R. N. Jackson and B. Wiedenheft, A conserved structural chassis for 734 mounting versatile CRISPR RNA-guided immune responses, Mol Cell, vol.58, pp.735-722, 2015.

K. S. Makarova, D. H. Haft, R. Barrangou, S. J. Brouns, E. Charpentier et al., , p.737

S. Moineau, F. J. Mojica, R. M. Terns, M. P. Terns, M. F. White et al., Evolution and 739 classification of the CRISPR-Cas systems, Nat Rev Microbiol, vol.9, pp.467-477, 2011.

E. V. Koonin and K. S. Makarova, CRISPR-Cas: evolution of an RNA-based 741 adaptive immunity system in prokaryotes, RNA Biol, vol.10, pp.679-686, 2013.

E. V. Koonin, K. S. Makarova, and F. Zhang, Diversity, classification and 743 evolution of CRISPR-Cas systems, Curr Opin Microbiol, vol.37, pp.67-78, 2017.

C. Venclovas, Structure of Csm2 elucidates the relationship between 745 small subunits of CRISPR-Cas effector complexes, FEBS Lett, vol.590, pp.746-1521, 2016.

K. S. Makarova, Y. I. Wolf, O. S. Alkhnbashi, F. Costa, S. A. Shah et al., , p.748

R. Barrangou, S. J. Brouns, E. Charpentier, D. H. Haft, P. Horvath et al., , p.749

F. J. Mojica, R. M. Terns, M. P. Terns, M. F. White, A. F. Yakunin et al.,

. Oost, R. Backofen, and E. V. Koonin, An updated evolutionary classification 751 of CRISPR-Cas systems, Nat Rev Microbiol, vol.13, pp.722-736, 2015.

O. O. Abudayyeh, J. S. Gootenberg, S. Konermann, J. Joung, and I. M. Slaymaker, , p.774

D. B. Cox, S. Shmakov, K. S. Makarova, E. Semenova, L. Minakhin et al., , p.775

A. Regev, E. S. Lander, E. V. Koonin, and F. Zhang, C2c2 is a 776 single-component programmable RNA-guided RNA-targeting CRISPR 777 effector, Science, vol.353, p.6299, 2016.

K. Murugan, K. Babu, R. Sundaresan, R. Rajan, and D. G. Sashital, The, vol.779, 2017.

, Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas 780

, Toolkit. Mol Cell, vol.68, pp.15-25

K. S. Makarova, Y. I. Wolf, P. Forterre, D. Prangishvili, M. Krupovic et al.,

, Dark matter in archaeal genomes: a rich source of novel mobile 783 elements, defense systems and secretory complexes, Extremophiles, vol.18, pp.784-877, 2014.

K. S. Makarova, Y. I. Wolf, and E. V. Koonin, The basic building blocks and 786 evolution of CRISPR-cas systems, Biochem Soc Trans, vol.41, pp.1392-1400, 2013.

M. Krupovic, K. S. Makarova, P. Forterre, D. Prangishvili, and E. V. Koonin, , 2014.

, Casposons: a new superfamily of self-synthesizing DNA transposons at the 789 origin of prokaryotic CRISPR-Cas immunity, BMC Biol, vol.12, p.36

M. Krupovic, S. Shmakov, K. S. Makarova, P. Forterre, and E. V. Koonin, , 2016.

, Recent mobility of casposons, self-synthesizing transposons at the origin of 792 the CRISPR-Cas immunity, Genome Biol Evol, vol.8, pp.375-386

W. Jiang, D. Bikard, D. Cox, F. Zhang, and L. A. Marraffini, RNA-guided 816 editing of bacterial genomes using CRISPR-Cas systems, Nat Biotechnol, vol.817, pp.233-239, 2013.

Y. Jiang, B. Chen, C. Duan, B. Sun, J. Yang et al., Multigene editing 819 in the Escherichia coli genome via the CRISPR-Cas9 system, Appl Environ, vol.820, 2015.

, Microbiol, vol.81, pp.2506-2514

J. H. Oh and J. P. Van-pijkeren, CRISPR-Cas9-assisted recombineering in 822, 2014.

, Lactobacillus reuteri, Nucleic Acids Res, vol.42, p.131

E. Marraffini and L. A. , Harnessing CRISPR-Cas9 immunity for 824 genetic engineering, Curr Opin Microbiol, vol.19, pp.114-119, 2014.

U. Gophna, T. Allers, and A. Marchfelder, Finally, archaea get their 826 CRISPR-Cas toolbox, Trends Microbiol, vol.25, pp.430-432, 2017.

I. Mougiakos, E. F. Bosma, W. M. De-vos, R. Van-kranenburg, and J. Van-der-oost,

, Next generation prokaryotic engineering: the CRISPR-Cas toolkit, 2016.

, Trends Biotechnol, vol.34, pp.575-587

N. Peng, W. Han, Y. Li, Y. Liang, and Q. She, Genetic technologies for 831 extremely thermophilic microorganisms of Sulfolobus, the only genetically 832 tractable genus of crenarchaea, Sci China Life Sci, vol.60, pp.370-385, 2017.

D. D. Nayak and W. W. Metcalf, Cas9-mediated genome editing in the 834 methanogenic archaeon Methanosarcina acetivorans, Proc Natl Acad Sci, vol.835, pp.2976-2981, 2017.

D. Bikard, C. W. Euler, W. Jiang, P. M. Nussenzweig, G. W. Goldberg et al., , p.858

V. A. Fischetti and L. A. Marraffini, Exploiting CRISPR-Cas nucleases to 859 produce sequence-specific antimicrobials, Nat Biotechnol, vol.32, pp.1146-1150, 2014.

R. J. Citorik, M. Mimee, and T. K. Lu, Sequence-specific antimicrobials using 861 efficiently delivered RNA-guided nucleases, Nat Biotechnol, vol.32, pp.1141-1145, 2014.

B. Chen, L. A. Gilbert, B. A. Cimini, J. Schnitzbauer, W. Zhang et al., , p.863

E. H. Blackburn, J. S. Weissman, L. S. Qi, and B. Huang, Dynamic imaging of 864 genomic loci in living human cells by an optimized CRISPR/Cas system, Cell, vol.865, pp.1479-1491, 2013.

D. Bikard, W. Jiang, P. Samai, A. Hochschild, F. Zhang et al., , 2013.

, Programmable repression and activation of bacterial gene expression using 868 an engineered CRISPR-Cas system, Nucleic Acids Res, vol.41, pp.7429-7437

L. S. Qi, M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman et al., Repurposing CRISPR as an RNA-guided platform for 871 sequence-specific control of gene expression, Cell, vol.870, pp.1173-1183, 2013.

L. A. Gilbert, M. H. Larson, L. Morsut, Z. Liu, and G. A. Brar,

N. Brandman, O. Whitehead, E. H. Doudna, J. A. Lim, W. A. Weissman et al.,

, CRISPR-mediated modular RNA-guided regulation of transcription in 875 eukaryotes, Cell, vol.154, pp.442-451, 2013.

J. P. Guilinger, D. B. Thompson, and D. R. Liu, Fusion of catalytically inactive 877, 2014.

, Cas9 to FokI nuclease improves the specificity of genome modification, Biotechnol, vol.878, pp.577-582

S. Q. Tsai, N. Wyvekens, C. Khayter, J. A. Foden, V. Thapar et al., Dimeric CRISPR RNA-guided FokI 881 nucleases for highly specific genome editing, Nat Biotechnol, vol.32, pp.569-576, 2014.
DOI : 10.1038/nbt.2908

URL : http://europepmc.org/articles/pmc4090141?pdf=render

S. Havlicek, Y. Shen, Y. Alpagu, M. B. Bruntraeger, N. B. Zufir et al., , p.883

N. R. Dunn and L. W. Stanton, Re-engineered RNA-Guided FokI-Nucleases 884 for Improved Genome Editing in Human Cells, Mol Ther, vol.25, pp.342-355, 2017.

F. A. Ran, P. D. Hsu, C. Y. Lin, J. S. Gootenberg, S. Konermann et al., , vol.886

D. A. Inoue, A. Matoba, S. Zhang, Y. Zhang, and F. , , p.887, 2013.

, RNA-guided CRISPR Cas9 for enhanced genome editing specificity, Cell, vol.888, pp.1380-1389

K. Nishida, T. Arazoe, N. Yachie, S. Banno, M. Kakimoto et al., , vol.890

M. , M. A. Araki, M. Hara, K. Y. Shimatani, Z. Kondo et al., Targeted 891 nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune 892 systems Science, vol.353, p.6305, 2016.

B. Zetsche, S. E. Volz, and F. Zhang, A split-Cas9 architecture for inducible 894 genome editing and transcription modulation, Nat Biotechnol, vol.33, pp.139-142, 2015.
DOI : 10.1038/nbt.3149

URL : http://europepmc.org/articles/pmc4503468?pdf=render

A. V. Wright, S. H. Sternberg, D. W. Taylor, B. T. Staahl, J. A. Bardales et al., , p.896

J. A. Doudna, Rational design of a split-Cas9 enzyme complex, Proc, vol.897, 2015.

, Natl Acad Sci, vol.112, pp.2984-2989

Y. Nihongaki, F. Kawano, T. Nakajima, and M. Sato, Photoactivatable, vol.899, 2015.

, CRISPR-Cas9 for optogenetic genome editing, Nat Biotechnol, vol.33, pp.755-760