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Abstract

Background

4 one-step, real-time, reverse transcription loop-mediated isothermal amplification (RT-LAMP)

assays were developed for the detection of dengue virus (DENV) serotypes by considering

2,056 full genome DENV sequences. DENV1 and DENV2 RT-LAMP assays were validated

with 31 blood and 11 serum samples from Tanzania, Senegal, Sudan and Mauritania. DENV3

and DENV4 RT-LAMP assays were validated with 25 serum samples from Cambodia.

Methodology/Principal findings

4 final reaction primer mixes were obtained by using a combination of Principal Component

Analysis of the full DENV genome sequences, and LAMP primer design based on sequence

alignments using the LAVA software. These mixes contained 14 (DENV1), 12 (DENV2), 8

(DENV3) and 3 (DENV4) LAMP primer sets. The assays were evaluated with an External

Quality Assessment panel from Quality Control for Molecular Diagnostics. The assays were

serotype-specific and did not cross-detect with other flaviviruses. The limits of detection,

with 95% probability, were 22 (DENV1), 542 (DENV2), 197 (DENV3) and 641 (DENV4)

RNA molecules, and 100% reproducibility in the assays was obtained with up to 102 (DENV1)

and 103 RNA molecules (DENV2, DENV3 and DENV4). Validation of the DENV2 assay with

blood samples from Tanzania resulted in 23 samples detected by RT-LAMP, demonstrating

that the assay is 100% specific and 95.8% sensitive (positive predictive value of 100% and a

negative predictive value of 85.7%). All serum samples from Senegal, Sudan and Mauritania

were detected and 3 untyped as DENV1. The sensitivity of RT-LAMP for DENV4 samples

from Cambodia did not quite match qRT-PCR.
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Conclusions/Significance

we have shown a novel approach to design LAMP primers that makes use of fast growing

sequence databases. The DENV1 and DENV2 assays were validated with viral RNA

extracted clinical samples, showing very good performance parameters.

Author summary

The co-existence of several dengue virus (DENV) serotypes within the same location and/

or individuals as well as a single mosquito being able to carry multiple DENV serotypes

highlight the necessity of specific diagnostic tools capable of detect and serotype DENV

strains circulating worldwide. In addition, these methodologies must be highly sensitive

in order to detect the genome at low levels (i.e., before the onset of clinical symptoms) and

not cross-detect other flaviviruses. Isothermal amplification methods (such as reverse

transcription loop-mediated isothermal amplification, RT-LAMP) are affordable for labo-

ratories with limited resources and do not need expensive equipment. Because of the

increasing number of publicly available full DENV genome sequences, traditional primer

design tools are not able to handle such huge amount of information. Therefore, to be

able to cover all the diversity documented, we developed 4 complicated oligonucleotide

mixes for the individual detection of DENV1-4 serotypes by RT-LAMP. This approach

combined Principal Component Analysis, phylogenetic analysis and LAVA algorithm.

Our assays are specific and do not cross-react with other arboviruses and DNA pathogens

included in this study, they are sensitive and have been validated with samples from Tan-

zania, Senegal, Sudan, Mauritania and Cambodia, showing very good performance

parameters.

Introduction

Dengue is a worldwide public health concern annually affecting more than 100 million people

in tropical and subtropical areas [1, 2]. It is caused by dengue virus (DENV), the most com-

mon vector-borne viral pathogen of humans, transmitted by mosquitoes of the Aedes genus

(primarily A. aegypti and to a lesser extent A. albopictus), as previously reviewed [3]. DENV

infection in humans results in a broad spectrum of disease manifestations, ranging from self-

limiting, acute febrile illness (dengue fever) to more severe forms of the disease (dengue hae-

morrhagic fever and dengue shock syndrome), which may lead to death [4]. In 2013, the

annual global incidence was estimated close to 390 million DENV infections, which was more

than three times the dengue burden estimate of the World Health Organization [2].

DENV is an enveloped virus (genus Flavivirus, family Flaviviridae) with a genome that con-

sists of a single-stranded, positive-sense RNA molecule of about 11 kb in length. The DENV

genome encodes three structural proteins (C, capsid; prM, pre-membrane, and E, envelope) at

the N terminus and seven non-structural (NS) proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b

and NS5) [5, 6]. This virus is classified into four phylogenetically related and loosely antigeni-

cally distinct serotypes (DENV1, DENV2, DENV3 and DENV4), each of which contains phy-

logenetically different genotypes [7–9].

DENV outbreaks between 2006 and 2013, in India, Vietnam, Solomon Islands, Myanmar,

China, Singapore, Malaysia and Portugal [10–14], highlight the necessity of rapid virus detec-

tion to identify DENV as the cause of an outbreak, in order to manage and control virus spread
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in infrastructure poor urban, peri-urban and rural settings. Notably, routine detection of

DENV in children who are often asymptomatic carriers could improve outbreak control [15].

A first vaccine has recently been licensed for the prevention of dengue, which aims to reduce

the number of hospitalizations per year, being approved for people aged between 9 to 45 years

[16].

Traditional virus isolation is time-consuming, requires experienced staff, costly facilities

and equipment and needs more than seven days to complete the assay [17, 18]. IgM- and IgG-

capture enzyme-linked immunosorbent assay (ELISA) are most widely used but some degree

of cross-reactivity against other flaviviruses is usually observed and this method is not useful

when antibody titers are not sufficiently high (febrile viremic phase) [19]. Molecular amplifica-

tion techniques to detect DENV RNA (RT-PCR, quantitative RT-PCR—qRT-PCR), which

have emerged as a new standard, have a quick turnaround time and can distinguish DENV

serotypes [20–26]. However, these techniques require sophisticated equipment and experi-

enced staff, making them unpractical for laboratories with limited resources.

Loop-mediated isothermal amplification (LAMP) has the potential to substitute PCR-based

methods because of its simplicity, rapidity, specificity, sensitivity and cost-effectiveness, as no

special equipment is needed (just a heating block or water bath capable to maintain a constant

temperature between 60˚C to 65˚C) [27–29]. Reactions can be visualised by monitoring either

the turbidity in a photometer or the fluorescence in a fluorimeter, by visual inspection under

UV lamp when using an intercalating dye or by colour change [8, 28–36].

Previously reported reverse transcription LAMP (RT-LAMP) assays for DENV target the 3’

untranslated region (UTR) [8, 30, 32, 34, 37], whilst other detect a fragment of the C-prM re-

gion [33], a conserved region of the NS1 [36], or regions of NS2A (DENV1), NS4A (DENV3),

NS4A (DENV2) and the 3’ UTR (DENV4) [38]. In all cases information about the primer

design is limited as only one sequence per serotype or reference sequences were considered or

it is not clearly detailed how the sequence alignment was carried out or how many sequences

were included in the design. An initial screen of all published DENV RT-LAMP detection

amplicons quickly revealed that all of them fail to cover the documented sequence variation.

To improve DENV RT-LAMP design we used the LAMP Assay Versatile Analysis (LAVA)

algorithm [39] which solves the limitations of existing LAMP primer-designing programs by

allowing designs based on large multiple sequence alignments. Our LAMP design is based on

2,056 whole-genome DENV sequences covering DENV strains from 2004 to 2014 and yielded

4 one-step, real-time RT-LAMP assays to specifically detect each DENV serotype.

Materials and methods

Ethics statement

Ethical approval for retrospective use of the anonymized samples in diagnostic development

research was available: Tanzania samples (Ethikkommission Basel in Switzerland, Institutional

Review Board of the Ifakara Health Institute and National Institute for Medical Research

Review Board in Tanzania), IPD and IPC samples (Ministry of Health of Senegal and National

Ethics Committee for Health Research of Cambodia, respectively).

Viral RNA, patient samples and RNA extraction

Virus material: DENV isolates were provided and tested at the Institut Pasteur in Paris

(Table 1). TriReagent extracts from flavivirus culture supernatants were provided by M. Weid-

mann. Inactivated strains ATCC VR-344 (DENV1), ATCC VR-345 (DENV2), ATCC VR-

1256 (DENV3) and ATCC-1257 (DENV4) were provided by ENIVD / Robert Koch Institute.

Detection of each DENV serotype by RT-LAMP
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An inactivated Zika virus strain (ZIKV, H/PF/2013) was provided by Prof. Xavier de Lamball-

erie (Unité des Virus Emergents, Marseille, France).

An External Quality Assessment (EQA) 2015 panel was provided by QCMD (Quality

Control for Molecular Diagnostics, Glasgow, UK) including ten unknown samples (15–01 to

15–10).

Patient samples: We used RNA extracts of 31 blood samples collected during a fever study

in Tanzania, 2013 (Table 2) provided by the Swiss Tropical and Public Health Institute in

Basel, Switzerland. These samples included 24 DENV qRT-PCR positive, 2 DENV positive

(not characterized by qRT-PCR) and 5 negative samples. In addition, a negative sample from

MAST Diagnostica GmbH (Reinfeld, Germany) was included. RNA extracts of 11 DENV

Table 1. RNA samples used in this study. Cross-specificity and cross-detection results.

Provided by Pathogen Strains (Serotype) RT-LAMP protocols

DENV1 DENV2 DENV3 DENV4

Robert Koch Institutea DENV ATCC VR-344 (D1) + - - -

ATCC VR-345 (D2) - + - -

ATCC VR-1256 (D3) - - + -

ATCC VR-1257 (D4) - - - +

Institut Pasteur Parisb DENV KDH0026A (D1) + - - -

KDH0002A (D1) + - - -

KDH0030A (D1) + - - -

KDH0032A (D1) + - - -

30173/10 (D1) + - - -

30520/09 (D1) + - - -

DJOM2.9.12 (D1) + - - -

R0712259 (D2) - + - -

DJ.OS.1.7.12 (D2) - + - -

DJ.MO.1.7.12 (D2) - + - -

DJWA1.7.12 (D3) - - + -

KDH0012A (D3) - - + -

KDH0014A (D3) - - + -

KDH0010A (D3) + - + -

VIMFH4 (D4) + - - +

University of Stirlingc DENV DEN1/T081117 (D1) + - - -

YFV YFV/T090109 - - - -

WNV WNV P2 24.07.08 - - - -

NTAV Ntaya P3 DPP 8.8.13 - - - -

Unité des Virus Emergentsd ZIKV H/PF/2013 - - - -

MAST Diagnostica GmbHe S. Typhi ST - - - -

S. Paratyphi SP - - - -

S. pneumoniae Spn5 - - - -

P. falciparum 3D7 - - - -

a Dr Pranav Patel, Robert Koch Institute, Centre for biological security 1 (ZBS1), Berlin, Germany
b Dr Anavaj Sakuntabhai (Functional Genetics of Infectious Diseases Unit) and Dr Louis Lambrechts (Department of Genomes and Genetics). Isolates from clinical

samples in Myanmar, Cambodia, Thailand and Gabon between 2007 and 2010. VIMFH4 was isolated in 1976.
c Prof. Manfred Weidmann, Institute of Aquaculture, University of Stirling, United Kingdom.
d Prof. Xavier de Lamballerie, Unité des Virus Emergents, Marseille, France.
e Dr Mohammed Bakheit, MAST Diagnostica GmbH, Reinfeld, Germany.

https://doi.org/10.1371/journal.pntd.0006381.t001
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qRT-PCR serum samples from Senegal, Sudan and Mauritania collected in November-Decem-

ber 2014 by the Institut Pasteur in Dakar (IPD), Senegal (Table 3) were tested by qRT-PCR

and LAMP in Dakar. Additionally serum samples from Cambodia collected through the

National Dengue Surveillance System [40] were tested. RNA was extracted and air-dried using

pre-dried RNAstable 1.5 mL microfuge tubes (Biomatrica, USA) from 13 DENV3 and 12

DENV4 samples, collected by the Institut Pasteur du Cambodge (IPC) in 2004–2006 and

between 2008 and 2014, respectively. Samples were shipped at ambient temperature. More-

over, samples were tested by qRT-PCR before shipment and after receipt and reconstitution in

molecular grade water. Overall the qRT-PCR CT deviation was in a range of 0.8 CT. Five μL

RNA of each sample were used per reaction.

Table 2. Blood samples used in this study, analysed by real-time RT-PCR and RT-LAMP.

Pathogen Patient ID CT values RNA from 50 μL blood RNA from 100 μL blood

Initial TT values (min) Current TT values (min)

Mean SD Positives/total replicates

DENV2 1341 26.11 37

1371 25.89 38

1226 24.38 40

1284 27.36 43

1329 27.51 44

1343 27.93 49

1430 27.63 50

1478 27.52 50

1217 25.53 50

1207 27.24 52

1472 26.57 53

1337 28.13 56

1473 29.13 81 73.9 0.3 2/3

1342 28.41 81 62.4 2.1 3/3

1365 21.57 84 55.0 0.0 3/3

1352 26.27 87 77.0 10.4 3/3

1321 23.81 89 58.5 2.4 3/3

3053 NTa -b - 0/3

3062 NT - - 0/3

1232 28.78 - - 0/3

1363 28.16 - 61.7 3.4 3/3

1270 26.79 - 67.8 3.3 3/3

1273 26.71 - 68.4 1/3

1488 26.45 - 72.2 12.2 3/3

1257 26.15 - 64.1 1.7 3/3

1241 24.27 - 70.0 1/3

Non-DENV2 (negative samples) 1479 - NT - 0/3

1090 - NT - 0/3

1025 - NT - 0/3

1126 - NT - 0/3

1158 - NT - 0/3

S S NT NT - 0/3

a NT: non-tested.
b negative result

https://doi.org/10.1371/journal.pntd.0006381.t002
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RNA extraction

RNA extractions were carried out using the RNeasy mini (DENV strains from Robert Koch

Institute, QCMD samples) (QIAGEN, Crawley, West Sussex, UK) and the QIAamp Viral

RNA mini (DENV samples from IPD and IPC and ZIKV strain from Unité des Virus

Table 3. RNAs tested from samples collected by the Institut Pasteur in Dakar (DENV 1, 2) in 2014, and Institut Pasteur du Cambodge (DENV3, 4).

IPD/IPC number CT values� TT values (min)# Origin Serotype

267197 25.89 20 Senegal 1§

267196 26.17 20–21 Senegal 1

267174 27.22 20 Mauritania 1§

267175 29.79 21–22 Mauritania 1§

267150 26.15 28–29 Senegal 2

267267 27.82 30–31 Senegal 2

267234 33.22 38–45 Senegal 2

267219 36.52 36–43 Senegal 2

267186 37.62 40–45 Senegal 2

267213 38.09 32–45 Sudan 2

267207 38.48 39–45 Senegal 2

P1212131 24.78 - Cambodia 3

Q0427132 25.66 59.36 Cambodia 3

R0104070 27.73 15.75 Cambodia 3

R0104072 28.87 - Cambodia 3

P0921232 32.01 - Cambodia 3

R0104074 32.25 - Cambodia 3

P0913209 32.55 - Cambodia 3

Q0427138 34.21 57.03 Cambodia 3

P1111026 34.8 - Cambodia 3

Q0531203 36.05 - Cambodia 3

Q0427140 36.06 - Cambodia 3

Q0529123 37.24 - Cambodia 3

R0302118 39.33 - Cambodia 3

T0423100 28.17 41–48 Cambodia 4

W1019304 28.52 40 Cambodia 4

Z0603308 29.7 - Cambodia 4

Z0722323 30.45 36–37 Cambodia 4

Y0807311 30.66 40–43 Cambodia 4

Z0603310 31.51 36 Cambodia 4

Z0617306 31.62 - Cambodia 4

T0408073 31.71 46 Cambodia 4

Y0521311 31.73 33 Cambodia 4

Y0731302 32.73 33 Cambodia 4

Z0713303 - - Cambodia 4

U0927345 - 41 Cambodia 4

� CT (qRT-PCR) as tested at IPD immediately before testing RT-LAMP (DENV1, DENV2); CT as tested immediately before shipment by IPC (DENV3), CT as tested on

arrival of shipment (DENV4). CT values are listed incremental per DENV type.

# TT ranges of LAMP results: triplicates for DENV1 and DENV2, duplicates for DENV3 and DENV4. A single TT result represents one positive out of 2 (DENV3,

DENV4).

§ Serotype determined by RT-LAMP.

https://doi.org/10.1371/journal.pntd.0006381.t003
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Emergents) (QIAGEN, Courtaboeuf, France) kits. TriReagent extracts were processed accord-

ing to the manufacturer’s extraction protocol (Sigma-Aldrich, Dorset, UK).

RNA extraction of the clinical samples from Tanzania was initially performed from 50 μL

whole blood using a trial version of a nucleic acid isolation system equivalent to the protocol

established for the MagSi-gDNA blood kit (MagnaMedics, Geleen, The Netherlands). RNA

was eluted in 190 μL elution buffer, and 5 μL per sample were used for each RT-LAMP reac-

tion. Additionally, an improved trial version of the MagnaMedics system for nucleic acid isola-

tion, starting from 100 μL whole blood and eluting the RNA in 100 μL elution buffer, using

5 μL per sample for each RT-LAMP reaction, was used. RNA was extracted from the clinical

samples from Senegal using the QIAamp Viral RNA mini kit.

DENV qRT-PCR and nested PCR

A DENV RNA standard was transcribed from the DENV 3’ UTR region, ligated into pCRII

and evaluated as previously described [41]. DEN FP and DEN P were as described with the

probe now tagged 5’-FAM / BBQ-3’ but an adapted reverse primer DEN RP2 (5’-CTGHRGA-

GACAGCAGGATCTCTG-3’) as described [42]. DENV qRT-PCR was performed using the

Light Cycler 480 Master Hydrolysis Probes (Roche, Mannheim, Germany) in a 20-μL reaction

volume containing 1x LightCycler 480 RNA Master Hydrolysis Probes, 3.25 mM activator Mn

(OAc)2, 500 nM primers DEN FP and DEN RP2, 200 nM probe DEN P, and 1 μL RNA tem-

plate on the LightCycler 2.0 (Roche), as follows: reverse transcription for 3 min at 63˚C, activa-

tion for 30 s at 95˚C, followed by 45 cycles consisting of amplification for 5 s at 95˚C and 15 s

at 60˚C and a final cooling step of 40 s at 40˚C. Analysis of the reactions was conducted using

LightCycler software version 4.1.1.21 (Roche).

The Institut Pasteur in Dakar performed a qRT-PCR [43], using the ABI7500 Fast Real-

time PCR System (Applied Biosystems, Foster City, CA). An RT-PCR assay, which simulta-

neously detects the 4 DENV serotypes, followed by a nested PCR, that specifically detects each

DENV serotype, were used [20].

LAMP primer design

A two-step approach was used. First, all available sequences of DENV1 to 4 were downloaded

from the NCBI database. Searches were limited to the samples collected between 2004 and

2014. All sequences were then aligned (for each serotype) using GramAlign v3.0 [44], and

diversity was assessed using the glPCA module of R/adegenet v1.4.1 [45]. Finally, based on the

Principal Component Analysis (PCA) and phylogenetic tree (Neighbor-Joining tree using the

R/ape 3.2 package), the sequences were manually split into different clusters in order to maxi-

mise the region of sequence identity. LAMP DNA signatures for each cluster (and all combina-

tions to minimise the number of primer sets) were designed using a modified version [https://

github.com/pseudogene/lava-dna] of LAVA [39] applying the loose parameters set for

DENV1-3 and the standard parameter set for DENV4. Full scripts and methods are available

on GitHub at https://github.com/pseudogene/lamp-denv.

All the designed sets of primers were first checked for primer dimerisation with the Visua-

lOMP version 7.8.42.0 (DNA Software, Ann Arbor, MI). In addition, primer combinations for

each of the DENV assays were tested for primer dimerisation by comparing amplification sig-

nals in positive and negative controls.

One-step real-time RT-LAMP

RT-LAMP reactions were run at 64˚C using either an ESE-Quant TubeScanner (QIAGEN

Lake Constance GmbH, Stockach, Germany) or Genie II (Optigene, Horsham, UK), in a final

Detection of each DENV serotype by RT-LAMP
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reaction volume of 25 μL. The Genie II device displays the annealing curve for specificity after

the reaction has finished, by melting curve analysis from 98˚C to 80˚C (0.05˚C/s).

Four RT-LAMP assays were developed, one for each DENV serotype (S1 File). Each reac-

tion consisted of 1x RM Trehalose, 6 mM MgSO4, 5% polyethylene glycol (PEG), 1 μL fluoro-

chrome dye (FD), 8 U Bst 2.0 DNA Polymerase (New England BioLabs, Hitchin, Herts, UK),

10 U Transcriptor Reverse Transcriptase (Roche) and 1 μL template (DENV RNA or H2O as

negative control). For each primer set per RT-LAMP assay, the final concentrations was as fol-

lows: 50 nM F3, 50 nM B3, 400 nM FIP, 400 nM BIP, 200 nM FLOOP, 200 nM BLOOP. Before

adding the Bst 2.0 DNA Polymerase, Transcriptor Reverse Transcriptase and template, mixes

were incubated at 95˚C for 5 min to melt any primer multi-mers and cooled immediately on

ice for 5 min. Reaction times vary for each RT-LAMP protocol, running for 45 min (DENV1),

90 min (DENV2), 75 min (DENV3) and 50 min (DENV4).

RM Trehalose, MgSO4, PEG and FD were supplied by MAST Diagnostica GmbH.

Sensitivity of the RT-LAMP protocols

Sensitivity analysis was performed in the ESE-Quant TubeScanner (QIAGEN). Ten-fold dilu-

tions of viral DENV RNA samples (ATCC VR-344 (DENV1), ATCC VR-345 (DENV2),

ATCC VR-1256 (DENV3) and ATCC VR-1257 (DENV4)), quantified by qRT-PCR, were

used to analyse the sensitivity of the developed RT-LAMP assays (range from 104−105 to 10

molecules/μL) and 1 μL per dilution was added to the RT-LAMP reaction. The complete RNA

standard was tested in eight separate runs. The values obtained were subjected to probit analy-

sis (Statgraphics plus v5.1, Statistical Graphics Corp., Princeton, NJ) and the limit of detection

at 95% probability for each RT-LAMP assay was obtained.

Cross-specificity and cross-detection tests

Cross-specificity tests for the four RT-LAMP assays were carried out at the Institut Pasteur

(Paris) using the QuantStudio 12K Flex Real-Time PCR System, and results were analysed

with the software QuantStudio 12K Flex v1.2.2. (Applied Biosystems, Carlsbad, CA). Each of

the RT-LAMP assays was tested using 1 μL RNA extracted from the DENV strains described

in Table 1. Cross detection of other flaviviruses, ZIKV, Yellow fever virus (YFV), West Nile

virus (WNV) and Ntaya virus (NTAV), was analysed using the Genie II (Optigene) at the Uni-

versity of Stirling.

The RT-LAMP assays were also tested against several DNA pathogens (Salmonella Typhi, S.

Paratyphi, Streptococcus pneumoniae and Plasmodium falciparum). DNA samples were pro-

vided by MAST Diagnostica GmbH.

The performance of the RT-LAMP assays (sensitivity and specificity) was additionally eval-

uated using the 2015 DENV EQA panel provided by QCMD. Results obtained from QCMD

refer to 8 core and 2 educational samples. Core samples are those needed to assess the perfor-

mance from the regulatory point of view and educational samples are additional samples

related to questions such as limit of detection or specificity.

Evaluation of the RT-LAMP assays with clinical samples

We used 31 blood samples from a fever study in Tanzania, 2013 (Table 2). Twenty-six samples

had been confirmed as DENV2 positive by the Swiss Tropical and Public Health Institute

(Basel, Switzerland) (2 of them were not tested by qRT-PCR). Aliquots of these blood samples

were sent to MAST Diagnostica GmbH and stored at -20˚C until RNA extraction was per-

formed using the Magnamedics kit trial version. RNA samples were stored at -80˚C.

Detection of each DENV serotype by RT-LAMP
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RT-LAMP reactions were run in the TubeScanner TS2 (QIAGEN), using 5 μL RNA of each

sample per reaction.

The samples at IPD were analysed by both qRT-PCR [43], and the DENV1 and DENV2

RT-LAMP assays (in triplicates) in an ABI7500 Fast Real-time PCR system (Applied Biosys-

tems), using 5 μL RNA of each sample per reaction.

Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV)

were obtained for the DENV2 RT-LAMP developed when compared against the results

obtained by qRT-PCR.

Results

Quantification of DENV RNA by absolute one-step qRT-PCR

The RNA standard was tested 3 times and similar crossing point (CP) values were obtained for

the different dilutions from 107 to 103 RNA molecules detected (S1 Fig), showing an efficiency

(E = 10−1/slope—1) of 0.99 ± 0.04 (mean ± standard deviation, SD). Quantification of DENV1-4

RNA extracted from inactivated isolates ATCC VR-344 (DENV1), ATCC VR-345 (DENV2),

ATCC VR-1256 (DENV3) and ATCC VR-1257 (DENV4) (Table 1) ranged from 6.9x104–

9.4x104 (DENV1), 4x105–5.3x105 (DENV2), 1.5x105 - 3x105 (DENV3), and 1.8x105–2.7x105

(DENV4) RNA molecules/μL.

LAMP primer design and evaluation

In total 1,145, 477, 376 and 58 genomic sequences were retrieved from the NCBI database for

DENV1, DENV2, DENV3 and DENV4, respectively. Each serotype dataset was split into 4 to 21

clusters (Fig 1A and S2–S4 Figs), allowing for the LAVA algorithm to design LAMP primer sets,

and was executed for each group separately as well as for all possible combinations of the groups.

Sets of primers that showed dimerisation when analysed with VisualOMP (DNA Software,

Ann Arbor, MI) were discarded (Fig 2A). Remaining sets where sequentially combined and

tested by RT-LAMP to discard cases of primer dimerisation, visualised by the non-specific

amplification signal (intercalating dye) in the no template control (NTC) (Fig 2B). The final

primer sets are described in Fig 1B and S1–S4 Tables and consist of 84 (14 amplicons, DENV1),

72 (12 amplicons, DENV2), 48 (8 amplicons, DENV3) and 18 (3 amplicons, DENV4) primers.

When combining the amplicon primer sets for each RT-LAMP assay, amplification was not

observed when using published standard LAMP primer concentrations for each primer set:

0.2 μM F3, 0.2 μM B3, 1.6 μM FIP, 1.6 μM BIP, 0.8 μM FLOOP and 0.8 μM BLOOP. To deter-

mine the concentration window of the complicated primer mix, a 2-fold dilution series of the

above primer mix was used. Amplification yielding the best possible detection without amplifi-

cation in the NTC was achieved at a dilution of 1:4 (50 nM F3, 50 nM B3, 400 nM FIP, 400 nM

BIP, 200 nM FLOOP and 200 nM BLOOP, Fig 2C).

Cross-specificity and cross-detection tests

Table 1 and Fig 3 show the results of the cross-specificity and cross-detection tests. All DENV

cell culture RNA extracts were detected and no amplification was observed in the NTC. The

RT-LAMP protocols for DENV2, DENV3 and DENV4 were specific for each respective sero-

type. The RT-LAMP protocol for DENV1 detected all DENV1 RNA strains, but also scored

positive in RNA extracts KDH0010A and VIMFH4 containing RNA extracts from DENV3

and DENV4 isolates, respectively (Table 1). Additional testing of samples KDH0010A and

VIMFH4 by nested RT-PCR (Fig 4A and 4B) indicated contamination of the cell cultures sam-

ples with DENV1 confirming the RT-LAMP results.
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The RNA of other flaviviruses was not cross-detected (Fig 3 and Table 1). Specific amplifi-

cation was also indicated by a specific single peak temperature in the melting curve analysis

(Fig 3B, 3D, 3F and 3H), with mean values ± SD of 85.4 ± 1.1˚C (DENV1), 83.1 ± 1.0˚C

(DENV2), 84.3 ± 0.9˚C (DENV3) and 86.4 ± 0.3˚C (DENV4). No amplification was observed

when DNA from S. Typhi, S. Paratyphi, S. pneumoniae and P. falciparum was used as template

in the different RT-LAMP assays (Table 1).

The 2015 DENV EQA panel analysis confirmed that the RT-LAMP assays developed passed

8 core and the 2 educational samples of that panel. Concerning the core samples, 5 positive

samples were scored 3/3, and 1 positive sample was detected once (the other 2 samples were

negative). Results obtained from the educational samples indicated that 1 sample was detected

in the 3 repetitions whilst the other sample was detected in 1/3 repetitions.

Fig 1. LAMP primer design. (A) PCA and phylogenetic clustering of 58 DENV4 genomes. Four subgroups were necessary to describe all genotypes

found (variation explained by first, second and third principal component, 43.5%, 18.8% and 5.9% respectively). (B) Location of all primer sets used

for each DENV serotype. Genomes/clusters concerned are also indicated.

https://doi.org/10.1371/journal.pntd.0006381.g001
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Analytical sensitivity of the RT-LAMP protocols

DENV1-4 RNA samples, previously quantified by qRT-PCR, were used to analyse the sensitiv-

ity of the developed RT-LAMP assays. RT-LAMP protocols for DENV1, DENV2 and DENV4

detected as few as 10 molecules per reaction, although this amount was only obtained in 3, 5

and 2 of 8 repetitions, respectively, with the following mean times: 28.8 ± 6.3 min (DENV1),

Fig 2. Dimerisation and primer concentration. (A) Example of dimerisation detected by Visual OMP software. (B)

Dimerisation detected in no template control during an RT-LAMP reaction. Black line reaction with RNA, grey line:

NTC. (C) 2-fold dilution of the primer sets used in the DENV4 RT-LAMP. Continuous lines represent the reactions

with RNA, discontinuous lines refer to NTC.

https://doi.org/10.1371/journal.pntd.0006381.g002
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78.2 ± 5.8 min (DENV2) and 44.6 ± 3.3 min (DENV4). RT-LAMP for DENV3 detected as few

as 102 molecules, but only in 4 of 8 reactions, at 44.9 ± 18.6 min. The lowest amount of mole-

cules detected in the 8 reactions, showing 100% reproducibility, were 102 (DENV1, mean time

of 25.3 ± 2.6 min), and 103 (DENV2, DENV3 and DENV4, mean times of 69.2 ± 11.6 min,

37.2 ± 11.6 min and 26.8 ± 2.7 min, respectively) (Fig 5). Considering 8 independent reactions

per protocol developed, the probit analysis revealed that the limit of detection at 95% probability

for each RT-LAMP was 22 RNA molecules (DENV1), 542 RNA molecules with a confidence

interval from 92 to 3.2x1013 RNA molecules (DENV2), 197 RNA molecules (DENV3) and 641

RNA molecules with a confidence interval from 172 to 1.2x105 RNA molecules (DENV4).

Evaluation of the RT-LAMP with clinical samples

Tables 2 and 3 show the results of the blood and serum samples analyses when using both

qRT-PCR and RT-LAMP.

Out of 26 DENV2-infected blood samples 24 scored positive in qRT-PCR with cycle thresh-

old (CT) values ranging from 21.57–29.13 (Table 2, column 2). In a first test DENV2

RT-LAMP detected 17/24 (70.8% positive samples) with initial time to positive (TT) values

between 37 and 89 min (Table 2, column 3).

RNA from 14 samples, including those with initial TT values over 60 min, negative in both

RT-LAMP and qRT-PCR, and 6 DENV negative samples (Table 2), were extracted a second

time using the optimized MagnaMedics extraction starting from 100 μL sample and yielding

enhanced detection.

Five samples with initial TT values from 81–89 min, now tested positive with TT values

from 55–77 min. Six samples initially negative by RT-LAMP became positive with TT values of

61.7–72.2 min. Three samples, 1 of which had scored positive in qRT-PCR, remained negative

in RT-LAMP. Most RNA samples extracted with the optimized method scored positive in all 3

replicates. One sample was detected 2/3 times, and 2 were detected only once. All negative

samples included in these analyses scored negative.

Fig 3. Cross-detection assays to confirm the specificity of the RT-LAMP protocols to detect DENV RNA (black line). There was no

amplification of other flaviviruses RNA (discontinuous grey lines) or in the NTC (continuous grey line). (A), (C), (E) and (G) show the

amplification profiles for the RT-LAMP reaction. (B), (D), (F) and (H) show the annealing curve for specificity.

https://doi.org/10.1371/journal.pntd.0006381.g003

Fig 4. Detection of DENV strains by RT-PCR and nested PCR. (A) RT-PCR using D1 and D2 primers. (B) Serotype-specific nested PCR using

D1/TS1, D1/TS3 and D1/TS4 primers to detect DENV1, DENV3 and DENV4, respectively. L: 100 bp DNA ladder (Thermo Scientific); NC:

negative control (H2O); 1: KDH0030A (DENV1); 2: DJOS1.7.12 (DENV2); 3: KDH0010A (DENV3); 4: VIMFH4 (DENV4); nP: negative control

nested PCR; P: negative control PCR.

https://doi.org/10.1371/journal.pntd.0006381.g004
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Calculation of the clinical sensitivity and specificity yielded 100% specificity (CI: 0.63–

1.00), as no false positives were detected, and a sensitivity of 95.8% (CI: 0.79–1.00) with 23/24

positive samples, a PPV of 1.00 (CI: 0.85–1.00) and NPV of 0.86 (CI: 0.42–1.00).

Table 3 summarises the results obtained with samples collected by the IPD and IPC. All 11

RNA samples from IPD used in this study were analysed in parallel by qRT-PCR and with

DENV1 and DENV2 RT-LAMP assays. All scored positive in qRT-PCR (CT 25.89–38.48), 4

samples scored positive in the DENV1 RT-LAMP, and 7 scored positive in the DENV2 RT-

LAMP (TT values 20–45 min). Samples 267175, 267197 and 267174 were serotyped as DENV1

with the developed RT-LAMP.

Additionally, of 12 qRT-PCR positive DENV4 samples dried with RNAstable shipped by

IPC, 10 tested positive by qRT-PCR after shipment, and 9 were detected by DENV4 LAMP. Of

13 DENV3 samples qRT-PCR positive before shipment, only 1 tested positive by qRT-PCR on

arrival and only 3 by RT-LAMP.

Discussion

Dengue is now prevalent in more than 100 countries of the tropics and subtropics and as

DENV continues to spread, all four serotypes co-circulate widely [46–48]. The introduction of

new DENV strains continues through travellers moving between dengue-endemic countries

[11] and recently the capacity of individual mosquitoes to carry multiple DENV serotypes was

described [49], while elsewhere acute simultaneous infection with several DENV serotypes was

observed [10].

Fig 5. Times (min) of positive detection using serial 10-fold dilutions of DENV RNA. The mean values are represented with a grey bar and

error bars indicate the standard deviation. Black dots refer to positive signals of eight independent runs. (A), (B), (C) and (D) represent the

plots referring to DENV1, DENV2, DENV3 and DENV4, respectively.

https://doi.org/10.1371/journal.pntd.0006381.g005
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DENV detection methods include virus culture, which is time consuming [17, 18] as well as

ELISA or immunofluorescence methods to detect IgM and IgG which suffer from cross-reac-

tivity to other flaviviruses antibodies and which are only considered valid when antibody titers

are sufficiently high [19]. The introduction of NS1 antigen detection has improved the situa-

tion and recent studies show a high sensitivity of NS1 detection [50], with some concluding

that the combination with IgM detection can outperform PCR [51]. However, its use for rou-

tine screening in dengue epidemics is questioned in terms of clinical necessity [52].

For molecular RNA detection, nested PCR [20] and real time PCR-assays [21–26] with high

specificity and sensitivity are being used but need expensive and sophisticated thermocyclers

and experienced staff. In recent years, isothermal amplification assays have been described,

such as RT-LAMP [8, 30, 32–38] and RT-RPA [53, 54]. These assays require less expensive

equipment and can be delivered in dried pellet format, making handling easier and amenable

to poor infrastructure settings.

Worldwide monitoring and the use of Next Generation Sequencing methods have

increased the number of complete DENV genomes sequenced and deposited in GenBank to

2,988 (as of June 2016). It is virtually impossible to use this amount of sequence information to

manually align and design amplicons for molecular detection methods. There have been sev-

eral attempts to create algorithms to derive signature sequences for PCR techniques from

sequence datasets or alignments [55, 56]. LAMP amplicons are inherently more challenging to

design as they require a minimum of 4 and a maximum of 6 signature sequences. LAVA soft-

ware was developed to facilitate the determination of signature sequences for LAMP primer

design using a set of aligned sequences [39]. The original and modified version of LAVA take

into consideration the limitations observed with other primer-design programs (LAMP

DESIGNER [http://www.optigene.co.uk/lamp-designer/] and PRIMER EXPLORER [https://

primerexplorer.jp/e/], such as preventing the use of extensive alignments or sequences longer

than 2,000 nt.

We used this approach to design serotype-specific primers aiming to match all possible

DENV strains circulating worldwide, by considering 2,056 available GenBank DENV se-

quences (2004–2014). This is the greatest difference compared to other previously published

RT-LAMP assay designs in which primer design focused on the conserved 3’ UTR, NS1 or C-

prM regions but detailed limited information about the DENV sequences used to develop the

primers. As the LAMP primers were designed from different clusters of each DENV serotype

obtained after PCA and phylogenetic analyses, the individual LAMP amplicons locate to sev-

eral regions across the DENV genome conserved in these clusters (Fig 1). This allows an over-

all detection of DENV variability surpassing any other molecular amplification assay. The final

amplicons were selected through a combination of in silico primer dimer formation assessment

(Visual OMP) and in vitro assessment by checking amplicons selected in the first step for un-

specific amplification in the NTC. A similar methodology has been used to design RT-LAMP

primers to detect Chikungunya virus (manuscript submitted to PLoS Neglected Tropical Dis-

eases) and we consider this approach would be suitable for the assay development of other

infectious diseases. The final DENV1-4 specific RT-LAMP assays contained 84, 72, 48 and

18 oligonucleotides respectively. The challenge was to find a working concentration of these

oligonucleotide mixes, which would allow for sensitive detection. A 2-fold dilution series

approach for the individual final primer mix allowed to identify a working concentration win-

dow in the dynamic range of these assays. This however came at the cost of run time. In order

to increase the reaction speed without losing sensitivity, several combinations of enzymes were

tested. We tested the combination of AMV RT (Promega, Southampton, UK) and GspSSD

DNA polymerase (Optigene) recommended by others who successfully developed rapid

RT-LAMP assays with 10–15 minute run times [57] (Manuguerra personal communication).
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We also tested Bst 3.0 DNA polymerase (New England BioLabs), but found that none offered

an advantage over the enzyme combination we used (Transcriptor Reverse Transcriptase and

Bst 2.0). As a matter of fact, we saw an increased level of unspecific amplification with Bst 3.0

DNA polymerase (data non-shown).

Thus currently reaction times range from 45 (DENV1) to 90 minutes (DENV2). This was

not correlated with the number of oligonucleotides in the mixture but may reflect the effi-

ciency of the individual primer sets in the mixture detecting the respective standard strains we

used for the validation, and the low oligonucleotide concentration. Alternative approaches to

evaluate the sensitivity of each RT-LAMP would consist of having either a pool of RNA sam-

ples representative for each amplicon included or specific primer sets for each particular

DENV strain that would be compared with the primer mixtures included in the developed

assays.

We used an RNA standard evaluated by qRT-PCR to quantify viral RNA of DENV1-4.

These quantified RNA were then used to test the analytical sensitivity of the 4 individual spe-

cific RT-LAMP assays for the detection of each serotype. The analytical sensitivities of the

DENV1-4 RT-LAMP assays, as estimated per probit analysis, ranged from 22 to 641 RNA mol-

ecules detected, and 100% reproducibility after 8 independent runs was achieved for 102−103

RNA molecules detected.

Therefore, results were in the range observed for previously described RT-LAMP methods

detecting all four serotypes in a single reaction [8, 33, 37] with sensitivities between 10 and 100

RNA molecules detected, and RT-LAMP assays distinguishing the serotypes in individual

reactions [30, 38]. For the latter assays the analytical sensitivities determined were 10 to 100

plaque-forming units (PFU)/mL and 10 RNA molecules detected respectively. Our RT-LAMP

assay for DENV1 showed a limit of detection as per probit analysis of 102 PFU/mL with a con-

fidence interval from 20 to 7.8x103 PFU/mL (data non-shown).

The assays developed were serotype-specific, and no cross-detection of other flaviviruses

was observed. Surprisingly, 2 viral preparations tested—KDH0010A (DENV3) and VIMFH4

(DENV4)—were also found positive for DENV1. Subsequent analysis by serotype-specific

nested PCR [20] confirmed the presence of DENV1 RNA probably due to contamination dur-

ing RNA extraction or virus culture, and indicating that the DENV RT-LAMP assays had

picked up the contamination correctly.

EQA panels have been developed in order to evaluate the performance and reliability of

current diagnostic methods in laboratories worldwide, by using different samples (both nega-

tive and positive samples, including different concentrations) that provide information about

their specificity and sensitivity [58, 59]. The EQA panel used in this study, provided by

QCMD, comprises strains for the 4 DENV serotypes, as well as negative samples. The analysis

showed that our RT-LAMP assays passed all the samples included in the 2015 DENV EQA

panel, consisting of 8 core and 2 educational samples.

For evaluation with clinical material, RNA was extracted from whole blood samples collected

in Tanzania, confirmed as DENV2 positive by qRT-PCR. A bead-based extraction protocol was

improved and, in addition, instead of using 50 μL whole blood and eluting in 200 μL RNA, the

extraction commenced from 100 μL whole blood and RNA was eluted into 100 μL. Due to this

improved extraction protocol, time to positivity reduced from 81–89 min to 55–77 min.

In some cases, there were disparate results between RT-LAMP and qRT-PCR. Sample 1232,

negative by RT-LAMP, had a CT value of 28.78, and samples 1241 and 1473, with CT values of

24.27 and 29.13, showed current mean TT values of 70 and 73.9 min, respectively. These differ-

ences in results observed may not be related to the sensitivity levels of the individual assay and

we suggest that the performance of isothermal amplification reactions could be compromised

when not using fresh samples, as previously described [53].
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All 11 serum samples collected by Institut Pasteur in Dakar (2014), tested positive by

qRT-PCR and the DENV1 and DENV2 RT-LAMP assays. While 3 of the samples could not be

characterised with the qRT-PCR protocol, they were successfully amplified by the DENV1

RT-LAMP, providing evidence that determination of serotype is possible when handling sam-

ples that have not been serotyped yet.

Based on the results obtained for the fever study in Tanzania, our DENV2 RT-LAMP

scored a sensitivity of 95.8% (CI: 0.79–1.00) and specificity of 100% (CI: 0.63–1.00) in refer-

ence to the qRT-PCR used by the Swiss Tropical and Public Health Institute, indicating that all

detected as positive by the LAMP assay were truly positive and no false positives were

detected.

We used predried tubes of RNAstable for shipment of DENV4 and DENV3 RNA extracts

from Institut Pasteur du Cambodge. The efficiency of this type of shipment at ambient temper-

ature was disappointing. Surprisingly DENV3 sample RNA extracts suffered most from this

type of shipment and this could not be improved in altogether three shipment trials. The

results for DENV4 samples indicate specific detection which does not quite match the

qRT-PCR sensitivity. DENV3 samples were detectable but sensitivity could not be assessed.

The determination of clinical sensitivity, specificity, PPV and NPV allows interpretation of

diagnostic results for clinical decisions [60, 61]. The scores obtained for specificity, sensitivity,

PPV and NPV were in the range observed for previously published assays [8, 30, 33, 36–38].

The scores obtained for PPV and NPV estimate the probability that the disease is present or

absent depending of the result is positive or negative. Since the samples were collected in a

fever study, the results obtained with the RT-LAMP (PPV = 100% and NPV = 85.7%) highlight

a good performance of the method in determining true positive cases while excluding negative

cases. PPV and NPV are very dependent of the number of positive and negative samples used,

providing valuable information during naturally occurring infections in prospective trials. The

values obtained in our study may not reflect this as only thirty samples were analysed and a

larger number of both positive and negative samples would be needed to refine these results.

To conclude, we have shown a novel approach to designing LAMP primers that makes use

of fast growing sequence databases. During the study time the number of complete DENV

genome entries grew by 932 genomes deposited. To be able to cover all of the diversity docu-

mented, our approach devised 4 complicated mixes of oligonucleotides for the detection of the

individual DENV1-4 serotypes. The DENV1 and DENV2 assays were validated with viral

RNA extracted clinical samples and showed very good performance parameters. Finally the

combination of PCA analysis and molecular detection assays design should also be considered

for other molecular assay formats since the available sequence dataset of several pathogens has

increased beyond what can be handled by traditional design based on simple alignments.
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Weidmann.

Formal analysis: Benjamin Lopez-Jimena, Michaël Bekaert, Philippe Dussart, Manfred
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Resources: Michaël Bekaert, Mohammed Bakheit, Sieghard Frischmann, Pranav Patel, Etienne

Simon-Loriere, Louis Lambrechts, Philippe Dussart, Amadou Alpha Sall, Manfred

Weidmann.

Software: Benjamin Lopez-Jimena, Michaël Bekaert.
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