around a 100 Å cylindrical section of the capsid

protein and containing a total of approximately 700,000 atoms including solvent and ions.

Data deposition
The cryo-EM map was deposited in the EMDB with accession number EMD-8780, and the atomic

model was deposited in the PDB with accession number 5W7G.
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Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D,
Hess B, Lindahl E. 2013. GROMACS 4.5: a high-throughput and highly parallel open source molecular
simulation toolkit. Bioinformatics 29:845–854. doi: 10.1093/bioinformatics/btt055, PMID: 23407358

Quemin ER, Chlanda P, Sachse M, Forterre P, Prangishvili D, Krupovic M. 2016. Eukaryotic-Like virus Budding in
Archaea. mBio 7:e01439-16–01416. doi: 10.1128/mBio.01439-16, PMID: 27624130
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