ICTV Virus Taxonomy Profile: Tristromaviridae
David Prangishvili, Elena Rensen, Tomohiro Mochizuki, Mart Krupovic, Ictv Report Consortium

To cite this version:

HAL Id: pasteur-01977323
https://pasteur.hal.science/pasteur-01977323
Submitted on 10 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
ICTV Virus Taxonomy Profile: *Tristromaviridae*

David Prangishvili, Elena Rensen, Tomohiro Mochizuki, Mart Krupovic and ICTV Report Consortium

Abstract

Tristromaviridae is a family of viruses with linear, double-stranded DNA genomes of 16–18 kbp. The flexible, filamentous virions (400±20 nm × 30±3 nm) consist of an envelope and an inner core constructed from two structural units: a rod-shaped helical nucleocapsid and a nucleocapsid-encompassing matrix protein layer. Tristromaviruses are lytic and infect hyperthermophilic archaea of the order Thermoproteales. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the *Tristromaviridae*, which is available at www.ictv.global/report/tristromaviridae.

Table 1. Characteristics of the family *Tristromaviridae*

<table>
<thead>
<tr>
<th>Typical member: Pyrobaculum filamentous virus 1 (KU307456), species Pyrobaculum filamentous virus 1, genus Alphatristromavirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virion</td>
</tr>
<tr>
<td>Genome</td>
</tr>
<tr>
<td>Replication</td>
</tr>
<tr>
<td>Translation</td>
</tr>
<tr>
<td>Host range</td>
</tr>
<tr>
<td>Taxonomy</td>
</tr>
</tbody>
</table>

VIRION

The virions are filamentous, 400±20×32±3 nm (Table 1, Fig. 1), and contain a lipid envelope and an inner core consisting of two structural units: (i) a rod-shaped helical nucleocapsid, formed of two major virion proteins (VP1 and VP2), each with a molecular mass of 14 kDa, and (ii) a nucleocapsid-encompassing protein sheath composed of a single virion protein (VP3) of 18 kDa [1]. The sheath layer is sandwiched between the nucleocapsid and the lipid envelope, akin to the matrix protein layer found in some eukaryotic, negative-sense RNA viruses. The virions also contain at least five minor proteins with molecular masses in the range of 11–30 kDa.

GENOME

The linear dsDNA genome of Pyrobaculum filamentous virus 1 is 17,714 bp, including 60 bp terminal inverted repeats, and is predicted to encode 39 proteins (Fig. 2), most of which do not show similarities to the sequences in public databases [2]. Nine gene products of Pyrobaculum filamentous virus 1 share significant sequence similarity with proteins encoded in the partially sequenced genome of Thermoproteus tenax virus 1 [3, 4].

Received 30 October 2018; Accepted 12 November 2018; Published 12 December 2018

Author affiliations: 1Department of Microbiology, Institut Pasteur, 25 Rue du Dr. Roux, 75015 Paris, France; 2Department of Cell Biology and Infection, Institut Pasteur, 25 Rue du Dr. Roux, 75015 Paris, France; 3Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.

Correspondence: David Prangishvili, david.prangishvili@pasteur.fr; Mart Krupovic, mart.krupovic@pasteur.fr

Keywords: Tristromaviridae; ICTV Report; taxonomy.

Abbreviation: VP, Virion protein.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
REPLICATION
Virions bind to the host cell via the interaction of terminal protrusions with the host pili-like appendages. The viral genome is present in the host cells in a linear non-integrated form and mature virions assemble in the host cell lumen prior to release. The virus is lytic and virions are released by the rupture of the host cell envelope. The mechanism of genome replication remains unknown [1].

TAXONOMY
The family Tristromaviridae comprises a single genus, Alphatristromavirus, with two species. Tristromaviruses infect members of the hyperthermophilic archaeal order Thermoproteales. Thermoproteus tenax virus 1 [5] infects members of the genus Thermoproteus, and Pyrobaculum filamentous virus 1 infects members of the genus Pyrobaculum. Thermoproteus tenax virus 1 was formerly classified in the family Lipothrixviridae [6].

RESOURCES

Acknowledgements
Members of the ICTV 10th Report Consortium are Elliot J. Lefkowitz, Andrew J. Davison, Stuart G. Siddell, Peter Simmonds, Sead Sabanadzovic, Donald B. Smith, Richard J. Orton and Andrew M. Kropinski.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References