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Text 57 

Reverse-transcribing viruses, which synthesize a copy of genomic DNA from an RNA template, are 58 

widespread in animals, plants, algae and fungi (1, 2). This broad distribution suggests ancient origin(s) 59 

of these viruses, possibly concomitant with the emergence of eukaryotes (3). Reverse-transcribing 60 

viruses include prominent human pathogens, such as human immunodeficiency viruses 1 and 2 (HIV-61 

1/2) and hepatitis B virus, as well as plant pathogens that cause considerable economic losses (4). 62 

The International Committee on Taxonomy of Viruses (ICTV) traditionally classified reverse-63 

transcribing viruses into five families: Caulimoviridae, Hepadnaviridae, Metaviridae, Pseudoviridae, 64 

and Retroviridae (5). In 2018, the ICTV recognized an additional family, Belpaoviridae, which 65 

contains the genus Semotivirus (previously included in Metaviridae (6)). The infection cycles, nucleic 66 

acid types, genome organizations, and virion morphologies of these viruses are very diverse. Indeed, 67 

reverse-transcribing viruses are distributed between two Baltimore Classes of viruses. Belpaoviruses, 68 

metaviruses, pseudoviruses — better known as Bel/Pao, Ty3/Gypsy, and Ty1/Copia retrotransposons, 69 

respectively (1, 7) — and retroviruses typically have single-stranded RNA genomes (Table 1) and 70 

frequently integrate into the host genomes as part of their replication cycles (Baltimore Class VI). In 71 

contrast, members of the families Caulimoviridae and Hepadnaviridae, often referred to as 72 

“pararetroviruses” (8), encapsidate circular double-stranded DNA genomes and do not actively 73 

integrate into host chromosomes (Baltimore Class VII). However, capture of pararetroviral DNA in 74 

host genomes, presumably by illegitimate recombination, is commonplace, particularly in plants, 75 

giving rise to the corresponding endogenous elements (9, 10).  76 

Mechanistic studies on the replication cycles of reverse-transcribing viruses of different 77 

families have revealed many similarities that have been reinforced by comparative genomics of the 78 

viral reverse transcriptases (RTs), the hallmark enzymes encoded by all reverse-transcribing viruses. 79 

Indeed, phylogenetic analyses support the monophyly of all viral RTs, to the exclusion of those 80 

encoded by non-viral retroelements from both eukaryotes and prokaryotes (11, 12). In addition to the 81 

evidence from the RT phylogeny, belpaoviruses, caulimoviruses, metaviruses, pseudoviruses, and 82 

retroviruses share several conserved features that hepadnaviruses lack (Table 1). In particular, the 83 

polymerase (Pol) polyproteins of belpaoviruses, metaviruses, pseudoviruses, and retroviruses possess 84 
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similar domain architectures. These Pol polyproteins contain an aspartate protease, which is 85 

responsible for the processing of viral polyproteins, and an integrase of the DDE recombinase 86 

superfamily. The genomes of these viruses also share long terminal repeats (LTRs) (13). Within 87 

certain clades, Pol polyproteins of retroviruses and metaviruses share additional features, such as a 88 

dUTPase domain (14-16) and the GPY/F subdomain of the integrase (17, 18). Caulimoviruses also 89 

possess a homologous aspartate protease domain in their Pol polyprotein (19), but lack an integrase 90 

and LTR. However, RT-based phylogenies consistently place these plant-infecting viruses as a sister 91 

clade to the metaviruses (Figure 1), suggesting that among “pararetroviruses”, encapsidation of a DNA 92 

genome is a homoplasious character and therefore not a reliable criterion for classification. The basal 93 

branches of the RT tree are not resolved and are presented as a multifurcation in Figure 1. This 94 

topology is at least compatible with placing the Hepadnaviridae clade outside the viral group that 95 

includes belpaoviruses, caulimoviruses, metaviruses, pseudoviruses, and retroviruses.  96 

Belpaoviruses, caulimoviruses, metaviruses, pseudoviruses, and retroviruses share not only 97 

homologous proteins involved in genome replication and polyprotein processing, but also the two 98 

principal protein components of the virions, namely, the capsid and nucleocapsid proteins/domains 99 

(20-22), although the nucleocapsid domain appears to be absent in spumaretroviruses (family 100 

Retroviridae; Table 1). By contrast, hepadnaviruses encode an unrelated capsid protein (23). These 101 

findings suggest that belpaoviruses, caulimoviruses, metaviruses, pseudoviruses, and retroviruses have 102 

evolved from a common viral ancestor, rather than from distinct capsid-less retrotransposons (20). 103 

Finally, similarities between belpaoviruses, caulimoviruses, metaviruses, pseudoviruses, and 104 

retroviruses extend to the mechanism of replication priming. All these viruses utilize host tRNA 105 

molecules as primers for genome replication by reverse transcription (24), whereas hepadnaviruses use 106 

a specific protein priming mechanism mediated by the polymerase terminal protein domain (25). 107 

Taken together, the common complement of proteins required for genome replication, 108 

polyprotein processing, and virion formation, the topology of the RT phylogenetic tree, and 109 

mechanistic similarities in genome replication present strong evidence that belpaoviruses, 110 

caulimoviruses, metaviruses, pseudoviruses, and retroviruses share a common evolutionary origin. The 111 

hepadnaviruses, which typically branch out at the base of the viral RT clade (Figure 1), possess a 112 
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unique capsid protein and employ a distinct replication mechanism, appear to be more distantly related 113 

to all these virus families. In recognition of these relationships, the ICTV has recently regrouped the 114 

families Belpaoviridae, Caulimoviridae, Metaviridae, Pseudoviridae and Retroviridae into an order 115 

Ortervirales (orter: an inversion of retro, which was derived from reverse transcription; virales: suffix 116 

for an order). This change in taxonomy acknowledges and formalizes the long-proposed evolutionary 117 

relationship among most groups of reverse-transcribing viruses (26). We note that although 118 

hepadnaviruses are not included in the order, they might be unified with other reverse-transcribing 119 

viruses at a higher taxonomic level in the future. 120 

 121 
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Figure legend 201 

Figure 1. Maximum likelihood phylogeny of viral reverse transcriptases. The tree includes sequences of 290 viruses belonging to all ICTV-202 

recognized genera of reverse-transcribing viruses. The phylogeny was inferred using PhyML (30) with the LG+G+F substitution model and is 203 

rooted with sequences from non-viral retroelements (bacterial group II introns and eukaryotic LINE retroelements). Genomic organizations of 204 

selected representatives of reverse-transcribing viruses are shown next to the corresponding branches. Long terminal repeats (LTR) are shown as 205 

black triangles. Note that members of the virus families display considerable variation in gene/domain content (5), which is not captured in this 206 

figure. Abbreviations: 6, 6-kDa protein; ATF, aphid transmission factor; CA/CP, capsid protein; CHR, chromodomain (only present in the INT of 207 

particular clades of metaviruses of plants, fungi and several vertebrates); gag, group-specific antigen; env, envelope genes; SU, surface 208 

glycoprotein; TM, transmembrane glycoprotein; INT, integrase; MA, matrix protein; NC, MP, movement protein; nucleocapsid; nef, tat, rev, vif, 209 

vpr, and vpu, genes that express regulatory proteins via spliced mRNAs; TP, terminal protein domain; TT/SR, translation trans-activator/suppressor 210 

of RNA interference; P, polymerase; pol, polymerase gene; PR, protease; PreS, pre-surface protein (envelope); PX/TA, protein X/transcription 211 

activator; RH, RNase H; RT, reverse transcriptase; VAP, virion-associated protein. 212 
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