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ABSTRACT 23 

CRISPR-Cas systems are well known acquired immunity systems that are 24 

widespread in Archaea and Bacteria. The RNA-guided nucleases from 25 

CRISPR-Cas systems are currently regarded as the most reliable tools for 26 

genome editing and engineering. The first hint of their existence came in 1987, 27 

when an unusual repetitive DNA sequence, which subsequently defined as a 28 

cluster of regularly interspersed short palindromic repeats (CRISPR), was 29 

discovered in the Escherichia coli genome during the analysis of genes involved 30 

in phosphate metabolism. Similar sequence patterns were then reported in a 31 

range of other bacteria as well as in halophilic archaea, suggesting an important 32 

role for such evolutionarily conserved clusters of repeated sequences. A critical 33 

step towards functional characterization of the CRISPR-Cas systems was the 34 

recognition of a link between CRISPRs and the associated Cas proteins, which 35 

were initially hypothesized to be involved in DNA repair in hyperthermophilic 36 

archaea. Comparative genomics, structural biology and advanced biochemistry 37 

could then work hand in hand, culminating not only in the explosion of genome 38 

editing tools based on CRISPR-Cas9 and other class II CRISPR-Cas systems, 39 

but also providing insights into the origin and evolution of this system from mobile 40 

genetic elements denoted casposons. To celebrate the 30th anniversary of the 41 

discovery of CRISPR, this minireview briefly discusses the fascinating history of 42 

CRISPR-Cas systems, from the original observation of an enigmatic sequence in 43 

E. coli to genome editing in humans. 44 
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 47 

INTRODUCTION 48 

CRISPR-Cas systems are currently in the spotlight of active research in biology. 49 

The first clustered regularly interspaced short palindromic repeats (CRISPR) 50 

were detected 30 years ago by one of the authors of this review (YI) in 51 

Escherichia coli in the course of the analysis of the gene responsible for isozyme 52 

conversion of alkaline phosphatase (1). The structural features of CRISPR are 53 

shown in Figure 1. At the time, it was hardly possible to predict the biological 54 

function of these unusual repeated sequences due to the lack of sufficient DNA 55 

sequence data, especially for mobile genetic elements. The actual function of this 56 

unique sequence remained enigmatic right up until the mid-2000s. In 1993, 57 

CRISPRs were for the first time observed in Archaea, specifically in Haloferax 58 

mediterranei (2), and subsequently detected in an increasing number of bacterial 59 

and archaeal genomes, since life science moved into genomic era. Conservation 60 

of these sequences in two of the three domains of life was critical for appreciating 61 

their importance. In the early 2000s, the discovery of sequence similarity 62 

between the spacer regions of CRISPR and sequences of bacteriophages, 63 

archaeal viruses and plasmids finally shed light on the function of CRISPR as an 64 

immune system. This dramatic discovery by Mojica and others was grossly 65 

underappreciated at that time, and was published in 2005 by three research 66 
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groups independently (3-5). In parallel, several genes previously proposed to 67 

encode for DNA repair proteins specific for hyperthermophilic archaea (6) were 68 

identified to be strictly associated with CRISPR, and designated as cas 69 

(CRISPR-associated genes) (7). Comparative genomic analyses thus suggested 70 

that CRISPR and Cas proteins (the cas gene products) actually work together 71 

and constitute an acquired immunity system to protect the prokaryotic cells 72 

against invading viruses and plasmids, analogous to the eukaryotic RNA 73 

interference (RNAi) system (8).  74 

This minireview focuses on the contribution of early fundamental 75 

microbiological research to the discovery of the CRISPR-Cas system and to our 76 

understanding of its function and mode of action (for other recent reviews on the 77 

history of the research on CRISPR-Cas system see refs 9-14). We also 78 

emphasize recent discoveries that shed light on the origins of the system and 79 

suggest that more tools remain to be discovered in the microbial world that could 80 

still improve our genome editing capacity. 81 

 82 

A PUZZLING SEQUENCE FROM BACTERIA CHALLENGES THE EARLY 83 

SEQUENCING METHODOLOGY 84 

In the mid-80s, when studying isozyme conversion of alkaline 85 

phosphatase (AP), one of us (YI), in an attempt to identify the protein responsible 86 

for the isozyme conversion of AP in the periplasm of the E. coli K12 cells, 87 

sequenced a 1.7 kbp E. coli DNA fragment spanning the region containing the iap 88 
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gene (designated from isozyme of alkaline phosphatase) (1). The isozyme of AP 89 

was previously detected by biochemical and genetic analyses (15). At that time, 90 

for conventional M13 dideoxy sequencing, single-stranded template DNA had to 91 

be produced by cloning the target DNA into an M13 vector, whereas the dideoxy 92 

chain-termination reaction was performed by Klenow fragment of E. coli Pol I. 93 

The reaction products were labeled by incorporation of [α32P]dATP, and the 94 

sequence ladder images were obtained by autoradiography. For sequencing, the 95 

cloned DNA fragment had to be subcloned into M13 mp18 and 19 vectors (for the 96 

coding and noncoding strands) after digestion into short fragments. During the 97 

sequencing of the DNA fragment containing iap, one of the authors realized that 98 

the same sequence appeared many times in different clones. Furthermore, it was 99 

difficult to read the repeated sequences precisely, using the Klenow fragment at 100 

37°C, because of non-specific termination of the dideoxynucleotide 101 

incorporation reactions for the template DNA, due to secondary structure 102 

formation by the palindromic sequence. This is why it took several months to 103 

read the sequence of the CRISPR region precisely in 1987 (1). A peculiar 104 

repeated sequence was detected downstream of the translation termination 105 

codon for the iap gene (Fig. 2). It is remarkable that the exact same region can be 106 

sequenced in just one day using current technology, by amplification of the target 107 

region by PCR directly from the genome, followed by a fluorescent-labeling and 108 

cycle-sequencing at 72°C (Fig. 3). The feature of the repetitive sequence was so 109 

mysterious and unexpected that it was mentioned in the Discussion section, even 110 
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though its function was not understood (1). Notably, the same sequence 111 

containing a dyad symmetry of 14 bp was repeated five times with a variable 112 

32-nucleotide sequence interspersed between the repeats (Fig. 2). 113 

Well-conserved nucleotide sequences containing a dyad symmetry, named REP 114 

(Repetitive extragenic palindromic) sequences (16), had been previously found 115 

in E. coli and Salmonella typhimurium and suggested to stabilize mRNA (17). 116 

However, no similarities were found between the REP and the repeated 117 

sequences detected downstream of the iap gene. In fact, this sequence was, at 118 

the time, unique in sequence databases. As it later turned out, this was the first 119 

encounter with a CRISPR sequence. Soon after, similar sequences were 120 

detected by southern blot hybridization analysis in other E. coli strains (C600 121 

and Ymel) and in two other members of the Enterobacteriaceae, Shigella 122 

dysenteriae and Salmonella typhimurium (phylum Proteobacteria) (18). 123 

Subsequently, similar repeated sequences were also found in members of the 124 

phylum Actinobacteria, such as Mycobactrium tuberculosis (19), but not in the 125 

closely related strain M. leprae, prompting the use of these highly polymorphic 126 

repeated sequences for strain typing (20). 127 

 128 

DISCOVERY OF CRISPR IN ARCHAEA 129 

A major advance was made when similar repeated sequences were 130 

identified by Mojica and co-workers in the archaeon Haloferax mediterranei 131 

during the research on regulatory mechanisms allowing extremely halophilic 132 
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archaea to adapt to high salt environments (2). Transcription of the genomic 133 

regions containing the repeated sequences was demonstrated by Northern blot 134 

analysis (2), but compelling evidence for the processing of the transcripts into 135 

several different RNA products was shown only more recently (12). The authors 136 

first suggested that these repeated sequences could be involved in the 137 

regulation of gene expression, possibly facilitating the conversion of the 138 

double-stranded DNA from B to Z-form for the specific binding of a regulator 139 

protein. It was indeed often suggested at that time that the high GC content of 140 

halophilic genomes could facilitate such B-to-Z transition for regulatory purposes 141 

at the high intracellular salt concentration characteristic of haloarchaea. 142 

However, such explanation could not be valid for bacteria. Soon after, the same 143 

authors found a similar repeated sequence in Haloferax volcanii, and 144 

hypothesized that these repeated sequences could be involved in replicon 145 

partitioning (21). 146 

In the meantime, invention of the automated sequencing machines and 147 

development of efficient procedures for DNA sequencing during the 90s 148 

provided scientists for the first time with access to complete genome sequences. 149 

Starting with Haemophilus influenzae (22), followed by Methanocaldococcus 150 

jannaschii (23) and Sacchamyces cerevisiae (24), all three domains of life 151 

entered into the genomics era. Then, the unusual repeated sequences 152 

interspersed with non-conserved sequences, first detected in E. coli and H. 153 

mediterranei, were identified in an increasing number of bacterial and archaeal 154 
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genomes, and were described using different names by different authors, such 155 

as SRSRs, (Short Regularly Spaced Repeats (2), SPIDR (spacers interspersed 156 

direct repeats) or LCTR (large cluster of tandem repeats) (25). In the 157 

hyperthermophilic archaea Pyrococcus abyssi and P. horikoshi two sets of 158 

“LCTR” sequences were located symmetrically on each side of the replication 159 

origin, again suggesting a possible role in chromosome partitioning. However, 160 

they were more numerous and scrambled in the genome of P. furiosus, casting 161 

doubt on this interpretation (26).  162 

Mojica et al. were the first to realize that all these bacterial and archaeal 163 

sequences were functionally related (27). The term CRISPR, for clustered 164 

regularly interspaced short palindromic repeats, was proposed by Jansen et al in 165 

2002 (7) and became generally accepted by the community working on these 166 

sequences, which precluded further confusion caused by many different names 167 

for the related repeat sequences. Comparative genomics studies illuminated the 168 

common characteristics of the CRISPR, namely that i) they are located in 169 

intergenic regions; ii) contain multiple short direct repeats with very little 170 

sequence variation; iii) the repeats are interspersed with non-conserved 171 

sequences; iv) a common leader sequence of several hundred base pairs is 172 

located on one side of the repeat cluster.  173 

The fact that these mysterious sequences were conserved in two different 174 

domains of life pointed to a more general role of these sequences. CRISPR 175 

sequences were found in nearly all archaeal genomes and in about half of 176 
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bacterial genomes, rendering them the most widely distributed family of 177 

repeated sequences in prokaryotes. As of today, CRISPR sequences have not 178 

been found in any eukaryotic genome. 179 

 180 

IDENTIFICATION OF THE CAS GENES 181 

The accumulation of genomic sequences in the beginning of this century 182 

enabled scientists to compare the genomic context of CRISPR regions in many 183 

organisms, which led to the discovery of four conserved genes regularly present 184 

adjacent to the CRISPR regions. The genes were designated as 185 

CRISPR-associated genes 1 through 4 (cas1-cas4) (7). No similarity to 186 

functional domains of any known protein was identified for the Cas1 and Cas2. 187 

By contrast, Cas3 contained the seven motifs characteristic of the superfamily 2 188 

helicases, whereas Cas4 was found to be related to RecB exonucleases, which 189 

work as part of the RecBCD complex for the terminal resection of the 190 

double-strand breaks to start homologous recombination. Therefore, Cas3 and 191 

Cas4 were predicted to be involved in DNA metabolism, including DNA repair 192 

and recombination, transcriptional regulation or chromosome segregation. Due 193 

to their association with CRISPR, it was suggested that Cas proteins are 194 

involved in the genesis of the CRISPR loci (7).    195 

     At about the same time, Kira Makarova, Eugene Koonin and colleagues 196 

independently and systematically analyzed the conserved gene contexts in all 197 

prokaryotic genomes available at the time and found several clusters of genes 198 
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corresponding to cas genes (encoding putative DNA polymerase, helicase and 199 

RecB-like nuclease) in the genomes of hyperthermophilic archaea and in the two 200 

hyperthermophilic bacteria with available genome sequences, Aquifex and 201 

Thermotoga (8). These conserved genes were not found at that time in 202 

mesophilic and moderate thermophilic archaea and bacteria. Based on this 203 

observation, it was predicted that these proteins could be part of a “mysterious” 204 

uncharacterized DNA repair system specific to thermophilic organisms.   205 

 206 

THE DISCOVERY OF CRISPR FUNCTION 207 

In the beginning of the genomic era, most of the archaeal genome 208 

sequences were those of thermophilic and hyperthermophilic organisms. 209 

Furthermore, thermophilic archaea, in addition to the hyperthermophilic bacteria, 210 

such as A. aeolicus and T. maritima, have more and larger CRISPRs than 211 

mesophilic organisms (7). These observations first suggested that the function of 212 

CRISPR may be related to adaptation of organisms to high temperatures. 213 

However, with more and more sequences becoming available, it turned out that 214 

this correlation was not robust and that many mesophilic organisms also 215 

contained CRISPR sequences. The Eureka! moment came when Francisco 216 

Mojica in Alicante and Christine Pourcel in Orsay noticed independently that the 217 

spacer regions between the repeat sequences are homologous to sequences of 218 

bacteriophages, prophages and plasmids (3, 4). Importantly, based on the 219 

literature review, they pointed out that the phages and plasmids do not infect host 220 
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strains harboring the homologous spacer sequences in the CRISPR. From these 221 

observations, they independently proposed that CRISPR sequences function in 222 

the framework of a biological defense system similar to the eukaryotic RNAi 223 

system to protect the cells from the entry of these foreign mobile genetic 224 

elements. The two groups also suggested that the CRISPRs can somehow 225 

trigger the capture of pieces of foreign invading DNA to constitute a memory of 226 

past genetic aggressions (3, 4). In a third influential paper of the same year, 227 

Bolotin and colleagues confirmed these observations, further noticing a 228 

correlation between the number of spacers of phage origin and the degree of 229 

resistance to phage infection and suggested that CRISPR could be used to 230 

produce antisense RNA (5) (for a brief historical account, see Morange, 2015) 231 

(9).  232 

As mentioned above, these seminal publications were grossly 233 

underappreciated at the time and published in specialized journals (12). 234 

Interestingly, Morange suggested that lack of adequate recognition of the 2005 235 

papers at that time and in subsequent years in some publications and reviews 236 

might be due to both cultural and sociological reasons based partly on the 237 

predominance of experimental molecular biologists over microbiologists and 238 

evolutionists (9). In two of the three 2005 papers, the authors acknowledged the 239 

previous discovery of the cas genes, suggesting that proteins encoded by these 240 

genes should be involved in the functioning of this new putative prokaryotic 241 

immune system (4, 5).  242 
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The predicted role of Cas proteins as effectors of prokaryotic immunity 243 

was emphasized a year after in an exhaustive analytical paper published by the 244 

Koonin group (8). Building on their previous work, Makarova et al. performed a 245 

detailed analysis of the Cas protein sequences and attempted to predict their 246 

functions in a mechanism similar to the eukaryotic RNAi system (8). Notably, in 247 

many cases, these, often non-trivial, functional predictions, as in the case of 248 

Cas1 integrase, were fully confirmed experimentally several years later and 249 

continue to guide experimental research on the CRISPR-Cas systems. 250 

Importantly, they pinpointed that the CRISPR-Cas system, with its memory 251 

component, rather resembles the adaptive immune system of vertebrates, with 252 

the crucial difference that the animal immune system is not inheritable. 253 

Considering the diversity of the CRISPR-Cas systems, their erratic distribution 254 

suggesting high mobility, and their ubiquity in Archaea, Makarova et al 255 

suggested that the CRISPR-Cas system emerged in an ancient ancestor of 256 

archaea and spread to bacteria horizontally. They concluded on a practical note, 257 

suggesting that CRISPR-Cas systems could be exploited to silence genes in 258 

organisms encoding Cas proteins (8).  259 

The function of the CRISPR-Cas system as a prokaryotic acquired 260 

immune system was finally experimentally proven in 2007, using the lactic acid 261 

bacterium, S. thermophilus in 2007 (28). Insertion of the phage sequence into the 262 

spacer region of the CRISPR of S. thermophilus made this strain resistant to the 263 

corresponding phage. On the other hand, this bacterial resistance to the phage 264 
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infection disappeared when the corresponding protospacer sequence was 265 

deleted from the phage genome. In addition, it was experimentally demonstrated 266 

that CRISPR-Cas restricts transformation of plasmids carrying sequences 267 

matching the CRISPR spacers (29). Then, van der Oost’s group reconstituted the 268 

immunity system using E. coli CRISPR, which was originally discovered in 1987. 269 

They demonstrated that the processed RNA molecules from the transcription of 270 

the CRISPR region function by cooperation with the Cas proteins produced from 271 

the genes located next to the CRISPR (30). Around the same time, metagenomic 272 

analysis of archaea by Banfield’s group indicated dynamic changing of 273 

sequences at CRISPR loci on a time scale of months, and new spacer 274 

sequences corresponding to phages in the same communities appeared (31). 275 

Subsequently, the CRISPR-Cas system of S. thermophilus expressed in E. coli 276 

showed heterologous protection against plasmid transformation and phage 277 

infection by the reconstituted CRISPR-Cas9 system of S. thermophilus (32). This 278 

work also showed that cas9 is, in that case, the sole cas gene necessary for 279 

CRISPR-encoded interference. Soon after, it has been proven that the purified 280 

Cas9-CRISPR RNA (crRNA) complex is capable of cleaving the target DNA in 281 

vitro (33, 34). The CRISPR-Cas system of S. pyogenes was then applied to 282 

perform genome editing in human nerve and mouse kidney cells (35, 36). Thus, 283 

CRISPR-Cas came to be widely known as the prokaryotic acquired immunity 284 

system (37, 38). The various steps underlying the functioning of this system are 285 

schematically shown in Fig. 4. 286 
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Numerous and highly diverse Cas proteins are involved in different stages 287 

of CRISPR immunity; they exhibit a variety of predicted nucleic 288 

acid-manipulating activities such as nucleases, helicases and polymerases, 289 

which have been described in detail in several excellent recent reviews (39-42). 290 

In a nutshell, Cas1 and Cas2 are conserved throughout most known types of 291 

CRISPR–Cas systems and form a complex that represents the adaptation 292 

module required for the insertion of new spacers into the CRISPR arrays. During 293 

the expression stage, the CRISPR locus is transcribed and the pre-crRNA 294 

transcript is processed by the type-specific Cas endonucleases into the mature 295 

crRNAs. During the interference stage, the crRNAs are bound by the effector Cas 296 

enonucleases and the corresponding complexes are recruited to and cleave the 297 

target DNA or RNA in a sequence-dependent manner (Fig. 4). Notably, unlike the 298 

adaptation module, Cas enzymes involved in the expression and interference 299 

stages vary from one CRISPR-Cas type to the other and the same enzymes may 300 

participate in both stages of immunity.  301 

 302 

DIVERSITY AND CLASSIFICATION OF CRISPR-CAS 303 

It is striking that closely related strains can vary considerably in their 304 

CRISPR content and distribution. For example, in Mycobacterium genus, 305 

CRISPR exists in M. tuberculosis, but not in M. leprae. On the other hand, 306 

phylogenetically distant E. coli and M. avium as well as Methanothermobacter 307 

thermautotrophicus and Archaeoglobus fulgidus carry nearly identical CRISPR 308 
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repeat sequences (7). The number of CRISPR arrays in one genome varies from 309 

1 to 18, and the number of repeat units in one CRISPR array varies from 2 to 374 310 

(43). Based on the CRISPR database (http://crispr.u-psud.fr/crispr/), as of May 311 

2017, CRISPRs were identified in the whole genome sequences of 202 (87%) out 312 

of 232 analyzed archaeal species and 3059 (45%) of 6782 bacterial species. 313 

Interestingly, a survey of 1,724 draft genomes suggested that CRISPR-Cas 314 

systems are much less prevalent in environmental microbial communities (10.4% 315 

in bacteria and 10.1% in archaea). This large difference between the prevalence 316 

estimated from complete genomes of cultivated microbes compared to that of the 317 

uncultivated ones was attributed to the lack of CRISPR-Cas systems across 318 

major bacterial lineages that have no cultivated representatives (44).   319 

As shown in Fig. 5, the latest classification of CRISPR–Cas systems 320 

includes two classes, class 1 and 2, based on the encoded effector proteins (45). 321 

Class 1 CRISPR–Cas systems work with multisubunit effector complexes 322 

consisting of 4–7 Cas proteins present in an uneven stoichiometry. This system 323 

is widespread in Bacteria and Archaea, including in all hyperthermophiles, 324 

comprising ~90% of all identified CRISPR–cas loci. The remaining ~10% belong 325 

to class 2, which use a single multidomain effector protein and are found almost 326 

exclusively in Bacteria (46). 327 

Each class currently includes three types, namely, types I, III, and IV in 328 

class 1, and types II, V, and VI in class 2. Types I, II, and III are readily 329 

distinguishable by virtue of the presence of unique signature proteins: Cas3 for 330 
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type I, Cas9 for type II and Cas10 for type III. The multimeric effector complexes 331 

of type I and type III systems, known as the CRISPR-associated complex for 332 

antiviral defense (Cascade) and the Csm/Cmr complexes, respectively, are 333 

architecturally similar and evolutionarily related (47-52). Unlike all other known 334 

CRISPR-Cas systems, the functionally uncharacterized Type IV systems do not 335 

contain the adaptation module consisting of nucleases Cas1 and Cas2 (47, 53). 336 

Notably, the effector modules of subtype III-B systems are known to utilize 337 

spacers produced by Type I systems, testifying to the modularity of the 338 

CRISPR-Cas systems (54). Although many of the genomes encoding Type IV 339 

systems do not carry identifiable CRISPR loci, it is not excluded that Type IV 340 

systems, similar to subtype III-B systems, use crRNAs from different CRISPR 341 

arrays once these become available (53).  342 

Finally, each type is classified into multiple subtypes (I-A~F, and U; 343 

III-A~D in class 1; II-A~C; V-A~E and U; VI-A~C in class 2) based on additional 344 

signature genes and characteristic gene arrangements (45, 51). The figure 6B 345 

shows distribution of CRISPR-Cas systems in Archaea and Bacteria. 346 

 347 

CLASS 2 SYSTEMS ARE SUITABLE FOR GENOME EDITING 348 

TECHNOLOGY 349 

The simple architecture of the effector complexes has made class 2 350 

CRISPR–Cas systems an attractive choice for developing a new generation of 351 

genome-editing technologies (Fig. 6). Several distinct class 2 effectors have 352 
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been reported, including Cas9 in type II, Cas12a (formerly Cpf1), Cas12b (C2c1) 353 

in Type V, and Cas13a (C2c2) and Cas13b (C2c3) in Type VI (45, 51). The most 354 

common and best studied multidomain effector protein is Cas9, a 355 

crRNA-dependent endonuclease, consisting of two unrelated nuclease domains, 356 

RuvC and HNH, which are responsible for cleavage of the displaced (non-target) 357 

and target DNA strands, respectively, in the crRNA–target DNA complex. Type II 358 

CRISPR–cas loci also encode a trans-activating crRNA (tracrRNA) which might 359 

have evolved from the corresponding CRISPR. The tracrRNA molecule is also 360 

essential for pre-crRNA processing and target recognition in the type II systems. 361 

The molecular mechanism of the target DNA cleavage by Cas9-crRNA complex, 362 

schematically shown in Fig. 7, has been elucidated at the atomic level by the 363 

crystal structure analysis of the DNA-Cas9-crRNA complex (55). 364 

A gene originally denoted as cpf1 is present in several bacterial and 365 

archaeal genomes, where it is adjacent to cas1, cas2 and CRISPR array (45). 366 

Cas12a (Cpf1), the prototype of type V effectors, contains two RuvC-like 367 

nuclease domains, but lacks the HNH domain. However, recent structural 368 

analysis of Cas12a-crRNA-target DNA complex revealed a second nuclease 369 

domain with a unique fold that is functionally analogous to the HNH domain of 370 

Cas9 (56). Cas12a is a single-RNA-guided nuclease that does not require a 371 

tracrRNA, which is indispensable for Cas9 activity (57). The protein also differs 372 

from Cas9 in its cleavage pattern and in its PAM recognition, which determines 373 

the target strands.  374 
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The discovery of two distantly related class 2 effector proteins, Cas9 and 375 

Cas12a, suggested that other distinct variants of such systems could exist. 376 

Indeed, more recently, Cas12b (type V), Cas13a and Cas13b (type VI), which 377 

are distinct from Cas9 or Cas12a, have been discovered through directed 378 

bioinformatics search for class II effectors, and their activities were confirmed 379 

(58). Type V effectors, similar to Cas9, need a tracrRNA for the targeted activity. 380 

Most of the functionally characterized CRISPR-Cas systems, to date, have been 381 

reported to target DNA, and only the multi-component type III-A and III-B 382 

systems additionally target RNA (59). By contrast, type VI effectors, Cas13a and 383 

Cas13b, specifically target RNA, thereby mediating RNA interference. Unlike 384 

type II and type V effectors, Cas13a and Cas13b lack characteristic RuvC-like 385 

nuclease domains and instead contain a pair of HEPN (higher eukaryotes and 386 

prokaryotes nucleotide-binding) domains (60). The discovery of novel class 2 387 

effectors will most likely provide new opportunities for the application of CRISPR 388 

systems to genome engineering technology (61). 389 

 390 

ORIGINS OF CRISPR-CAS 391 

Analysis of clusters of poorly characterized, narrowly spread fast-evolving 392 

genes in archaeal genomes, denoted as ‘dark matter islands’ (62), revealed 393 

several islands encoding Cas1 proteins not associated with CRISPR loci 394 

(Cas1-solo) (63). Comprehensive interrogation of the dark matter islands 395 

revealed that cas1-solo genes are always located in vicinity of genes encoding 396 
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family B DNA polymerases and several other conserved genes (64). 397 

Furthermore, these gene ensembles were found to be surrounded by long 398 

inverted repeats and further flanked by shorter direct repeats, which respectively 399 

resembled terminal inverted repeats (TIR) and target site duplications (TSD) 400 

characteristic of various transposable elements. However, none of the identified 401 

Cas1-solo-encoding genomic loci carried genes for known transposases or 402 

integrases. Thus, it was hypothesized that Cas1 is the principal enzyme 403 

responsible for the mobility of these novel genetic elements, which were 404 

accordingly named ‘Casposons’ (64). Casposons were found to be widespread 405 

in the genomes of methanogenic archaea as well as in thaumarchaea, but also 406 

present in different groups of bacteria. Strong evidence of recent casposon 407 

mobility was obtained by comparative genomic analysis of more than 60 strains 408 

of the archaeon Methanosarcina mazei, in which casposons are variably 409 

inserted in several distinct sites indicative of multiple, recent gains, and losses 410 

(65). Based on the gene content, taxonomic distribution and phylogeny of the 411 

Cas1 proteins, casposons are currently classified into 4 families (66).  412 

Biochemical characterization of the casposon Cas1 (‘casposase’) 413 

encoded in the genome of a thermophilic archaeon Aciduliprofundum boonei 414 

has confirmed the predicted integrase activity (67, 68). Integration showed 415 

strong target site preference and resulted in the duplication of the target site 416 

regenerating the TSD observed in the A. boonei genome (68). The latter feature 417 

resembles the duplication of the leader sequence-proximal CRISPR unit upon 418 
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integration of a protospacer catalyzed by the Cas1-Cas2 adaptation machinery 419 

of CRISPR-Cas (69, 70). Remarkably, the sequence features of the casposon 420 

target site are functionally similar to those required for directional insertion of 421 

new protospacers into CRISPR arrays. In both systems, the functional target site 422 

consists of two components: (i) a sequence which gets duplicated upon 423 

integration of the incoming DNA duplex (i.e. the TSD segment in the case of 424 

casposon and a CRISPR unit during protospacer integration) and (ii) the 425 

upstream region which further determines the exact location of the integration 426 

(i.e. the leader sequence located upstream of the CRISPR array and the 427 

TSD-proximal segment in A. boonei genome) (68).  428 

Collectively, the comparative genomics and experimental results 429 

reinforced the mechanistic similarities and evolutionary connection between the 430 

casposons and the adaptation module of the prokaryotic adaptive immunity 431 

system, culminating in an evolutionary scenario for the origin of the 432 

CRISPR-Cas systems. It has been proposed that casposon insertion near a 433 

‘solo-effector’ innate immunity locus, followed by the immobilization of the 434 

ancestral casposon via inactivation of the TIRs, gave rise to the adaptation and 435 

effector modules, respectively, whereas the CRISPR repeats and the leader 436 

sequence evolved directly from the preexisting casposon target site (71, 72). An 437 

outstanding question in the above scenario is the switch in substrate specificity 438 

of the ancestral casposase from integration of defined casposon TIRs to 439 

insertion of essentially random, short (compared to casposon length) 440 
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protospacer sequences. It has been suggested that coupling between Cas1 and 441 

Cas2 has been critical for this evolutionary transition (72). 442 

Remarkably, casposons are not the only mobile genetic elements that 443 

contributed to the origin and evolution of the CRISPR-Cas systems. It has been 444 

demonstrated that class 2 effector proteins of type II and type V have 445 

independently evolved from different groups of small transposons, which 446 

donated the corresponding RuvC-like nuclease domains (45, 58).  447 

 448 

APPLICATION OF CRISPR-CAS TOOLS TO BACTERIA AND ARCHAEA 449 

Microbial engineering directly influences the development of the 450 

bioindustry. High-throughput genome editing tools are useful for breeding 451 

economically valuable strains. It is remarkable how quickly the practical 452 

application of the CRISPR-Cas system has been adapted to genome editing in 453 

eukaryotic cells. Such rapid success of this technology in eukaryotic cells was 454 

linked to the fact that eukaryotes employ the error-prone non-homologous end 455 

joining (NHEJ) to repair double-strand breaks introduced by the CRISPR-Cas in 456 

the target sequence. The use of the CRISPR-Cas technology was not as 457 

‘revolutionary’ in bacteria, likely because other methods based on homologous 458 

recombination (HR) were already available for efficient manipulation of their 459 

genomes. Nevertheless, DNA Toolkits based on CRISPR-Cas technology for 460 

genome editing, gene silencing and genome-wide screening of essential genes 461 

in bacterial and archaeal genomes are gradually emerging and diversifying 462 
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(73-77). For instance, CRISPR-Cas-mediated genome editing technique 463 

coupled with “heterologous recombineering” using linear single-stranded (SSDR 464 

for single-stranded DNA recombineering) or double-stranded DNA (DSDR for 465 

double-stranded DNA recombineering) templates, have been developed and 466 

successfully applied in E. coli (78). In Archaea, gene silencing has been 467 

established in Sulfolobus solfataricus, S. islandicus and Haloferax volcanii using 468 

the endogenous CRISPR-Cas systems (reviewed in 77, 79). More recently, 469 

Nayak and Metcalf have harnessed a bacterial Cas9 protein for genome editing 470 

in the mesophilic archaeon Methanosarcina acetovorans (80). Hopfully a 471 

thermophilic counterpart of the CRISPR-Cas9 system (or other class 2 systems) 472 

will finally be established to perform genome editing in hyperthermophilic 473 

species, which are difficult to manipulate genetically. From that perspective, the 474 

diversity of CRISPR-Cas systems and mobile genetic elements, which remain to 475 

be fully explored, is a treasure trove for future exploitation.  476 

 477 

APPLICATION OF CRISPR-CAS9 FOR PURPOSES OTHER THAN GENOME 478 

EDITING 479 

The CRISPR loci are encoded by many bacterial and archaeal organisms 480 

and are remarkably diverse, and thus they have been used as genetic markers 481 

for species identification and typing, even before the elucidation of the actual 482 

function of the CRISPR-Cas, as described above. For example, typing of 483 

Mycobacterium tuberculosis is useful for diagnostic and epidemiological 484 
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purposes (20, 81). Typing by using CRISPR has been applied to Yersinia pestis 485 

(4, 82), Salmonella (83, 84), and Corynebacterium diphtheriae (85). 486 

CRISPR-Cas9 can be used as an antimicrobial agent by cleaving the genomes of 487 

pathogenic bacteria, as an antibiotic agent with a novel mechanism of action. It is 488 

expected to be a valuable remedy for the control of antibiotic-resistant bacteria. 489 

For example, antibiotic-resistant bacteria, such as Staphylococcus, infecting the 490 

skin of mice were selectively killed using CRISPR-Cas9 (86). CRISPR-Cas9 also 491 

reportedly prevented intestinal infection by pathogenic E. coli (87). Although 492 

there are technical challenges, such as delivery methods, which must be 493 

overcome before CRISPR-Cas can be used as a safe therapeutic agent, active 494 

research in this direction is ongoing and is expected to yield solutions in the near 495 

future. Furthermore, imparting phage resistance in specific strains by the 496 

CRISPR-Cas system is extremely useful for protecting various beneficial bacteria 497 

in the fermented food industry from phage infection during the production 498 

process. 499 

     Since the HNH nuclease domain and the RuvC nuclease domain are 500 

responsible for the DNA cleavage activity of Cas9, Cas9 mutants devoid of 501 

cleavage activity (dCas9) were obtained by replacing the amino acids within each 502 

active center. The dCas9 protein is a useful tool for molecular biology 503 

experiments to regulate gene expression. CRISPR-dCas9 binds to the target 504 

DNA sequence, but cannot cleave it. This activity of CRISPR-dCas9 is applicable 505 

to the labeling of a specific position, by fusing green fluorescent protein (GFP) to 506 
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dCas9, which binds to the target sequence depending on the sgRNA sequence 507 

(88). In addition to this live intracellular site-specific labeling, gene expression 508 

can be artificially controlled by linking dCas9 to either the promoter region or the 509 

open reading frame of a gene (89-91). dCas9 can also be fused with a 510 

transcription activator or the ω subunit of bacterial RNA polymerase. However, it 511 

seems not to be as easy as compared with suppression, although ingenious 512 

attempts have been made to promote transcription by designing a guide 513 

sequence that ensures binding of dCas9 to a specific promoter. 514 

  The dCas9 protein is also useful for the techniques to reduce off-target 515 

cleavage in the genomes. An artificial CRISPR-Cas nuclease RFN (RNA-guided 516 

FokI nuclease), in which the nuclease domain of FokI is fused to dCas9 like ZFN 517 

or TALEN, was developed by designing the guide RNA so that the nuclease 518 

domain can form a dimer at the target site. Since it can be used for double-strand 519 

cleavage with different guide RNAs for top and bottom DNA strands, the 520 

probability of non-specific binding decreases (92-94). The reduction of off-target 521 

cleavage was also achieved by using Cas9 nickase (Cas9n). A mutant Cas9, in 522 

which the Asp10 active residue in the RuvC domain was substituted with alanine, 523 

showed a nickase activity that cleaved only one strand of the target site with an 524 

appropriate sgRNA (33,34). Therefore, nicking of both DNA strands by a pair of 525 

Cas9 nickases with different sgRNA leads to site-specific double-strand DNA 526 

breaks (DSBs). This paired nickase strategy can reduce off-target activity by 50- 527 
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to 1,500-fold in cell lines and to facilitate gene knockout in mouse zygotes without 528 

sacrificing on-target cleavage efficiency (95). 529 

   A method for site-specifc mutagenesis of genomic DNA by fusion of dCas9 530 

with a cytidine deaminase has been developed (96). The sgRNA-induced 531 

cytidine deaminase causes base substitution at the target site without cutting 532 

DNA. This method significantly reduces cytotoxicity compared to artificial 533 

nucleases and Cas9 nuclease, and efficiently achieves intended modifications.  534 

   Another interesting solution was to split the Cas9 protein into two parts and 535 

reconstitute the Cas9 nuclease from the corresponding proteins (97, 98). The 536 

photoactivatable Cas9 (paCas9), which is activated by light irradiation, can be 537 

used for conditional genome editing. The activity of paCas9 is about 60% 538 

compared with the original Cas9, but it can be fully used for cutting the desired 539 

double-strand by light irradiation from the outside without changing the culture 540 

conditions (99). 541 

   Thus, as described above, the genome editing technique using the 542 

CRISPR-Cas immune system is not limited to the use of S. pyogenes 543 

CRISPR-Cas9, but further variants continue to be developed. These devices will 544 

certainly contribute to improvement of genome editing technologies.  545 

 546 

CONCLUDING REMARKS 547 

Only 30 years have passed since one of the authors of this review 548 

discovered unique repeated sequence in the E. coli genome at the onset of his 549 
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post-doc career. It was impossible to predict the possible function of this 550 

enigmatic sequence at the time; however, genomic revolution in the mid-90’s, 551 

coupled with development of powerful bioinformatics tools eventually enabled 552 

elucidation of the CRISPR functions. CRISPR arrays and Cas proteins, broadly 553 

distributed in the genomes of prokaryotes, especially in Archaea, are now known 554 

to constitute the highly efficient acquired immunity system. Although discovery of 555 

the CRISPR-Cas by itself was a great feat of fundamental biology, it also led to 556 

the development of next-generation tools for genetic engineering. The 557 

development of the genome editing technology by CRISPR-Cas9 reminds of the 558 

times when the PCR was born.  559 

When in vitro genetic engineering techniques using restriction 560 

endonucleases and nucleic acid modifying enzymes were established, it was still 561 

often a complex task to clone a single gene (as in the case of the iap gene). 562 

However, this difficulty was alleviated by the invention of PCR using a 563 

thermostable DNA polymerase that profoundly boosted the application of genetic 564 

engineering techniques in all biological laboratories worldwide. The discovery of 565 

a thermostable DNA polymerase was critical for the “PCR revolution” because it 566 

enabled the design of a PCR apparatus for practical use. Similarly, in the case of 567 

genome editing, the CRISPR revolution was made possible by identifying the 568 

right enzymatic system (Cas9) that could simplify the methodology to exploit the 569 

potential of the CRISPR-Cas system. The curiosity of a mysterious repetitive 570 
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sequence and a sustained inquiry mind for elucidating its function brought grand 571 

discoveries. 572 
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Figure legends 901 

 902 

FIG 1 The structural features of CRISPR.  The repeat sequences with constant 903 

length generally have dyad symmetry to form a palindromic structure (shown by 904 

arrows). Two examples are shown by the first identified CRISPR from E. coli 905 

(bacteria) and H. mediterranei (archaea), respectively. The spacer regions are 906 

also constant length, but no sequence homology. 907 

 908 

FIG 2 The first CRISPR found in E. coli.  As a result of the iap gene analysis from 909 

E. coli, a very ordered repeating sequence was found downstream of the iap 910 

gene. The conserved sequence unit was repeated 5 times with constant length of 911 

spaces in 1987. It turns out that the repeat was 14 times in total by the 912 

subsequent genome analysis. The cas gene cluster was also identified at the 913 

downstream region. 914 

 915 

FIG 3 The first CRISPR sequence in E. coli. The exact same region, 916 

downstream of the iap gene, which was found in 1987 by a conventional 917 

dideoxy-sequencing was read by a cycle-sequencing with fluorescent labeling 918 

recently. The CRISPR repeat units are shown by pink shadow. 919 

 920 
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FIG 4 Process of CRISPR-Cas acquired immune system. A. Adaptation: The 921 

invading DNA is recognized by Cas proteins, fragmented and incorporated into 922 

the spacer region of CRISPR and stored in the genome. B. Expression: 923 

Pre-crRNA is generated by transcription of the CRISPR region, and is processed 924 

into smaller units of RNA, named crRNA. Interference: By taking advantage of 925 

the homology of the spacer sequence present in crRNA, foreign DNA is captured 926 

and a complex with Cas protein having nuclease activity cleaves DNA. 927 

 928 

FIG. 5  Genome editing by CRISPR-Cas9.  The principle of genome editing is 929 

the cleavage of double-stranded DNA at a targeted position on the genome. The 930 

Type II is the simplest as a targeted nuclease among the CRISPR-Cas systems. 931 

The CRISPR RNA (crRNA), having a sequence homologous to the target site, 932 

and trans activating RNA (tracrRNA) are enough to bring the Cas9 nuclease to 933 

the target site. The artificial linkage of crRNA and tracrRNA into one RNA chain 934 

(single guide RNA; sgRNA) has no effect on function. Once the Cas9-gRNA 935 

complex cleaves the target gene, it is easy to disrupt the function of the gene by 936 

deletion or insertion mutation. This overwhelmingly simple method is now rapidly 937 

spreading as a practical genomic editing technique. 938 

 939 
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FIG 6  Most recent classification of CRISPR-Cas immune systems. A. Based on 940 

the detailed sequence analyses and gene organization of the Cas proteins, 941 

CRISPR-Cas was classified into two major classes depending on whether the 942 

effector is a complex composed of multiple Cas proteins or a single effector. In 943 

addition to the conventional types I, II and III, the types IV and V were added to 944 

the classes 1 and 2, respectively. Types IV and V are those which do not have 945 

Cas1 and Cas2, necessary for adaptation process, in the same CRISPR loci. 946 

Type VI was added most recently in class 2. B. Chart showing the proportions of 947 

identified CRISPR-cas loci in the total genomes of bacteria and archaea referred 948 

from the literatures (51, 53). The proportions of loci that encode incomplete 949 

systems or that could not be classified unambiguously are not included. 950 

 951 

FIG 7 Cleavage mechanism of target DNA by crRNA-tracrRNA-Cas9  952 

The Cas9-crRNA-tracrRNA complex binds to foreign DNA containing PAM, 953 

where Cas9 binds and starts to unwind the double-strand of the foreign DNA to 954 

induce duplex formation of crRNA and foreign DNA. Cas9 consists of two regions, 955 

called REC (recognition) lobe and NUC (nuclease) lobe. REC lobe is responsible 956 

for the nucleic acid recognition. NUC lobe contains the HNH and RuvC nuclease 957 

domains, and a C-terminal region containing PAM-interacting (PI) domain. The 958 

HNH domain and the RuvC domain cleave the DNA strand forming duplex with 959 
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crRNA and the other DNA strand, respectively, so that double-strand break 960 

occurs in the target DNA. 961 
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