

A Novel Polyaminocarboxylate Compound To Treat Murine Pulmonary Aspergillosis by Interfering with Zinc Metabolism

Paris Laskaris, Rocío Vicentefranqueira, Olivier Helynck, Grégory Jouvion, José Antonio Calera, Laurence Du Merle, Franck Suzenet, Frédéric Buron, Rodolphe Alves de Sousa, Daniel Mansuy, et al.

▶ To cite this version:

Paris Laskaris, Rocío Vicentefranqueira, Olivier Helynck, Grégory Jouvion, José Antonio Calera, et al.. A Novel Polyaminocarboxylate Compound To Treat Murine Pulmonary Aspergillosis by Interfering with Zinc Metabolism. Antimicrobial Agents and Chemotherapy, 2018, 62 (6), pp.e02510-17. 10.1128/AAC.02510-17. pasteur-01968421

HAL Id: pasteur-01968421 https://pasteur.hal.science/pasteur-01968421v1

Submitted on 2 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License

AAC Accepted Manuscript Posted Online 9 April 2018 Antimicrob. Agents Chemother. doi:10.1128/AAC.02510-17 Copyright © 2018 American Society for Microbiology. All Rights Reserved.

1 A novel polyaminocarboxylate compound to treat murine pulmonary aspergillosis by

- 2 interfering with zinc metabolism
- 3 Paris Laskaris¹, Rocío Vicentefranqueira², Olivier Helynck³, Grégory Jouvion⁴, José Antonio
- 4 Calera², Laurence du Merle⁵, Franck Suzenet⁶, Frédéric Buron⁶; Rodolphe Alves de Sousa⁷,
- 5 Daniel Mansuy⁷, Jean-Marc Cavaillon¹, Jean-Paul Latgé⁸, Hélène Munier-Lehmann³,
- 6 Oumaima Ibrahim-Granet¹
- 7 1 Institut Pasteur, Cytokines & Inflammation Unit
- 8 2 Instituto de Biología Funcional y Genómica (IBFG). Departamento de Microbiología y
- 9 Genética. Universidad de Salamanca, 37007 Salamanca, Spain.
- 10 3 Institut Pasteur, Chemistry and Biocatalysis Unit; CNRS UMR3523
- 11 4 Institut Pasteur; Human Histopathology and Animal Models Unit
- 12 5 Institut Pasteur, Biology of Gram-Positive Pathogens Unit
- 13 6 Institut de Chimie Organique et Analytique ICOA UMR7311
- 14 7 Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601,
- 15 Université Paris Descartes, CNRS, 45 rue des Saints Pères, 75270 Paris Cedex 06, France
- 16 8 Institut Pasteur, Aspergillus Unit
- 17 #corresponding author: Oumaima Ibrahim-Granet
- 18 <u>ogranet@pasteur.fr</u>
- 19 Phone number 33140613245
- 20

1

Downloaded from http://aac.asm.org/ on January 15, 2019 by guest

21 ABSTRACT

22	Aspergillus fumigatus can cause pulmonary aspergillosis in immunocompromised patients
23	and is associated with a high mortality rate due to the lack of reliable treatment options. This
24	opportunistic pathogen requires zinc in order to grow and cause disease. Novel compounds
25	that interfere with fungal zinc metabolism may therefore be of therapeutic interest. We
26	screened chemical libraries containing 59223 small molecules using a resazurin assay that
27	compared their effects on an A. fumigatus wild type strain grown under zinc-limiting
28	conditions and on a zinc transporter knockout strain grown under zinc-replete conditions to
29	identify compounds affecting zinc metabolism. After a first screen 116 molecules were
30	selected whose inhibitory effect on fungal growth was further tested by using luminescence
31	assays and hyphal length measurements to confirm their activity, as well as to toxicity assays
32	on HeLa cells and mice. Six compounds were selected following a re-screening, two of which
33	were pyrazolones, two were porphyrins and two were polyaminocarboxylates. All three
34	groups showed good in vitro activity but only one of the polyaminocarboxylates was able to
35	significantly improve the survival of immunosuppressed mice suffering from pulmonary
36	aspergillosis. This two-tier screening approach led us to the identification of a novel small
37	molecule with in vivo fungicidal effects and low murine toxicity that may lead to the
38	development of new treatment options for fungal infections either by administration of this
39	compound as a monotherapy or as part of a combination therapy.

40

41 INTRODUCTION

Aspergillus fumigatus is a ubiquitous, opportunistic fungal pathogen. It can cause invasive
 aspergillosis in immunocompromised individuals and is responsible for over 200,000 life-

AAC

Downloaded from http://aac.asm.org/ on January 15, 2019 by guest

44	threatening infections per year (9). The preferred drug for treating this infection is
45	voriconazole, which inhibits ergosterol synthesis, though amphotericin B, which binds to
46	ergosterol, and echinocandins, which inhibit glucan synthesis, are alternatives (11).
47	However, all these treatment options have limitations. Azole resistance is emerging across
48	the world which would negatively impact voriconazole-based treatments, amphotericin B is
49	associated with significant toxicity, and echinocandins are only able to arrest growth of the
50	pathogen (4). Novel treatment options are thus urgently needed in order to combat invasive
51	aspergillosis.
52	Zinc is the second most abundant transition metal after iron in humans and is essential for
53	all organisms as it is required for enzymes of all functional classes (16). Free zinc is tightly
54	regulated within the human body and is only found at a concentration of 10 picomoles in
55	order to prevent pathogens from acquiring it (45), a process termed nutritional immunity
56	(22). In addition, infiltrated neutrophils in fungal abscesses release high amounts of
57	calprotectin, a peptide heterodimeric protein that binds zinc and manganese with an
58	extremely high affinity and limits their availability to pathogens (16). In order to obtain zinc,
59	A. fumigatus utilizes three plasma membrane zinc transporters encoded by the zrfA, zrfB,
60	and zrfC genes (3), which are regulated by the ZafA transcriptional activator (32). Loss of zrfC
61	results in a partial loss of virulence, whereas the deletion of three genes results in a
62	complete loss of virulence, which shows that they all function together to obtain zinc from
63	the host (3).
64	Calprotectin, which has a zinc chelating activity, has been used to inhibit the growth of A.
65	fumigatus in the corneas of immunocompetent mice (14). In addition, our group has used
66	the zinc chelators N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) and

67	phenanthroline to successfully treat invasive pulmonary aspergillosis in mouse models (26).
68	These findings support the suggestion that a reduction in the availability of zinc could have
69	clinical applications for the treatment of aspergillosis (42). Following these promising
70	findings, we carried out the screening of small molecule libraries in order to find additional
71	compounds that targeted the A. fumigatus zinc metabolism. We first performed a resazurin
72	assay as it is recommended for A. fumigatus screens (40), and has been successfully used to
73	test the effects of antifungal drugs on A. fumigatus strains (15, 46), as well as to screen
74	chemical libraries for novel antifungals (31, 38). This was followed by more exhaustive in
75	vitro experiments utilizing luciferase and hyphal length measurements and then by in vivo
76	tests on mouse models (26).

77

78 RESULTS

79	Screen and subsequent assays revealed six compounds of interest. The primary resazurin
80	screen comprised 59,223 compounds from commercial libraries (Chem-X-Infinity and
81	Prestwick) and from the French academic library "Chimiothèque Nationale" (21). At an
82	average concentration of 7.0±3.5 μM , only 116 compounds were found to inhibit the growth
83	of <i>A. fumigatus</i> wild type (AF14 ^{LUC}) with no added zinc, but permit the growth of the <i>A</i> .
84	fumigatus triple zinc transporter knockout (AF721 ^{LUC}) with 100 μM of added zinc. 91% of
85	these compounds were validated using resazurin gradient concentration assays. These were
86	followed up by luciferin gradient assays, where 15 compounds demonstrated at least a
87	twofold difference in MIC_{50} between the wild type and triple knockout. Out of 15
88	compounds, 8 compounds were effective using hyphal length measurements. However, one
89	compound was rejected due to high cytotoxicity on HeLa cells, another due to high toxicity

4

Antimicrobial Agents and

Chemotherapy

90

91

compounds belonged to three different chemical series: two pyrazolones, two porphyrins 92 and two polyaminocarboxylates. 93 Pyrazolone family. These were Pyr05 and Pyr11 (Table 1, Fig. S2). Addition of zinc fully 94 restored growth of *A. fumigatus* in the presence both these compounds (Fig. S3, S4). Copper 95 96 was also able to fully restore growth in the presence of both compounds, while iron and 97 manganese were able to partially restore growth in the presence of Pyr05 (Fig. S3). This indicated that the compounds affected both copper and zinc metabolism. A little growth was 98 99 observed upon incubating conidia for 8 h in medium containing either of the two compounds followed by a 7 h incubation in medium without the compounds, while 100 101 incubating conidia for 8 h in medium free of the compounds followed by 7 h in medium 102 containing the compounds resulted in almost complete inhibition (Fig. S5). This suggested 103 that the two pyrazolones were acting at the early germination stage. 104 Porphyrin family. These were Por06 and Por07 (Table 1, Fig S2). Addition of zinc restored 105 growth in all but the highest tested concentrations for both compounds (Fig. S6, S7), while 106 copper and manganese were able to partially restore growth for both (Fig. S6). Incubating 107 conidia for 8 h in medium containing either of the two compounds followed by 7 h 108 incubation in medium without the compounds or incubating conidia for 8 h in medium free 109 of the compounds followed by 7 h in medium containing the compounds resulted in high 110 levels of A. fumigatus inhibition (Fig. S8). This suggested that both compounds had a fast 111 fungicidal effect. In vitro combination tests of PorO6 resulted in indifferent results with all 3 112 antifungal drugs (Table 2). In addition, the administration of Por06 to infected mice resulted

on mice and a third was omitted due to the very limited availability. This left 6 compounds

that were not toxic to HeLa cells (Fig. S1) and that were used in further experiments. These

in no significant difference in survival compared to the control group. Thus, 5 out of 10 mice
receiving 7.5 mg/kg/day (p = 0.4459) and 6 out of 10 mice receiving 11.25 mg/kg/day (p =
0.4004) of PorO6 survived compared to 12 out of 30 for the control group (Fig. S9). There
was also no significant difference in luminescence between the groups (Fig. S9) and all three
groups appeared similar (Fig. S10). Use of higher concentrations of PorO6 to treat infected
mice was not attempted, as 15 mg/kg/day resulted in 50% mortality when administered to
uninfected mice.

120 Polyaminocarboxylate family. These were Ami03 and Ami04 (7) (Table 1, Fig S2). Addition of 121 zinc fully restored growth in the presence both these compounds, while manganese was 122 able to partially restore growth in the presence of Ami04 (Fig. 1, 2). The incubation of conidia for 8 h in medium containing the compounds followed by a 7 h incubation in medium 123 124 without the compounds resulted in reduced growth inhibition of A. fumigatus conidia compared to having the compounds present throughout the incubation (Fig. 3). A reduction 125 126 on inhibition was also observed when conidia were incubated for 8 h in the absence of the 127 compounds followed by 7 h in their presence (Fig 3). This suggested that these compounds were relatively slow-acting and had a fungistatic effect on fungal growth. In vitro 128 combination tests of Ami04 gave indifferent results with all 3 antifungal drugs (Table 2). 129 130 Furthermore, in vivo experiments showed that a dose of 7.5 mg/kg/day of the 131 polyaminocarboxylate compound Ami04 did not result in a significant difference, as only 5 132 out of 9 mice survived (p = 0.4264) and there was no significant difference in luminescence 133 between the control group and the treated groups (Fig. 4, 5). In contrast, a dose of Ami04 of 134 15 mg/kg/day was able to improve significantly the survival of immunosuppressed mice 135 suffering from pulmonary aspergillosis (p = 0.0024), since 10 out of 10 infected mice recovered compared to 12 out of 30 for the control group (Fig. 4). Though not statistically 136

137

138	respectively in the group receiving 15 mg/kg/day of Ami04 compared to the control.
139	Lung sections from control mice displayed typical invasive aspergillosis lesions with small
140	necrotic foci (Fig 6A), destruction of bronchiole epithelium (Fig 6BC), blood vessel invasion
141	by the fungus (Fig 7DE), and multifocal abscesses containing hyphae (Fig 6F). In contrast,
142	most treated mice displayed minimal to mild inflammatory lesions (Fig 6G), characterized by
143	perivascular lymphocyte and plasma cell infiltrates (Fig 6H) with no fungi invading the
144	parenchyma (Fig 6I). A few mice displayed randomly distributed inflammatory (with
145	neutrophils) or necrotic lesions (Fig 6JK), with few intralesional fungi (Fig 6L).
146	In summary, these results indicated that one polyaminocarboxylate compound (Ami04)
147	significantly improved the survival of mice suffering invasive pulmonary aspergillosis.
148	
140	
140	DISCUSSION
149 150	DISCUSSION Zinc chelators have been shown to inhibit <i>A. fumigatus</i> growth (26). The 6 compounds
149 150 151	DISCUSSION Zinc chelators have been shown to inhibit <i>A. fumigatus</i> growth (26). The 6 compounds identified by our protocol fell into 3 chemical families and each family included two analogs.
149 150 151 152	DISCUSSION Zinc chelators have been shown to inhibit <i>A. fumigatus</i> growth (26). The 6 compounds identified by our protocol fell into 3 chemical families and each family included two analogs. This supports the reliability of our approach, since it is very unlikely that structurally similar
149 150 151 152 153	DISCUSSION Zinc chelators have been shown to inhibit <i>A. fumigatus</i> growth (26). The 6 compounds identified by our protocol fell into 3 chemical families and each family included two analogs. This supports the reliability of our approach, since it is very unlikely that structurally similar compounds would get selected by chance. Pyrazolones, porphyrins and
149 150 151 152 153 154	DISCUSSION Zinc chelators have been shown to inhibit <i>A. fumigatus</i> growth (26). The 6 compounds identified by our protocol fell into 3 chemical families and each family included two analogs. This supports the reliability of our approach, since it is very unlikely that structurally similar compounds would get selected by chance. Pyrazolones, porphyrins and polyaminocarboxylates are all known to be metal ion chelators and include zinc chelators.
149 150 151 152 153 154 155	DISCUSSION Zinc chelators have been shown to inhibit <i>A. fumigatus</i> growth (26). The 6 compounds identified by our protocol fell into 3 chemical families and each family included two analogs. This supports the reliability of our approach, since it is very unlikely that structurally similar compounds would get selected by chance. Pyrazolones, porphyrins and polyaminocarboxylates are all known to be metal ion chelators and include zinc chelators.
149 150 151 152 153 154 155 156	DISCUSSION Zinc chelators have been shown to inhibit <i>A. fumigatus</i> growth (26). The 6 compounds identified by our protocol fell into 3 chemical families and each family included two analogs. This supports the reliability of our approach, since it is very unlikely that structurally similar compounds would get selected by chance. Pyrazolones, porphyrins and polyaminocarboxylates are all known to be metal ion chelators and include zinc chelators. Pyrazonoles have previously demonstrated antifungal activity against <i>Aspergillus in vitro</i> (25, 35) and there are pyrazolones which are known to bind to zinc to form complexes (28, 41).
149 150 151 152 153 154 155 156 157	DISCUSSION Zinc chelators have been shown to inhibit <i>A. fumigatus</i> growth (26). The 6 compounds identified by our protocol fell into 3 chemical families and each family included two analogs. This supports the reliability of our approach, since it is very unlikely that structurally similar compounds would get selected by chance. Pyrazolones, porphyrins and polyaminocarboxylates are all known to be metal ion chelators and include zinc chelators. Pyrazonoles have previously demonstrated antifungal activity against <i>Aspergillus in vitro</i> (25, 35) and there are pyrazolones which are known to bind to zinc to form complexes (28, 41). The two pyrazolones we identified proved effective <i>in vitro</i> , however they were structurally
149 150 151 152 153 154 155 156 157 158	DISCUSSION Zinc chelators have been shown to inhibit <i>A. fumigatus</i> growth (26). The 6 compounds identified by our protocol fell into 3 chemical families and each family included two analogs. This supports the reliability of our approach, since it is very unlikely that structurally similar compounds would get selected by chance. Pyrazolones, porphyrins and polyaminocarboxylates are all known to be metal ion chelators and include zinc chelators. Pyrazonoles have previously demonstrated antifungal activity against <i>Aspergillus in vitro</i> (25, 35) and there are pyrazolones which are known to bind to zinc to form complexes (28, 41). The two pyrazolones we identified proved effective <i>in vitro</i> , however they were structurally similar to pyrazolones found to be metabolically unstable when tested in rat liver

significant; there was a 46% and a 52% reduction in luminescence on day 3 and day 5

microsomes (12), which led us to focus on the other compounds we identified in our *in vivo*assays.

Certain porphyrins show strong selectivity towards zinc (27) and have been used as metal 161 162 chelators (20, 44). The porphyrin PorO6 (6) proved effective against fungi in vitro. PorO6 had relatively low cytotoxicity against HeLa cells; however 15 mg/kg/day proved toxic when 163 administered to mice. The lower concentrations of 7.5 and 11.25 mg/kg/day did not improve 164 165 survival rates of infected mice compared to the ones receiving a placebo. Por06 fulfills only 166 two of Lipinski's rules for determining if a compound is drug-like (29)} as it has few hydrogen 167 bond donors and acceptors, but has a high molecular weight and logP value. The low 168 solubility in water and the high molecular weight may therefore make it difficult for PorO6 to reach the lungs from the peritoneal cavity. Another possible explanation for its lack of effect 169 170 may be that it is rapidly degraded or cleared within the host body. The porphyrins identified 171 by this study are therefore effective in vitro, however the one we tested in vivo was not able 172 to inhibit fungal growth when administered at concentrations that are not toxic to mice. 173 However it is possible that this porphyrin would be effective at that concentration if used in combination with other antifungal drugs. 174 175 Polyaminocarboxylates are commonly used in biological studies as metal chelators (10). One 176 such compound is ethylenediaminetetraacetic acid (EDTA) (34), which binds strongly to 177 calcium, zinc and magnesium and is able to inhibit metalloenzymes by rapidly capturing 178 metal ions that spontaneously dissociate from them (5, 7). Polyaminocarboxylates have attracted interest as potential antimicrobial (17) or antitumor drugs (13, 23) due to their 179 180 chelating activity. EDTA has proven effective in vitro as an antifungal agent either alone (39) or in combination with other compounds (1, 36, 37). EDTA has low toxicity since mice can 181

Downloaded from http://aac.asm.org/ on January 15, 2019 by guest

tolerate doses of 75 mg/kg/day (33) and it was able to reduce the mortality of rats suffering 182 from pulmonary aspergillosis either administered alone or in combination with amphotericin 183 184 B (19).

185	The polyaminocarboxylate Ami04 was able to significantly improve mouse survival in our
186	model of invasive pulmonary aspergillosis at a dose of 15 mg/kg/day as evidenced by the
187	survival curve and the lung sections. This molecule proved more effective than EDTA, as
188	EDTA required a dose of 30 mg/kg/day to improve survival in an invasive aspergillosis rat
189	model (19). In addition, our molecule had greater specificity towards zinc compared to EDTA,
190	as it does not bind to magnesium. Moreover, the Ami04 compound did not show any toxicity
191	towards HeLa cells or mice in the concentrations tested: Ami04 is less toxic than chelators
192	that previously proved effective on infected mice such as TPEN or phenanthroline, (26).
193	Ami04 fulfills all but one of Lipinski's rules for determining if a compound is drug-like (29) as
194	it has a low molecular weight, few hydrogen bond donors and a low logP value.
195	The probable mode of action of this polyaminocarboxylate is to sequester free zinc outside
196	the fungal cells and thus prevent them from acquiring the ions. It seems unlikely that it is
197	able to enter the fungal cells, since other polyaminocarboxylates such as EDTA or DTTA are
198	unable to cross cell membranes (24). This would explain why Ami03 and Ami04 primarily
199	displayed a fungistatic effect. An inability to enter cells might also be the cause of the lower
200	toxicity of polyaminocarboxylates compared to TPEN and phenanthroline in mammalian
201	cells, so this could be advantageous as it results in reduced host toxicity. When tested in
202	combination with established antifungal drugs in vitro Ami04, like Por06, had an indifferent
203	effect, presumably because the mode of action of this compound is different from that of
204	caspofungin, voriconazole and amphotericin B. However, since there is no negative

205

206	could be used in combination to produce an additive effect and to achieve higher survival
207	rates in vivo.
208	In conclusion, our strategy aimed at selecting compounds that specifically interfere with zinc
209	metabolism was able to identify one compound that was effective in vivo. This
210	polyaminocarboxylate did not show toxicity towards cell cultures or mice at the tested
211	concentrations. Further investigation of this compound could potentially lead to the
212	development of novel antifungal treatment options either as a monotherapy or in
213	combination with existing drugs.
214	
215	MATERIALS AND METHODS
216	Construction of strain used in this study. The strains of Aspergillus fumigatus used in this
217	study were AF14 ^{LUC} (wt [PgdpA \rightarrow luc ^{cds}]) and AF721 ^{LUC} ($\Delta zrfA \Delta zrfB \Delta zrfC$ [PgdpA \rightarrow luc ^{cds}]).
218	Unlike their relative strains AF14 (wt) (43), and AF721 ($\Delta zrfA\Delta zrfB\Delta zrfC$) (3), the AF14 ^{LUC} and
219	AF721 ^{LUC} strains were able to express constitutively at a high level a codon-optimized version
220	of the firefly luciferase (<i>luc</i>) under control of the glyceraldehyde-3-phosphate
221	dehydrogenase promoter (PgdpA) from A. fumigatus.
222	To construct the AF14 ^{LUC} and AF721 ^{LUC} bioluminescent strains we transformed both the
223	CEA17 and AF2511 uridine-uracil-auxotrophic pyrG1 strains (2) with a EcoRI-SphI 4777-bp
224	DNA fragment excised from plasmid pLUC-pyrG-D (Fig. S11), which was generated by ligating
225	a Xbal-Xbal DNA fragment (2619 bp) obtained from plasmid PgpdAAf:LucOPTAf_ptrA (kindly
226	provided by Dr. Matthias Brock) (18) into the only Xbal site of pPYRGQ3 plasmid (2). Since
227	the pPYRGQ3 plasmid had been designed previously to target specifically the introduction of
	10

interaction between the drugs and our polyaminocarboxylate, it seems probable that they

AAC

228

229	any auxotrophic A. fumigatus strain (2), both strains harbored the [PgdpA \rightarrow luc]
230	construction inserted into the same locus, which allowed to compare the luminescence
231	produced by these strains and, hence, to measure very accurately the fungal growth
232	capacities of these strains.
233	Preparation of conidial suspensions. Conidia were harvested from the AF14 ^{LUC} and AF721 ^{LUC}
234	strains. Cultures were grown for 7 days on 2% malt agar slants and recovered by vortexing
235	with 0.01% aqueous Tween 20 (VWR International) solution. Homogenous conidial
236	suspensions were collected following filtration through a 40 μ m pore size filter (Falcon) (26).
237	Chemical library screening. The medium for our resazurin assay consisted of 70% v/v RPMI
238	1640 (1X) without phenol red (Thermo Fisher Scientific), 30% v/v sterile water, 0.07% v/v
239	TWEEN 20 (VWR International), 0.00002% w/v resazurin sodium salt, 10 μM FeSO4 (Merck
240	Millipore), 2 μ M CuSO ₄ (Merck Millipore), 2 μ M MnSO ₄ (Merck Millipore). This medium was
241	inoculated with either $8x10^4$ conidia/ml of AF14 with no additional ZnSO ₄ or with $8x10^4$
242	conidia/ml of AF721 with an additional 100 μM of ZnSO4 (Merck Millipore). This ZnSO4
243	concentration was sufficiently high to allow the zinc necessary for normal growth to diffuse
244	through the cell membrane without the need for transporters. The salt solutions were made
245	using sterile water. Using a Tecan Freedom EVO 200 platform, 130 μL of these mixtures were
246	added to 96-well plates (F-bottom, clear, bar-coded tissue-culture plates; Greiner Bio-One):
247	each well was previously spiked with 1 μl of compound in DMSO except columns 1 and 12
248	dedicated to controls. Amphotericin B dissolved in DMSO was used as negative controls to
249	kill all cells, while DMSO was used as positive controls to define 100% growth. The plates
250	were incubated for 38 to 40 h in a 5% CO_2 incubator at 37° C. Then a dual-wavelength

any foreign DNA fragment between the AFUA_2G08360 (pyrG) and AFUA_2G08350 loci of

11

AAC

251

252	604 nm) using a Tecan Infinite M1000 Pro microplate reader (15). For each plate, the Z'-
253	factor (47) was calculated based on positive and negative controls and all values were above
254	the threshold considered as an excellent assay (average Z'-factor: 0.793 \pm 0.120 for AF14 and
255	0.929 \pm 0.029 for AF721). The data were normalized as percentage of viability relative to
256	positive and negative controls using the following formula: % viability = 100 x (sample value
257	 average value of negative controls)/(average value of positive controls – average value of
258	negative controls). Compounds that caused less than 70% viability of AF14 with no additional
259	zinc but more than 95% viability of AF721 in the presence of zinc were considered as hits and
260	selected for further experiments.
261	Resazurin dilution series assay. The medium and strains ($8x10^4$ conidia/ml) in these assays
262	were the same as those used in the library screen, except that this assay used 130 μl of
263	medium per well(15). The compound concentrations used in the dilution series were 100,
264	50, 25, 12.5, 6.25, 3.1, 1.6, 0.8, 0.4 and 0.2 μM of compound in addition to positive controls
265	containing 1 μl DMSO and negative controls containing 1 μl of DMSO with 2 μg amphotericin
266	B. The plates were incubated in a 5% $\rm CO_2$ incubator at 37° C for 42 h for the resazurin assay.
267	Each concentration was tested in duplicate, as were the plates, resulting in four total
268	replicates. Measurements on the resazurin plates were performed as previously described.
269	Luciferin dilution series assays. The medium and strains (8x10 ⁴ conidia/ml) in these assays
270	were the same as those used in the library screen, except that this assay used 65 μ l of
271	medium with no resazurin (26). The compound concentrations used in the dilution series
272	were 100, 50, 25, 12.5, 6.25, 3.1, 1.6, 0.8, 0.4 and 0.2 μM of compound in addition to
273	positive controls containing 1 μl DMSO and negative controls containing 1 μl of DMSO with 2

measurement was performed (measurement wavelength 570 nm and reference wavelength

274	μg amphotericin B. The plates were incubated in a 5% CO $_2$ incubator at 37° C for 15 h. Each
275	concentration was tested in duplicate, as were the plates, resulting in four total replicates.
276	Plates had 5 μ l phosphate-buffered saline (PBS) containing 4.3 μ g of D-luciferin added to
277	each well and plates were incubated for 10 min prior to luminescence acquisition on an IVIS
278	100 system (PerkinElmer, Boston, MA). Bioluminescence images were analyzed and the light
279	emission (total photons flux per second) from a region of interest (ROI) quantified with
280	Living Image software (version 3.1; PerkinElmer) (26). The percent growth at each
281	concentration was calculated using the (Sample well/Positive control average) x100
282	equation.
283	Hyphal measurement and luciferin assay. To get more precise results, compounds
284	demonstrating an effect in luciferin dilution series assays were tested on AF14 and AF721 as
285	in the luciferase dilution series assay except that this assay used 24-well plates with 500 μl of
286	medium per well seeded with 5 x 10^4 conidia. Plates were incubated for 10 h at 37°C, at
287	which point photographs were taken using an EVOS Core microscope (Thermo Fisher
288	Scientific, Waltham, MA) at a magnification of x 20. The ImageJ software was used to
289	measure the lengths of 100 hyphae for each sample, using the freehand line tool to trace the
290	hyphae from the conidium to the tip of the longest hypha (26).
291	The plates were then incubated for an additional 5 h at 37°C, and luminescence
292	measurements were taken as described in the previous section except that each well
293	received 5 μ l phosphate-buffered saline (PBS) containing 0.16 mg of D-luciferin. Experiments
294	were repeated twice for each concentration, and cultures were made in triplicate (18). MIC_{95}
295	(Minimum Inhibitory Concentration) was defined as the lowest concentration of a
296	compound tested sufficient to cause at least 95% reduction in A. fumigatus bioluminescence

compared to the positive control that received no treatment, while MIC₅₀ was the minimum
 concentration tested able to cause at least 50% reduction.

The assays for measuring the effects of other ions on the compounds were identical with the zinc assay, with the exception that the 100 μ M of ZnSO₄ was replaced with 100 μ M of CuSO₄, FeSO₄, MgSO₄ or MnSO₄.

302 Fungal growth phase luciferin assay: The effects of a short early conidial exposure to the 303 compounds was determined by adding the compounds at the start of the incubation and 304 removing them after 8 h by centrifuging the plate to pellet the conidia and washing the 305 plates twice before adding fresh medium and continuing the incubation for 7 h followed by 306 luminescence measurements. The effects of the compounds at later conidial growth stages 307 were examined by adding the compounds after an 8 h incubation, at which point the conidia 308 start to germinate, and then continuing the incubation for 7 h followed by luminescence measurements (26). 309

310 In vitro combination treatment assay. This procedure used the same medium and 311 incubation conditions as the luciferase assay. It was performed on the Por06, Por07, Ami03 312 and Ami04 compounds. The interactions between established antifungal drugs and library 313 compounds were measured using the fractional inhibitory concentration index (FICI) via a 314 checkerboard method (48). Caspofungin, amphotericin B and voriconazole were selected 315 because they are representatives of different classes of established antifungal drugs and their mode of action does not involve zinc metabolism. The dilution series for the selected 316 317 molecules was 24, 18, 12, 6, 2.4 and 0 μ M, while that for the antifungal drugs was 0.1, 0.75, 318 0.50, 0.25, 0.1 and 0 μ g/ml. A 50% inhibition was employed as an endpoint for assays 319 involving caspofungin, as it is cytostatic rather than cytotoxic and cannot achieve high levels Downloaded from http://aac.asm.org/ on January 15, 2019 by guest

Antimicrobial Agents and

Chemotherapy

320 of inhibition (30), and a 90% inhibition for assays involving amphotericin B and voriconazole. 321 The FICI was defined as (Ac/Aa) + (Bc/Ba), where Ac and Bc are the endpoint values of the 322 library compound and antifungal drug in combination, Aa is the endpoint value of the library 323 compound alone, and Ba is the endpoint value of the antifungal alone. Interactions were 324 classified as synergistic (FICI of \leq 0.5), indifferent (FICI of > 0.5 but \leq 4), or antagonistic (FICI of 325 >4) (26).

326 HeLa cell cytotoxicity assay. Analysis of toxicity to human cells was performed as previously 327 described (38) using the Cytotoxicity Detection Kit (LDH) (Roche) according to manufacturer's 328 instructions. This assay measures the activity of lactate dehydrogenase in a culture's 329 supernatant to estimate percent cytotoxicity. It was performed on the compounds selected by the luciferin dilution series assay. Briefly, 100 μ l of a 5x10⁵ cells/ml suspension in PAA 330 331 Quantum 286 Complete Epithelial Medium (Brunschwig Chemicals) with L-glutamine, 332 penicillin and streptomycin but no serum was placed in the wells of a 96 well plate and left 333 to grow overnight at 37°C with 10% CO₂. The supernatant was replaced with 200 μ l of fresh 334 medium containing 10 μ M or 100 μ M of library compound in the sample wells, 1% TritonX-335 100 in the positive control wells, nothing in the negative control wells, while the background 336 control consisted solely of 200 µl of medium. All samples and controls were in triplicate. The cells were left to grow for 24 h at 37°C with 5% CO₂. 100 μ l of culture supernatant from each 337 338 well was transferred to a new 96 well plate to which 100 μ l of reaction mixture containing 339 the dye iodonitrotetrazolium was added and the plate was incubated for 0.5 h. Absorbance 340 was measured at 492 nm and 604 nm using a Dynex ELISA Processor (Magellan Biosciences) 341 and the percent cytotoxicity was calculated using the equation 100x (mean of sample 342 triplicates – negative control)/(positive control – negative control).

AAC

343	Murine toxicity assays and infection. In this procedure we used our model of invasive
344	pulmonary aspergillosis (26) with male BALB/CJ mice (23 to 28 g, 8 weeks old) supplied by
345	the R. Janvier breeding center (Le Genest Saint-Isle, France). Mice were cared for in
346	accordance with Institut Pasteur guidelines, in compliance with European animal welfare
347	regulation. This study was approved by the ethical committee for animal experimentation
348	(Comité d'Éthique en Experimentation Animale [CETEA], project license number 2013-0020).
349	At 4 days and 1 day before the start of a toxicity assay or of infection, each mouse received
350	an immunosuppressive regimen by intraperitoneal (i.p.) injection of 200 μ l
351	cyclophosphamide (4 mg/ml). The mice remained immunosuppressed for around 7 days,
352	which was sufficient for them to succumb to infection if left untreated. Mice used for toxicity
353	assays received 100 μl i.p. injections of 20% DMSO in saline solution containing the
254	
354	compounds on a daily basis for 10 days.
354 355	Compounds on a daily basis for 10 days. Mice to be infected were inoculated intranasally with a dose of 7.5×10^4 conidia in 25 µl of
354 355 356	compounds on a daily basis for 10 days. Mice to be infected were inoculated intranasally with a dose of 7.5x10 ⁴ conidia in 25 μl of PBS containing 0.01% Tween. Following infection, the compounds or placebo were
354 355 356 357	compounds on a daily basis for 10 days. Mice to be infected were inoculated intranasally with a dose of 7.5×10^4 conidia in 25 µl of PBS containing 0.01% Tween. Following infection, the compounds or placebo were administered by i.p. injection at the indicated concentrations in a final volume of 100 µl. The
355 355 356 357 358	compounds on a daily basis for 10 days. Mice to be infected were inoculated intranasally with a dose of 7.5×10^4 conidia in 25 µl of PBS containing 0.01% Tween. Following infection, the compounds or placebo were administered by i.p. injection at the indicated concentrations in a final volume of 100 µl. The placebo consisted of 20% DMSO in saline solution. Bioluminescence imaging was started 24
354 355 356 357 358 359	compounds on a daily basis for 10 days. Mice to be infected were inoculated intranasally with a dose of 7.5×10^4 conidia in 25 µl of PBS containing 0.01% Tween. Following infection, the compounds or placebo were administered by i.p. injection at the indicated concentrations in a final volume of 100 µl. The placebo consisted of 20% DMSO in saline solution. Bioluminescence imaging was started 24 h after infection and was continued every other day. Images were acquired using an IVIS 100
354 355 356 357 358 359 360	compounds on a daily basis for 10 days. Mice to be infected were inoculated intranasally with a dose of 7.5x10 ⁴ conidia in 25 μl of PBS containing 0.01% Tween. Following infection, the compounds or placebo were administered by i.p. injection at the indicated concentrations in a final volume of 100 μl. The placebo consisted of 20% DMSO in saline solution. Bioluminescence imaging was started 24 h after infection and was continued every other day. Images were acquired using an IVIS 100 system as previously described (8). Experiments extended 14 days post-infection, including
 354 355 356 357 358 359 360 361 	compounds on a daily basis for 10 days. Mice to be infected were inoculated intranasally with a dose of 7.5x10 ⁴ conidia in 25 μl of PBS containing 0.01% Tween. Following infection, the compounds or placebo were administered by i.p. injection at the indicated concentrations in a final volume of 100 μl. The placebo consisted of 20% DMSO in saline solution. Bioluminescence imaging was started 24 h after infection and was continued every other day. Images were acquired using an IVIS 100 system as previously described (8). Experiments extended 14 days post-infection, including 10 days of daily treatment. Infected mouse experiments were only performed on the Por06
354 355 356 357 358 359 360 361 362	compounds on a daily basis for 10 days. Mice to be infected were inoculated intranasally with a dose of 7.5x10 ⁴ conidia in 25 μl of PBS containing 0.01% Tween. Following infection, the compounds or placebo were administered by i.p. injection at the indicated concentrations in a final volume of 100 μl. The placebo consisted of 20% DMSO in saline solution. Bioluminescence imaging was started 24 h after infection and was continued every other day. Images were acquired using an IVIS 100 system as previously described (8). Experiments extended 14 days post-infection, including 10 days of daily treatment. Infected mouse experiments were only performed on the Por06 and the Ami04 small molecules, as they each represented one of the two most promising
354 355 356 357 358 359 360 361 362 363	compounds on a daily basis for 10 days. Mice to be infected were inoculated intranasally with a dose of 7.5x10 ⁴ conidia in 25 μl of PBS containing 0.01% Tween. Following infection, the compounds or placebo were administered by i.p. injection at the indicated concentrations in a final volume of 100 μl. The placebo consisted of 20% DMSO in saline solution. Bioluminescence imaging was started 24 h after infection and was continued every other day. Images were acquired using an IVIS 100 system as previously described (8). Experiments extended 14 days post-infection, including 10 days of daily treatment. Infected mouse experiments were only performed on the Por06 and the Ami04 small molecules, as they each represented one of the two most promising chemical families we identified and because they were the compounds of which we had

Antimicrobial Agents and

Chemotherapy

365 Histological analysis of Lung sections. Mice were euthanized at day 3 post-inoculation. 366 Lungs were immediately fixed in 4% neutral-buffered formalin and embedded in paraffin. 5 µm sections were cut and stained with Grocott's methenamine silver staining (GMS) for 367 detection of fungi (18). 368

Statistical analyses. For the in vitro tests, the luminescence values of the different cultures 369 in the presence of chelators and/or metal ions were compared to those of the control 370 371 cultures using unpaired Student t tests with Welch's correction. Levels of significance for 372 hyphal lengths were calculated using the Mann-Whitney test. For the *in vivo* tests, survival 373 rates were performed by creating Kaplan-Meier plots and then performing log rank tests. 374 Comparisons of luminescence between different mouse groups were done using an unpaired Student t test with Welch's correction. All results are expressed as means ± standard errors 375 376 of the mean (SEM), and comparisons for survival studies were considered significant if the P 377 value was <0.05. All tests were performed using GraphPad Prism 7 software. All the MIC₅₀ 378 and MIC₉₅ values reported were statistically significant, and the P values indicate the level of 379 significance compared to the positive controls (26).

380

ACKNOWLEDGMENTS 381

382 OIG, HML, JPL were supported by PTR468 funding program. PL received funding from PTR468 and CARNOT MS for a postdoctoral fellowship. JAC was supported by the Spanish 383 Ministry of Economy and Competitiveness through grant SAF2013-48382-R.The authors are 384 385 thankful to Yves Janin for the synthesis of the pyrazolones Pyr05 and Pyr11; Constance 386 Bochot and Pierrette Battioni of UMR8601 for the supply of Por06 and Por07 compounds 387 and the National Library of National Chemistry for providing access to the complete

- 388 database for screening. The authors are thankful to Hervé Waxin from the Institut Pasteur
- 389 Education Department and Marie-Anne Nicolas from the Institut Pasteur Photonic
- 390 BioImaging (UTechS PBI) for their assistance in live imaging.
- 391

392 BIBLIOGRAPHY

- Al-Bakri, A. G., G. Othman, and Y. Bustanji. 2009. The assessment of the antibacterial and antifungal activities of aspirin, EDTA and aspirin-EDTA combination and their effectiveness as antibiofilm agents. J Appl Microbiol 107:280-6.
- Amich, J., R. Vicentefranqueira, F. Leal, and J. A. Calera. 2009. Aspergillus fumigatus survival in alkaline and extreme zinc-limiting environments relies on the induction of a zinc homeostasis system encoded by the zrfC and aspf2 genes. Eukaryot Cell 9:424-37.
- Amich, J., R. Vicentefranqueira, E. Mellado, A. Ruiz-Carmuega, F. Leal, and J. A. Calera.
 2014. The ZrfC alkaline zinc transporter is required for Aspergillus fumigatus virulence and its growth in the presence of the Zn/Mn-chelating protein calprotectin. Cell Microbiol 16:548-64.
- Arendrup, M. C., R. H. Jensen, and M. Cuenca-Estrella. 2015. In Vitro Activity of ASP2397
 against Aspergillus Isolates with or without Acquired Azole Resistance Mechanisms.
 Antimicrob Agents Chemother 60:532-6.
- 406 5. Auld, D. S. 1995. Removal and replacement of metal ions in metallopeptidases. Methods
 407 Enzymol 248:228-42.
- Bochot, C., J. F. Bartoli, Y. Frapart, P. M. Dansette, D. Mansuy, and P. Battioni. 2007.
 Synthesis and spectroscopic, electrochemical, and catalytic properties of a new manganese porphyrin bearing four positive charges close to the metal. Journal of Molecular Catalysis a-Chemical 263:200-205.
- Bonnet, C. S., S. Laine, F. Buron, G. Tircso, A. Pallier, L. Helm, F. Suzenet, and E. Toth. 2015.
 A Pyridine-Based Ligand with Two Hydrazine Functions for Lanthanide Chelation: Remarkable
 Kinetic Inertness for a Linear, Bishydrated Complex. Inorganic Chemistry 54:5991-6003.
- Brock, M., G. Jouvion, S. Droin-Bergere, O. Dussurget, M. A. Nicola, and O. Ibrahim-Granet.
 2008. Bioluminescent Aspergillus fumigatus, a new tool for drug efficiency testing and in vivo
 monitoring of invasive aspergillosis. Appl Environ Microbiol 74:7023-35.
- Brown, G. D., D. W. Denning, N. A. Gow, S. M. Levitz, M. G. Netea, and T. C. White. 2012.
 Hidden killers: human fungal infections. Sci Transl Med 4:165rv13.
- 420 10. Cabelli, D. E., and B. H. J. Bielski. 1990. Use of Polyaminocarboxylates as Metal Chelators.
 421 Methods in Enzymology 186:116-120.
- 422 11. Cadena, J., G. R. Thompson, 3rd, and T. F. Patterson. 2016. Invasive Aspergillosis: Current
 423 Strategies for Diagnosis and Management. Infect Dis Clin North Am 30:125-42.
- Cadieux, J. A., Z. H. Zhang, M. Mattice, A. Brownlie-Cutts, J. M. Fu, L. G. Ratkay, R. Kwan, J.
 Thompson, J. Sanghara, J. Zhong, and Y. P. Goldberg. 2012. Synthesis and biological
 evaluation of substituted pyrazoles as blockers of divalent metal transporter 1 (DMT1).
 Bioorganic & Medicinal Chemistry Letters 22:90-95.
- 428 13. Chon, H. S., X. Ma, H. Lee, P. Bui, H. A. Song, and N. Birch. 2008. Synthesis and evaluation of 429 novel polyaminocarboxylate-based antitumor agents. Journal of Medicinal Chemistry 430 51:2208-2215.

431 432 433 434	14.	Clark, H. L., A. Jhingran, Y. Sun, C. Vareechon, S. de Jesus Carrion, E. P. Skaar, W. J. Chazin, J. A. Calera, T. M. Hohl, and E. Pearlman. 2016. Zinc and Manganese Chelation by Neutrophil S100A8/A9 (Calprotectin) Limits Extracellular Aspergillus fumigatus Hyphal Growth and Corneal Infection. J Immunol 196: 336-44.
435	15.	Clavaud, C., A. Beauvais, L. Barbin, H. Munier-Lehmann, and J. P. Latge. 2012. The
436		composition of the culture medium influences the beta-1,3-glucan metabolism of Aspergillus
437		fumigatus and the antifungal activity of inhibitors of beta-1.3-glucan synthesis. Antimicrob
438		Agents Chemother 56 :3428-31.
439	16.	Crawford. A., and D. Wilson. 2015. Essential metals at the host-pathogen interface:
440		nutritional immunity and micronutrient assimilation by human fungal nathogens. FEMS Yeast
441		Res 15
442	17.	Finnegan, S., and S. L. Percival, 2015, EDTA: An Antimicrobial and Antibiofilm Agent for Use
443		in Wound Care. Adv Wound Care (New Rochelle) 4: 415-421.
444	18.	Galiger, C., M. Brock, G. Jouvion, A. Savers, M. Parlato, and O. Ibrahim-Granet, 2013.
445		Assessment of efficacy of antifungals against Aspergillus fumigatus: value of real-time
446		bioluminescence imaging. Antimicrob Agents Chemother 57 :3046-59.
447	19	Hachem, R., P. Bahna, H. Hanna, I. C. Stenhens, and I. Raad, 2006. EDTA as an adjunct
448	10.	antifungal agent for invasive nulmonary aspergillosis in a rodent model. Antimicrohial Agents
440		and Chemotherany 50-1823-1827
450	20.	Halime, Z., M. Lachkar, L. Toupet, A. G. Coutsolelos, and B. Boitrel, 2007. Coordination and
451	20.	structural studies of crowned-norphyrins. Dalton Trans:3684-9
452	21.	Hibert, M. F. 2009. French/European academic compound library initiative. Drug Discov
453		Today 14: 723-5.
454	22.	Hood, M. I., and E. P. Skaar. 2012. Nutritional immunity: transition metals at the pathogen-
455		host interface. Nat Rev Microbiol 10: 525-37.
456	23.	Kang, C. S., S. Ren, X. Sun, and H. S. Chong, 2016. Theranostic Polyaminocarboxylate-
457	-	Cvanine-Transferrin Conjugate for Anticancer Therapy and Near-Infrared Optical Imaging.
458		ChemMedChem 11 :2188-2193.
459	24.	Kicic, A., A. C. Chua, and E. Baker. 2001. Effect of iron chelators on proliferation and iron
460		uptake in hepatoma cells. Cancer 92: 3093-110.
461	25.	Krishnasamy, S. K., V. Namasivayam, S. Mathew, R. S. Eakambaram, I. A. Ibrahim, A.
462		Natarajan, and S. Palaniappan. 2016. Design, Synthesis, and Characterization of Some
463		Hybridized Pyrazolone Pharmacophore Analogs against Mycobacterium tuberculosis. Archiv
464		Der Pharmazie 349: 383-397.
465	26.	Laskaris, P., A. Atrouni, J. A. Calera, C. d'Enfert, H. Munier-Lehmann, J. M. Cavaillon, J. P.
466		Latge, and O. Ibrahim-Granet. 2016. Administration of Zinc Chelators Improves Survival of
467		Mice Infected with Aspergillus fumigatus both in Monotherapy and in Combination with
468		Caspofungin. Antimicrob Agents Chemother 60:5631-9.
469	27.	Li, C. Y., X. B. Zhang, Y. Y. Dong, Q. J. Ma, Z. X. Han, Y. Zhao, G. L. Shen, and R. Q. Yu. 2008.
470		A porphyrin derivative containing 2-(oxymethyl)pyridine units showing unexpected
471		ratiometric fluorescent recognition of Zn2+ with high selectivity. Anal Chim Acta 616: 214-21.
472	28.	Liguori, P. F., A. Valentini, M. Palma, A. Bellusci, S. Bernardini, M. Ghedini, M. L. Panno, C.
473		Pettinari, F. Marchetti, A. Crispini, and D. Pucci. 2010. Non-classical anticancer agents:
474		synthesis and biological evaluation of zinc(II) heteroleptic complexes. Dalton Transactions
475		39: 4205-4212.
476	29.	Lipinski, C. A., F. Lombardo, B. W. Dominy, and P. J. Feeney. 2001. Experimental and
477		computational approaches to estimate solubility and permeability in drug discovery and
478		development settings. Adv Drug Deliv Rev 46: 3-26.
479	30.	Mayr, A., M. Aigner, and C. Lass-Florl. 2012. Caspofungin: when and how? The
480		microbiologist's view. Mycoses 55: 27-35.
481	31.	Monteiro, M. C., M. de la Cruz, J. Cantizani, C. Moreno, J. R. Tormo, E. Mellado, J. R. De
482		Lucas, F. Asensio, V. Valiante, A. A. Brakhage, J. P. Latge, O. Genilloud, and F. Vicente. 2012.

483		A new approach to drug discovery: high-throughput screening of microbial natural extracts
484		against Aspergillus fumigatus using resazurin. J Biomol Screen 17:542-9.
485	32.	Moreno, M. A., O. Ibrahim-Granet, R. Vicentefranqueira, J. Amich, P. Ave, F. Leal, J. P.
486		Latge, and J. A. Calera. 2007. The regulation of zinc homeostasis by the ZafA transcriptional
487		activator is essential for Aspergillus fumigatus virulence. Mol Microbiol 64:1182-97.
488	33.	Mosayebi, G., D. Haghmorad, S. Namaki, A. Ghazavi, P. Ekhtiari, and A. Mirshafiey. 2010.
489		Therapeutic effect of EDTA in experimental model of multiple sclerosis. Immunopharmacol
490		Immunotoxicol 32: 321-6.
491	34.	Nowack, B. 2002. Environmental chemistry of aminopolycarboxylate chelating agents.
492		Environ Sci Technol 36: 4009-16.
493	35.	Padmavathi, V., S. N. Reddy, and K. Mahesh. 2009. Synthesis, antimicrobial and antioxidant
494		activities of sulfone linked bis heterocycles-pyrazolyl oxadiazoles and pyrazolyl thiadiazole.
495		Chem Pharm Bull (Tokyo) 57 :1376-80.
496	36.	Raad, II. R. Y. Hachem, H. A. Hanna, X. Fang, Y. Jiang, T. Dvorak, R. J. Sherertz, and D. P.
497		Kontoviannis, 2008. Role of ethylene diamine tetra-acetic acid (EDTA) in catheter lock
498		solutions: EDTA enhances the antifungal activity of amphotericin B lipid complex against
499		Candida embedded in biofilm. Int I Antimicrob Agents 32: 515-8.
500	37.	Raad, L. I. Chatzinikolaou, G. Chaiban, H. Hanna, R. Hachem, T. Dvorak, G. Cook, and W.
501	57.	Costerton. 2003. In vitro and ex vivo activities of minocycline and EDTA against
502		microorganisms embedded in biofilm on catheter surfaces. Antimicrob Agents Chemother
503		47: 3580-5
504	38	Rai S K Krishnan D S Askew O Helvnck P Suzanne A Lesnard S Rault II Zeidler C
505	50.	d'Enfert I P Latge H Munier-Lehmann and C Saveanu 2015 The Toxicity of a Novel
506		Antifungal Compound Is Modulated by Endoplasmic Reticulum-Associated Protein
507		Degradation Components Antimicroh Agents Chemother 60-1438-49
508	39	Ramage G B I Wickes and I I I oper-Ribot 2007 Inhibition on Candida albicans biofilm
509	55.	formation using divalent cation chelators (EDTA) Myconathologia 164 :301-306
510	40	Smith T M D I Richie and I Tao 2016 A Fluorescence-Based High-Throughput
511	40.	Screening Assay to Identify Growth Inhibitors of the Pathogenic Fungus Aspergillus
512		fumigatus. Methods Mol Biol 1439 :171-9
513	41	Vamia, A. C., and K. R. Surati, 2017. Photoluminescent properties of povel design
514		heterolentic 7n(II) complexes. Luminescence
515	42.	Vicentefrangueira, R., J. Amich, P. Laskaris, O. Ibrahim-Granet, J. P. Latge, H. Toledo, F.
516		Leal, and I. A. Calera. 2015. Targeting zinc homeostasis to combat Aspergillus fumigatus
517		infections Front Microbiol 6:160
518	43	Vicentefrangueira, R., M. A. Moreno, F. Leal, and I. A. Calera, 2005. The zrfA and zrfB genes
519	10.	of Aspergillus fumigatus encode the zinc transporter proteins of a zinc uptake system
520		induced in an acid, zinc-depleted environment. Fukarvot Cell 4: 837-48.
521	44.	Vlascici, D., I. Popa, V. A. Chiriac, G. Fagadar-Cosma, H. Popovici, and E. Fagadar-Cosma.
522		2013. Potentiometric detection and removal of copper using porphyrins. Chemistry Central
523		lournal 7
524	45	Watly, L. S. Potocki, and M. Rowinska-Zyrek, 2016. Zinc Homeostasis at the Bacteria/Host
525	45.	Interface-From Coordination Chemistry to Nutritional Immunity, Chemistry 22 :15992-16010
526	46	Yamaguchi, H., K. Uchida, K. Nagino, and T. Matsunaga, 2002. Usefulness of a colorimetric
527	10.	method for testing antifungal drug suscentibilities of Aspergillus species to voriconazole
528		Infect Chemother 8:374-7
520	47	Zhang I H T D Chung and K R Oldenhurg 1999 A Simple Statistical Parameter for Lise
530	47.	in Evaluation and Validation of High Throughput Screening Assays Biomol Screen 4:67-73
531	48.	Zhang, M., X. Su, W. K. Sun, F. Chen, X. Y. Xu, and Y. Shi, 2014. Efficacy of the combination
532		of voriconazole and caspofungin in experimental pulmonary aspergillosis by different
533		Aspergillus species. Mycopathologia 177 :11-8
534		

535

536 **TABLES**

- 537 Table 1: Minimum inhibitory concentrations of selected compounds in µg/ml. MIC₉₅
- 538 indicates a \geq 95% growth reduction, MIC₅₀ indicates a \geq 50% growth reduction.

Compound	MIC ₉₅	MIC ₅₀
Pyr05	13	1.3
Pyr11	6.3	2.5
Por06	14	1.4
Por07	32	3.2
Ami03	5	0.5
Ami04	20	0.4

539

- 540 <u>Table 2:</u> Interactions between established antifungal drugs and library compounds using the
- 541 fractional inhibitory concentration index (FICI). All results were between 0.5 and 4 indicating
- 542 an indifferent result and no interactions between the compounds.

Compound	<u>Caspofungin</u>	Voriconazole	Amphotericin B
Por06	0.6	1.0	1.2
Ami04	1.2	1.0	0.6

543

544 **FIGURE LEGENDS**

- 545 Figure 1. Percent inhibition based on luminescence measurements of *A. fumigatus* wild type
- 546 (AF14) grown either with no added ions or with the addition of 100 μ M CuSO4, FeSO4,

Downloaded from http://aac.asm.org/ on January 15, 2019 by guest

Antimicrobial Agents and

Chemotherapy

547

548

549

550

551

(B) Ami04.

552 Figure 3. Percent inhibition based on luminescence measurements of A. fumigatus wild type 553 (AF14) grown in the presence of the polyaminocarboxylate (A) Ami03 or (B) Ami04. Removed 554 at 8 h: medium was replaced with fresh medium containing no tested compound after an 8 h 555 incubation. Added at 8 h: compounds were added to the medium after 8 h of incubation. The cultures were incubated for an additional 7 h, resulting in a total incubation time of 15 556 557 h. Figure 4. (A) Percent survival and (B) luminescence of immunosuppressed mice that were 558 intranasally infected with 7.5x10⁴ A. fumigatus wild type (AF14) conidia and treated with 559 560 the polyaminocarboxylate Ami04. 15 mg/kg/day was able to significantly improve mouse 561 survival (p = 0.0024) and resulted in a 46% reduction in luminescence on day 3 and 52% 562 reduction on day 5 compared to the control group. 563 Figure 5. Examples showing luminescence of mice treated with 7.5 or 15 mg/kg/day of the polyaminocarboxylate Ami04 and of a DMSO placebo group. Mice in all three groups 564 565 developed aspergillosis, however only the ones receiving 15 mg/kg/day showed 100% 566 survival. 567 Figure 6: Treated mice displayed less severe lung invasion by the fungus. Control mice

MgSO4, MnSO4 or ZnSO4 for 15 h in the presence of the polyaminocarboxylate (A) Ami03 or

Figure 2. Hyphal length percent inhibition of A. fumigatus wild type (AF14) or triple zinc

h in the presence of the polyaminocarboxylate (A) Ami03 or (B) Ami04.

transporter knockout (AF721) grown either with no added zinc or with 100 μM ZnSO4 for 10

568 displayed very heterogeneous lesions: from (A) small necrotic foci (black arrowhead), with (B,C) destruction of bronchiole epithelium (black arrowhead) and blood vessel invasion by 569

570	the fungus (DE), to randomly distributed multifocal abscesses containing hyphae (F). Most
571	treated mice (6/10) displayed minimal to mild inflammatory lesions, characterized by
572	perivascular lymphocyte and plasma cell infiltrates (black arrowheads) (GH), with no fungi
573	invading the parenchyma (I). Less frequently mice (4/10), displayed randomly distributed
574	inflammatory (with neutrophils) (JK) or necrotic lesions (black arrowhead), with few
575	intralesional fungi (black arrowhead) (L). A, B, D, E, G, H, J, K: HE staining; C, F, I, L: Gomori
576	Grocott staining.

100

80

60

40

20

(A)

Percent inhibition

(B)

Percent inhibition

Control

CuSO4

FeSO4

MgSO4

MnSO4

ZnSO4

100

80

60

40

20

Figure 1. Percent inhibition based on luminescence measurements of *A. fumigatus* wild type (AF14) grown either with no added ions or with the addition of 100 μ M CuSO4, FeSO4, MgSO4, MnSO4 or ZnSO4 for 15 h in the presence of the polyaminocarboxylate (A) Ami03 or (B) Ami04.

Control CuSO4

FeSO4

MgSO4

MnSO4

ZnSO4

Figure 3. Percent inhibition based on luminescence measurements of *A. fumigatus* wild type (AF14) grown in the presence of the polyaminocarboxylate (A) Ami03 or (B) Ami04. Removed at 8 h: medium was replaced with fresh medium containing no tested compound after an 8 h incubation. Added at 8 h: compounds were added to the medium after 8 h of incubation. The cultures were incubated for an additional 7 h, resulting in a total incubation time of 15 h.

Figure 4. (A) Percent survival and (B) luminescence of immunosuppressed mice that were intranasally infected with 7.5x10⁴ A. *fumigatus* wild type (AF14) conidia and treated with the polyaminocarboxylate Ami04. 15 mg/kg/day was able to significantly improve mouse survival (p = 0.0024) and resulted in a 46% reduction in luminescence on day 3 and 52% reduction on day 5 compared to the control group.

D1

D3

D5

D7

D9

DMSO

H

....

111

Figure 5. Examples showing luminescence of mice treated with 7.5 or 15 mg/kg/day of the polyaminocarboxylate Ami04 and of a DMSO placebo group. Mice in all three groups developed aspergillosis, however only the ones receiving 15 mg/kg/day showed 100% survival.

141

Antimicrobial Agents and Chemotherapy

Image Min = -1.87e3 Max = 4.81e4

Color Bar Min = 2.50e3 Max = 4.00e4

Figure 6: Treated mice displayed less severe lung invasion by the fungus. Control mice displayed very heterogeneous lesions: from (A) small necrotic foci (black arrowhead), with (B,C) destruction of bronchiole epithelium (black arrowhead) and blood vessel invasion by the fungus (DE), to randomly distributed multifocal abscesses containing hyphae (F). Most treated mice (6/10) displayed minimal to mild inflammatory lesions, characterized by perivascular lymphocyte and plasma cell infiltrates (black arrowheads) (GH), with no fungi invading the parenchyma (I). Less frequently mice (4/10), displayed randomly distributed inflammatory (with neutrophils) (JK) or necrotic lesions (black arrowhead), with few intralesional fungi (black arrowhead) (L). A, B, D, E, G, H, J, K: HE staining; C, F, I, L: Gomori Grocott staining.

