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1. Introduction15

The description of human cortical folding remains a major challenge for16

neuroimaging due to its great complexity and variability. On the one hand,17

a better knowledge of cortical folding would allow us to device more precise18

methods for inter-individual comparisons, on the other one, cortical folding19

is interesting in itself as research reveals subtle correlations with typical and20

pathological functioning (Fischl et al., 2007; Cachia et al., 2008). Sulci have21

been traditionally classified from a developmental point of view into primary,22

secondary and tertiary (Chi et al., 1977) according to their order of appear-23

ance during fetal life and early childhood. But cortical folding is probably24

a more continuous process than suggested by this classification (Armstrong25

et al., 1995), and successive folding phases may impact on each other (?)26

[PAUS, 1995, DON’T FIND THE ARTICLE] in a way that morphological27

features resulting from different phases can intricate into the same given fold.28

This interaction leads to a geometric complexity well described for the central29
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sulcus (White et al., 1997): sulci are not straight objects but show ramifica-30

tions, digitations, nodes, dimples, etc. This complexity is associated with an31

important inter-individual variability (Yousry et al., 1997; Régis et al., 2005)32

which complicates the construction of folding atlases, even at a large-scale33

level. Eventually, as soon as mature gyrification is achieved, it is very difficult34

to attribute, based on morphological features alone, a primary, secondary or35

tertiary character to a given piece of a cortical fold (Fig. 1).36

In the general population, human brain size is also highly variable, with37

the largest adult brains having up to 2 times the volume of the smallest ones38

(?Whitwell et al., 2001) [MILNER, 1990, DON’T FIND THE ARTICLE]. As39

for many biological objects, the relationship between cortical surface geome-40

try (shape) and brain volume (size) is not simply homothetic: there are shape41

modifications coming with size variations (allometry). Across mammals, cor-42

tical surface area appears to scale proportionally with brain volume, whereas43

an isometric relationship would predict a scaling exponent of 2/3 (Prothero44

and Sundsten, 1984). A similar allometric scaling can be observed among45

humans, with scaling exponents in the order of 0.8 to 0.9 (Im et al., 2008;46

Toro et al., 2008). Indeed, large brains show a relative excess of cortical47

surface, which is accommodated by an increased folding. Several gyrification48

indexes have been proposed at hemispheric (Zilles et al., 1988) or local level49

(Schaer et al., 2008; Toro et al., 2008). They measure the proportion of corti-50

cal surface buried by folding, but are unable to distinguish an increase in the51

depth of the folds from an increase in the number of folds or in ramification.52

Such a modification of the complexity of cortical folding pattern (CFP) with53

brain size is nonetheless suspected: larger brains seem twistier (Fig. 1b). So54

far, attempts to propose a more descriptive assessment of gyrification com-55

plexity have provided rather preliminary results and there is no consensual56

measure, even at hemispheric level (Luders et al., 2004; Yotter et al., 2011).57

From a theoretical perspective, several models suggest that folding in an ex-58

panding domain should lead to the development of branching with doubling59

of the spatial frequency patterns (Fig. 1a). This phenomenon is observed60

with reaction-diffusion (Crampin et al., 1999; Striegel and Hurdal, 2009) and61

mechanical models (Mora and Boudaoud, 2006), but also with fractal ap-62

proaches (Thompson et al., 1996; Yotter et al., 2011),. Thus, the study of63

the spatial frequencies of CFP should provide us an interesting new measure64

of gyrification complexity.65

The grey/white matter interface of a brain hemisphere can be viewed66

as a closed surface of zero-genus (Dale et al., 1999) on which it is possible67
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to map scalar functions estimating surface characteristics such as curvature68

or sulcal depth. Theses oscillatory functions can be seen as proxies of the69

hemispheres gyrification pattern. The properties of CFP could then be stud-70

ied through the analysis of its spatial oscillation frequencies. This spectral71

approach could be used to produce a power spectrum representative of the72

spatial frequencies composition of a cortical surface. The study of the eigen-73

functions of the Laplace-Beltrami Operator (LBO) provides a natural method74

to obtain spectral decompositions of surfaces or, more generally, Riemannian75

manifolds (Berger, 2003). The methods necessary to apply this mathemati-76

cal theory to the analysis of discrete meshes have been recently described by77

(Reuter et al., 2006) and (Lévy, 2006). One interest of this approach com-78

pared with the more traditional spherical harmonics decomposition is that79

it can be directly used with native data, without the non-linear alignment80

and spherical parametrization steps required by spherical harmonics decom-81

positions (Chung et al., 2008; Hübsch and Tittgemeyer, 2008). Since folding82

wavelengths in the native surface are often projected onto the sphere with83

a different wavelength, such a parametrization necessarily induce a certain84

level of distance or angular distortions (Gu et al., 2004; Kruggel, 2008). In re-85

turn, LBO-based spectral analysis requires to device an appropriate strategy86

to compare individually defined decompositions (Knossow et al., 2009).87

In this article, we propose an original method for the Spectral Analysis of88

Gyrification (Spangy) which produces a morphologically relevant band power89

spectrum of CFP. We also report on the interest of Spangy for the study of90

the variability of CFP complexity with brain size in the comprehensive cohort91

of young healthy adults of the ICBM MRI database (Mazziotta et al., 1995;92

Watkins et al., 2001). Firstly, we present theoretical and numerical aspects93

of the LBO-based analysis, along with relevant Spangy design choices such94

as definition of curvature function, spectral bands or spectral segmentation95

of CFP. Next, we derive the measuring and describing properties of Spangy96

from our numerical and anatomical results in the ICBM database. Finally,97

we establish the relationship between spectral composition of CFP and brain98

size through allometric scaling. In the field of cortical surface study, LBO-99

based spectral analysis has been previously used only as a tool for surface100

smoothing (Vallet and Lévy, 2008). To our knowledge, this is the first time101

that this approach is used to provide a relevant signature of CFP and assess102

gyrification complexity.103
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2. Materials and Methods104

2.1. Population105

2.2. Subjects106

We analyzed the 152 normal volunteers of the ICBM MRI database107

(Watkins et al., 2001). Each subject had a T1-weighted scan (3D fast field108

echo images, 140 to 160 slices, 1 mm isotropic resolution, TR = 18 ms, TE109

= 10 ms, flip angle = 30, Phillips Gyroscan 1.5T scanner). One scan was110

excluded because of its lesser quality, leading to artifacts in the automatic111

segmentation step. Of the remaining 151 subjects, 86 were males and 65 were112

females. Ages ranged from 18 to 44 years (mean age: 25 years, standard de-113

viation: 4.9 years). 128 subjects were right-handed, 14 were left-handed, and114

handedness was unknown for the remaining 10.115

2.3. Brain segmentation and morphometric parameters116

T1-weighted images were automatically segmented with BrainVISA T1117

segmentation pipeline (BrainVisa Software) to obtain topologically spherical118

mesh reconstructions of the left hemispheric hull (morphological closing of119

the hemispheric mask) and grey-white interface. The reconstructions were120

visually inspected for segmental disruption or excess of surface spicules, lead-121

ing to the exclusion of one subject. The hemispheric volume (HV) i.e. the122

volume inside the hemispheric hull and the hemispheric surface area (HA)123

i.e. the area of the grey-white interface were computed for each left hemi-124

sphere using the BrainVISA Morphometry toolbox. The mean curvature of125

the grey-white interface (H) was computed using the non-parametric esti-126

mator implemented in the BrainVISA Surface toolbox, which is based on the127

method introduced by (Desbrun et al., 1999).128

2.4. Laplace-Beltrami operator and spectral theory129

Given a compact Riemannian manifold (M, g), where g is a metric tensor,130

we introduce L2(M) = {u :M→ R /
∫
M u2 < +∞} and the scalar product131

< u, v >=
∫
M uv. The spectrum of the Laplace-Beltrami operator (LBO)132

∆M = div ◦ ∇M is discrete (Berger, 2003). We denote λ0 = 0 ≤ λ1 ≤ ...133

the eigenvalues of −∆M and φ0, φ1, ... an associated orthonormal basis of134

eigenfunctions in L2(M) that satisfy:135

−∆Mφn = λnφn. (1)
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Given an eigenfunction φn, the nodal set of φn is defined as {x ∈M, φn(x) =136

0}. The connected components of the complement of the nodal set are called137

nodal domains. The Courant Nodal Domain Theorem ensures that if φn is138

not the first eigenfunction, the number of nodal domains is at least 2 and139

at most n. Moreover any function u ∈ L2(M) can be decomposed in the140

previous basis:141

u =
+∞∑
i=0

uiφi , with ui =

∫
M
uφi. (2)

The Parseval’s formula which will be useful for normalization states that :142 ∫
M
u2 =

+∞∑
i=0

u2i . (3)

It is possible to compute eigenfunctions on a meshMh that approximatesM143

using a weak formulation of the eigenvalue problem and the finite elements144

method. If u and λ are solutions of −∆Mu = λu then:145 ∫
M
g(∇u,∇v) = λ

∫
M
uv , ∀v ∈ L2(M). (4)

We use the finite elements framework to derive a matricial expression of146

this weak formulation. We consider the mesh Mh composed of N vertices.147

For each vertex i of the mesh we have a function wi : Mh → R which is148

continuous, linear on each triangle of the mesh and satisfying the property149

wi(j) = δij. Any function continuous and linear on each triangle can be150

decomposed on this basis u =
∑N

i=1 uiwi where ui are real coefficients. So151

the equation (4) can be rewritten in the discrete setting, taking v = wj for152

all j ∈ [1 : N ] . And the discretized problem becomes to find a vector153

[U ] = (ui)i=[1:N ] and a scalar λ such that:154

[∇][U ] = λ[M ][U ], (5)

with the stiffness and mass matrices given by :

[∇] =

(∫
Mh

∇wi · ∇wj
)
i=[1:N ],j=[1:N ]

, [M ] =

(∫
Mh

wiwj

)
i=[1:N ],j=[1:N ]

.

More details on the computation of these two matrices are given in (Desbrun155

et al., 1999). The eigenvalue problem (5) can be solved for example with156
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the Lanczos method as in (Arnoldi Package) since the matrices involved are157

sparse and symmetric positive.158

In practice, we computed several thousand eigenfunctions (5000) such that159

the spatial wavelength reaches a reasonable spatial resolution (see Appendix160

B). Recent strategies could be investigated to compute sequentially an in-161

creasing list of eigenvalues (Vallet and Lévy, 2008) until obtaining the re-162

quired resolution.163

2.5. Curvature decomposition164

We used the mean curvature H of the cortical surface to represent its165

folding pattern. The mean curvature is the average of the two principal166

curvatures or equivalently half of the trace of the second fundamental form167

(Petitjean, 2002). Whether in theory we could have used the intrinsic Gaus-168

sian curvature, we preferred to use the mean curvature instead because, being169

an extrinsic measure (dependent on the embedding of the surface in space), it170

may add supplementary information to the LBO-based decomposition which171

is already intrinsic to the surface.172

The mean curvature can be decomposed in the eigenfunction basis through173

formula (2). We will denote Hn :=
∫
MHφn the coefficients of the cur-174

vature in the eigenfunctions basis φn and call raw spectrum the sequence175

RSH(n) := H2
n. We define also a normalized spectrum of curvature:176

NSH(n) :=
H2
n∫

MH2
∀n ≥ 0. (6)

which satisfies:177
+∞∑
n=0

NSH(n) = 1 (7)

thanks to Parseval’s formula (3).178

We call Total Folding Power the quantity:179

TFPH :=
+∞∑
n=0

H2
n =

∫
M
H2 (8)

This dimensionless parameter is independent of homothetic brain size180

variation. Namely, if one has a scaling coefficient λ between M1 and M2181

then HM2 = 1
λ
HM1 and a small quantity of surface becomes dS2 = λ2dS1,182
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and then:183 ∫
M2

H2
M2
dS2 =

∫
M1

H2
M1
dS1 (9)

See Fig. 2 for computation steps.184

2.6. Spectral frequency bands design185

In the following, we will call F (n) and WL(n) the theoretical frequencies186

and the wavelengths associated to the nth eigenfunction (see Appendix A for187

further development on spatial frequencies):188

F (n) =

√
λn

2π
WL(n) =

2π√
λn

(10)

As a consistency check we compared these theoretical frequencies with eigenfunction-189

derived quantities of the same dimension, which can be intuitively considered190

as empirical frequencies and can be computed based on the number of nodal191

domains through the formula:192

WL2(n) =

√
Surface of M

Number of nodal domains of φn
(11)

The raw spectrum of curvature is a very complex type of data, challeng-193

ing to analyze and even to visualize because of its several thousand points.194

Moreover, since the eigenfunction bases are defined on a per-individual ba-195

sis, there is no mathematically exact matching of eigenfunctions of the same196

n-order (Knossow et al., 2009; Lombaert et al., 2011). Hence, as a dimen-197

sional reduction and smoothing step, we merged levels of successive orders198

into superior grouping levels defined by a sequence of spatial frequency F (n)199

marking interval limits. The sequence was chosen in order to fulfill a model200

of branching with doublings of spatial frequency. The spatial frequency asso-201

ciated with the 1st non-constant eigenfunction was considered as the subjects202

reference frequency F (1). The following interval limits were the spatial fre-203

quencies 2kF (1). This merging strategy allowed us to define a band power204

spectrum (than could be later normalized or not) defined as:205

BSH(0) = H2
0 (12)

BSH(k) =

nk
2∑

n=nk
1

H2
n with (13)
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nk1 = arg min
n
|F (n)− 2k−1F (1)| (14)

nk2 = arg min
n
|F (n)− 2kF (1)| (15)

As we computed around 5000 eigenfuntions, this merging strategy allowed206

us to define 7 bands, numbered from B0 to B6. See Fig. 3 for band design207

step.208

2.7. Spectral segmentation of CFP209

We define a CFP map as the binary map where sulci correspond to regions210

of negative curvature and gyri correspond to regions of positive curvature.211

Based on the properties of spectral decomposition, band-by-band spectral212

synthesis of curvature can be performed in a cumulative or non-cumulative213

way. Non-cumulative synthesis is equivalent to band-pass filtering, and can214

be used to show the specific contribution of each spectral band. Cumulative215

synthesis, is equivalent to low-pass filtering, and can be used to show the216

effect of the gradual addition of higher frequency components to the map.217

From these 2 types of synthesis, we derived 2 segmentations of CFP:218

• First, a segmentation according to the locally dominant frequency band:219

we used non-cumulative synthesis to label each vertex with the number220

of the band that contributed the most to its curvature value. See Fig.221

4 for computation steps.222

• Second, a segmentation according to the locally patterning frequency223

band: we used cumulative synthesis to label each vertex with the num-224

ber of the band that determined whether it belong to the sulcal or the225

gyral pattern. We assessed the differential contribution of each fre-226

quency band to the CFP by subtraction between the CFP maps of two227

consecutive levels of cumulative synthesis. See Fig. 5 for computation228

steps.229

Extensive formulations for these 2 types of segmentation are given in230

Appendix C. For the sake of clarity, they can be both visualized with a231

gyral pattern mask, hence restricting the image to the sulcal pattern. Due to232

their large preponderance in patterning (see Results), second segmentation233

is restricted to the last three frequency bands.234

For each label, we computed the surface area and the number of parcels,235

i.e. sets of connected vertices that have the same considered label. The seg-236

mentation according to the locally dominant band is rather noisy due to the237
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use of a truncated spectrum (number of eigenfunctions < number of vertices),238

which produces very small parcels (mainly isolated vertices) related to non-239

computed bands (very high frequencies). We used an adaptive-threshold240

filter to remove these noisy parcels before computation (see Appendix B).241

Conversely, for the segmentation according to the locally patterning band,242

the number of parcel related to each label had been directly computed on243

the intermediary subtraction step.244

2.8. Statistical analysis and allometric scaling245

We preformed an ANOVA to assess the effect of age, sex, and hemispheric246

volume on hemispheric surface area and spectral parameters. The correla-247

tions between cortical surface parameters (hemispheric surface area, total248

folding power or spectral band power) and brain size (hemispheric volume)249

were tested assuming a power law:250

Y = bXa (16)

We compared the scaling factor a in the equation with the value it should251

have when the scaling is isometric, i.e., presuming that 1 or 2 dimensional252

parameters scale with hemispheric volume as the 1/3 or 2/3 power respec-253

tively and that folding power is constant. The estimation of a and b was254

performed using log-log linear fit.255

All statistical analyses have been performed using SPSS version16.0.256

3. Results257

3.1. Measuring properties: size and power258

3.1.1. Wavelength for domain sizing259

The measuring properties of the proposed band power spectrum rely on260

the association of each LBO eigenfunction of the basis with a well-defined261

spatial frequency. Eigenfunctions of increasing order (i.e. smaller associated262

eigenvalue) show an increasingly scattered nodal domain pattern, consistent263

with the expected increase of their associated spatial frequency (Fig. 3a).264

The consistency between the empirical wavelength estimated through the265

number of nodal domains and the theoretical wavelength derived from the266

eigenvalue is confirmed by the strong linear correlation between the two267

values. For low orders, the empirical computation is not precise, due to its268

sensitivity to domain shape, coalescence and irregularity, but from the 10th269
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order on, the relationship becomes almost exact (mean fit for ICBM database:270

0.87x+ 4.51, R = 1), and after the 100th order, there no longer seems to be271

any difference (0.97x+0.56, R = 1). In spite of a certain variability, the mean272

shape for the nodal domains of an eigenfunction looks like a spot scaled by273

its theoretical wave length (Fig. 3b). The wavelength not only depends on274

the order of the eigenfunction but also on the size of each individual brain.275

Being a one-dimensional parameter intrinsically derived from the grey/white276

surface, the theoretical wavelength is expected to scale as HA1/2, which is277

almost exactly what we observe in the ICBM database: 1.74GWI0.495, R278

= 0.938. This result validates the possibility of computing frequency band279

statistics in the ICBM database (Table 1).280

3.1.2. Spatial resolution concerns281

The spatial resolution of our spectral analysis is limited intrinsically by282

the mesh resolution, and extrinsically by the number of eigenfunctions com-283

puted in the decomposition basis. The density of vertices in the surfaces284

that we used is not homogenous and changes locally depending on the sur-285

face geometry. The mean number of vertices in our surface reconstructions286

was 21418±2268, and the mean triangle edge length was 2mm ±0.5 mm, i.e.,287

a mean resolution of 3mm2. The mean wavelength of the last eigenfunction288

necessary to compute the proposed 7 bands is 7mm, i.e. a mean resolution289

of 9 mm2 (see Table 1 for values, Fig. 3b for illustration, and Appendix B290

for computation). Hence, in our analyses the spatial resolution of the de-291

composition basis was slightly larger than that of the surface meshes. This292

allowed us to consider a minimal pattern element of around 3 contiguous293

vertices. This resolution is reasonable given that the patterns of interest in294

a cortical surface are hardly to be found below half a centimeter, and also to295

avoid variation due to inaccuracies in surface segmentation and reconstruc-296

tion. To assess the robustness of our results with respect to the number of297

vertices of the meshes, we compared the spectrum computation before and298

after mesh refining (doubling of the number of vertices) , and we did not find299

any significant differences (data not shown).300

3.1.3. Band power proportions301

By construction, the proposed band power spectrum gives a partition302

of the total folding power in intervals of doubling spatial frequencies (i.e.303

spectral bands). The band power spectrum normalized by the total folding304

power provide a spectral proportion, or in other terms, the relative weight305
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of each spectral band. However, the decomposition basis necessary for the306

computation of 7 bands cannot account for the full total folding power since307

part of it is contained in the higher frequency levels that we do not compute.308

The normalized 7 bands spectra of all ICBM database subjects shows that on309

average, our analysis concerns around 2/3 of the total folding power (mean310

65.8%, SD 1.45%, Fig. 6). More precisely:311

• B0 (the constant band) accounted for 0.35% (SD 0.14%),312

• B1, 2 and 3 (the first 3 oscillating bands) accounted for 4.39% (SD313

0.79%),314

• B4, 5 and 6 (the last 3 oscillating bands) accounted for 61.2% (SD315

1.43%).316

This shows the quantitative predominancy of the last 3 bands, which account317

for a large proportion of the total folding power and almost the totality of318

the analyzed folding power (92.8%).319

3.2. Describing properties : anatomo-spectral correlations320

We now show the utilization of Spangy to categorize and quantify pattern321

elements back on the original cortical surface, on the basis of spatial frequency322

properties.323

3.2.1. Global shape vs folds patterning324

Low-pass and band-pass filtering provide a first insight into the link be-325

tween spectrum and cortical folding through the sequential visualization of326

the contribution of each band to the curvature value (Fig. 4) and the CFP327

(Fig. 5). B0 does not account for any pattern since the 1st eigenfunction328

does not oscillate. B1 and B2 bands account for patterns that are not cor-329

related with folding but rather with the global brain shape, like the slight330

concavity of the medial hemispheric side (B1) and the bottom of the sylvian331

fissure (B2), the global convexity of the lateral hemispheric side (B1), or the332

convexity of the polar regions (B2). B3 contributes mainly to the global brain333

shape with the transition between lateral and medial sides of the hemisphere334

or the sylvian banks, but also to initiate the fundi of several primary sulci,335

such as the posterior part of the superior temporal sulcus or the medial part336

of the intra parietal sulcus. As we shown previously, whatever the qualitative337

contribution to the CFP of the first three non-constant bands may be, they338
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are quantitatively very weak. Thus, patterns consistent with cortical folding339

appear with B4 (Fig. 4, Fig. 5) and most substantial contributions to the340

CFP are produced by B4, B5 and B6. These 3 bands will be further referred341

as the folding bands.342

3.2.2. Dominant vs patterning band for segmentation of CFP343

The 2 types of spectral segmentation of CFP (Fig. 4 and Fig. 5) are pre-344

sented in Fig. 7 on 5 brains of increasing size (restricted to sulcal pattern):345

the segmentation according to patterning band in the 2nd column, and the346

segmentation according to dominant band in the 3rd column. They provide347

complementary information about the contribution of each folding band. The348

segmentation according to patterning band sums up the observations made349

on low-pass filter series and provides a clear image of the progressive rami-350

fication of the sulcal pattern produced by the addition of higher frequency351

bands. The segmentation according to dominant band shows a similar phe-352

nomenon but with significant differences in surface labeling which show that353

a vertex can be added to sulcal or gyral pattern by one band, whereas its354

curvature value is mainly determined by a higher frequency band. These dis-355

crepancies between a locally patterning frequency band and locally dominant356

frequency band are particularly visible around the polar regions. Besides, as357

previously explained, the segmentation according to dominant band is noisy358

and we applied a band-adapted minimum threshold for size before the quan-359

tification of surface area and number of sulcal parcels. This threshold had360

a very mild effect on the regions labeled by B4, B5 and B6, leading to a361

mean area reduction of respectively 6.9%, 1% and < 0.1%(SD 1.5%, 0.2%362

< 0.1%). Nonetheless, it was sufficient to rub out most of the irrelevantly363

small spots, particularly for B4 band, rejecting an average of respectively364

118, 45 and 3 spots (SD 19, 11 and 2), with a mean spot area 2 times below365

the threshold. Finally, we found a strong linear correlation between B4, B5366

and B6 spectral power and labeled surface area, respectively: 335x + 3660367

(R = 0.783), 396x − 96.3 (R = 0.917), 403x + 884 (R = 0.961), showing368

that the segmentation according to dominant band gives a faithful picture369

of the band power spectrum. The correlation was equally good between the370

normalized band power and the labeled surface area reported to hemispheric371

surface area.372
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3.2.3. Anatomical correlates of spectral segmentation of CFP373

The sulcal pattern of the low-pass filtered CFP map at B4 level consists374

in a limited set (21 elements ± 3) of large smooth sulcal parcels with few375

ramifications (Fig. 7, 1st column). These spectrally defined folding fields376

embed the main primary folds of the literature (Fig. 8a, (Chi et al., 1977))377

and are refined by B5 and B6 to produce a more irregular and branched CFP.378

Thanks to the proposed spectral segmentations, the CFP can be divided379

into 1st, 2nd and 3rd order elements associated respectively with frequency380

bands B4, B5 and B6. A segmentation considering only the folding bands381

is supported by the restriction of lower frequency band labeling exclusively382

to B3 for a few deep sections of the superior temporal sulcus, intra parietal383

sulcus or insula, covering a very small percentage of the total sulcal area384

(< 5%). The anatomical correlates of this division are well illustrated by the385

analysis of the pericentral region in 3 reference brains of increasing size (Fig.386

8). The figure shows the straight course of the 1st order central element,387

the 2 or 3 loops corresponding to 2nd order elements and the small dimples388

associated with 3rd order elements, which are much more accentuated in the389

larger brain. The increasing order for pattern elements in ramifications is390

also visible in the post central sulci. The impression of extension of B4 or391

even B5 labeling into higher ramification is drawn by the fact that gyral392

pattern elements are masked on most of the presented segmentations (due to393

legibility concerns for figures). Indeed, the same anatomical correlation can394

be observed for gyral pattern and yet, for the whole CFP (Fig. 8c). Hence, we395

show that the distribution of 2nd and 3rd order elements of pattern is neither396

random nor homogeneously underlying the limits of lower order elements,397

but rather parsimoniously matches the gradual ramification of CFP from the398

previously defined 1st order folding fields.399

3.3. Spectral composition of CFP as a function of brain size400

3.3.1. Surface area and folding power scaling401

We used the hemispheric volume (HV) as a brain size parameter. In402

our dataset, HV ranged from 445 cm3 to 759 cm3, i.e., a 1.7-fold varia-403

tion (Table 1). The hemispheric surface area showed a positive allometric404

scaling: HA = 0.209HV 0.961 (R = 0.950, p < 0.001, confidence interval405

[0.935, 0.987]), i.e. large brains had disproportionately more cortical sur-406

face than smaller brains. We found the same variation with brain size for407

the sulcal pattern area and the gyral pattern area, showing the absence408

of allometric modification of sulcal versus gyral proportions: sulcal pattern409
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area=0.127HV 0.951 (R = 0.953, p < 0.001, confidence interval [0.926, 0.976])410

; gyral pattern area=0.0828HV 0.972 (R = 0.898, p < 0.001, confidence in-411

terval [0.934, 1.012]). Total folding power also showed a positive allometric412

scaling, consistent with the fact that large brains are not simply scaled-up413

versions of smaller ones: total folding power=8.16×10−3HV 0.781 (R = 0.784,414

p < 0.001, confidence interval [0.73, 0.832]). We used these allometric expo-415

nents as references for the scaling exponents we found for subdivisions of416

the hemispheric surface (1st, 2nd and 3rd order elements of CFP) and total417

folding power (B4, B5 and B6).418

3.3.2. Spectral allometry: different brain size means different spectral pro-419

portions420

As they accounted for more than 90% of the analyzed folding power,421

we limited the following analysis to the folding bands. The largest propor-422

tion of the variance in spectral band power was related to brain size vari-423

ation (R2=61% in a centered model) with no significant effect of age, sex,424

or handedness. Normalized band spectrum revealed a significant effect of425

brain size on spectral proportions (Fig. 6c). Large brains (standard score for426

HV > Mean+1SD) showed a significantly larger proportion of B6 high spa-427

tial frequencies than small brains (standard score for HV < Mean − 1SD)428

and conversely, they showed a smaller proportion of B4 low spatial frequencies429

(p < 0.001 in both cases). The proportion of B5 medium spatial frequen-430

cies was not significantly different between the large and small brains. To431

further investigate the relationship between brain size and curvature band432

power spectrum we compared the scaling of each spectral band power with433

the scaling of total folding power. We found no correlation between brain434

size and folding power for B4, an allometric exponent similar to that of total435

folding power for B5 (0.753± 0.052 versus 0.781± 0.051 ) and a higher allo-436

metric exponent of for B6 (1.213± 0.061 versus 0.781± 0.051 ). This shows437

that in large brains the larger proportion of B6 spatial frequencies compared438

with B4 and B5 is due to an increased contribution of these high frequencies439

to CFP rather than a decrease of B4 ones (Fig. 9 b). It also explains the440

stable proportion of B5 frequencies since total folding power is the normal-441

ization constant. In other terms, B4 contribution to the CFP is independent442

of brain size i.e. isometric scaling, B5 contribution follows the average in-443

crease of folding power with brain size i.e. positive allometric scaling, and444

B6 contribution increase faster than average i.e. the positive allometry is445

stronger for the higher spatial frequencies.446
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3.3.3. Complexification of CFP with brain size447

How do the different behaviors of each folding band translate in terms448

of CFP? The computation of surface area and number of sulcal parcels for449

each label of the segmentation according to dominant band is presented in450

Fig. 9c, d. The variation of surface area with brain size for each order451

of CFP elements showed a specific behavior similar to that of frequency452

band power: increase of area with brain size is very slow for 1st order (B4453

label), parallel to surface extension for 2nd order (B5 label) and faster than454

expected for 3rd order (B6 label). This result was robust and not sensitive455

to filter suppression. The number of parcels was independent of brain size456

for 1st and 2nd order i.e. constant in spite or surface extension, whether457

the number of parcels increased for 3rd order (Fig. 9d). This result was458

sensitive to filter suppression but we found the same behavior for each order459

with the segmentation according to patterning band that provides an even460

clearer image of the progressive ramification and do not require filtering (Fig.461

9e). We found no significant differences between the analysis confined to the462

sulcal pattern and that of the whole CFP. Hence, in terms of CFP, the463

proposed spectral segmentation allows a characterization and quantification464

for complexification with brain size demonstrating that it consists in a high465

frequency ramification already suspected by visual comparison of smaller and466

larger brain of the dataset (Fig. 7 and Fig. 8).467

4. Discussion468

The proposed Spectral Analysis of Gyrification (Spangy) methodology469

achieves a categorical and quantitative analysis of cortical folding pattern470

(CFP) both in the frequency domain through a band power spectrum and in471

the image domain with an anatomically relevant spectral segmentation. The472

computation is directly carried on native data without the need for spherical473

parametrization or template normalization. The choice of the mean cur-474

vature of the grey-white interface for CFP depiction could be questioned.475

Theoretically, any other continuous scalar function defined on a cortex de-476

rived surface mesh could have been elected. Does any other would give a477

more accurate rendering for folds? Actually, the mean curvature defines two478

gyral and sulcal patterns of almost equal area on the grey-white interface,479

but not on external cortical surface (i.e. pial surface) where the CFP is very480

unbalanced. Future application of Spangy should probably try to analyze481

this external surface or even an intermediate surfaces such as proposed by482
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Van Essen (?) [Ref ?], It would also be of interest to look for invariants483

between spectra computed on the same brains but with different choices of484

surface or folding proxy (gaussian curvature, sulcal depth, etc.). Besides, the485

choice of the surface and its computation could affect the spatial resolution486

of the analysis. Indeed, if secondary mesh refinement (computational vertex487

density augmentation) does not seems to impact much on results, a primary488

higher mesh resolution could bring new spatial frequencies components out489

of the background noise, requiring an expansion of the eigenfunction basis to490

avoid aliasing.491

492

The properties of Spangy rely on our frequency bands design and fre-493

quency modeling choices. The a priori definition of band limits starting494

from the first non-null frequency appeared to us as the simplest strategy.495

First, merging the raw spectrum into bands of doubling spatial frequency496

provides an objective method to compare different subjects. However, in-497

ter subject matching between eigenfunctions of the same order is a difficult498

problem, which complicates full ordinal comparison between extended raw499

spectra (Knossow et al., 2009; Lombaert et al., 2011). This discrepancy exists500

both for nodal domain pattern and exact associated wavelength. Nonethe-501

less, the proposed large frequency bands realize a large scale smoothing in502

the frequency space resulting in a strict inter subject frequency matching503

between bands of the same order. It is worth noting that this matching is504

up to a proportional factor given by the wavelength associated with the first505

non-null eigenvalue (WL(1) = 1/F (1)). This factor, which is proportional to506

HA1/2, can be seen as the geodesic length of the hemisphere (Lefèvre et al.,507

2012) and could be used as a surface based normalization factor of eigen-508

function basis associated wavelength. In other terms, Spangy depicts CFP509

with a scale of brushes adapted to object size: larger touches are required for510

larger brains. Furthermore, analytic effects of the merging strategy strongly511

depend on the frequency model chosen for band splitting. We could have512

elected an arbitrary sequence of bands, such as quadratic sequences (limits513

associated with k2F (1)), but we found few obvious anatomical correlations514

for the resulting spectra (data not shown). The proposed 2kF (1) sequence515

presents at least 3 very convenient properties :516

• it allows a good degree of compaction.517

• it segregates the folding bands that clearly contribute to CFP from518

those that seem to account for global shape.519

16



• it leads to a segmentation of pattern ramifications.520

The first property was obviously expected from high growth rate of 2kF (1)521

sequence.522

The second one could not be anticipated and we still have no model for sulcal523

pattern apparition with B4, that is to say 23F (1) to 24F (1) spatial frequency524

range. Since this range is quantitatively large and the density of eigenfunc-525

tion still rather low in this zone of the spectrum, the matching is probably not526

exact and there is probably no exact frequency threshold above which CFP527

arises. This uncertain area concerning exact delineation of spectral folding528

frequency domain pleads for future implementation of intelligent models such529

as machine learning algorithm for CFP fundamental frequency assessment or530

for frequency clustering, with or without anatomically labeled learning data531

base (i.e., in a supervised or unsupervised way). Nonetheless, the present532

strategy designs a convincing first folding band from which models of fre-533

quency doubling makes sense. Our primary interest in CFP analysis should534

not overshadow the clear emphasis of low frequency bands association with535

curvature variations related to global shape. Though quantitatively small536

compared with the folding bands, recent works suggest that the informa-537

tion gathered into these low frequencies may be neuroscientificaly relevant,538

at least for global shape classification (Niethammer et al., 2007; Lai et al.,539

2009).540

As for the third property, it results from the main hypothesis of the frequency541

model, namely, the doubling of frequency with pattern extension. Our results542

in terms of spectral segmentation of CFP clearly show that this hypothesis543

is consistent with true anatomical data. Interestingly, the bandwidth of the544

folding bands may partially accommodate the variation of dominant wave-545

length of same order elements of pattern between different regions of the546

brain, such as polar regions where the patterns seem to be tighter and cen-547

tral where they seem wider. At least it seems true with the segmentation548

according to the locally patterning frequency band. With Spangy native data549

strategy, this classical phenomenon on a surface with spherical topology is550

accurately revealed and not artificially accentuated by spherical parametriza-551

tion.552

553

The accuracy and consistency of the spectral segmentation of CFP that554

we obtained is indeed an important concern. Apart from the frequency dou-555

bling hypothesis, the segmentation proposed is free from anatomical or de-556
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velopmental a priori. Labeling is then based only on spatial frequency char-557

acteristics of local curvature variations, or more precisely on how this local558

variation integrates into the whole pattern since spectral analysis is not a559

local analysis. The results of our analysis of the central region show that we560

can distinguish two types of gradual contribution of the folding bands: firstly561

the termination of elongated elements of pattern, secondly the ramification562

of pattern both from an existing element and de novo. Termination label-563

ing is of little anatomical meaning and rather due to later discussed strong564

impact of depth on surface based wavelength. Conversely, ramification label-565

ing is an interesting achievement. Indeed, starting from spectrally defined566

primary folding fields, Spangy segmentation categorizes 2nd and 3rd order567

of ramification or complexification of CFP in a way that only developmen-568

tal longitudinal follow-up had authorized up to know (Chi et al., 1977). To569

our knowledge, no other strictly morphological analysis achieved this type of570

result. Recent closely related mathematical tools such as fractal modeling571

(Yotter et al., 2011) allows to estimate at global, regional and local scales,572

a fractal dimension of the cortical surface thanks to spherical harmonics but573

the authors have not applied their methodology to the characterization of574

normal CFP. More intuitively, Laplacian smoothing has been presented sev-575

eral times as a possible tool for categorization of elements of sulcal pattern576

since supposedly tertiary fold seems to disappear earlier in the process than577

secondary, and so on (Cachia et al., 2003). Unfortunately, it is a continuous578

process depending on a scale parameter t whose relevant values vary from579

a fold to another and across subjects. It is interesting also to note that580

this process is not mathematically equivalent to filtering even if smoothing581

a map u till time t can be expressed from eigenvectors and eigenfunctions of582

Laplace-Beltrami Operator:583

S(u)(t) =
+∞∑
i=0

uie
−λitφi (17)

which is different from a truncated expression of equation (2):584

F (u)(N) =
N∑
i=0

uiφi (18)

Besides, many regions are much more intricate than the central region585

where categorization of CFP elements is probably unattainable locally, at586
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least in the image space. This is another advantage of the proposed spectral587

analysis, which integrates the whole pattern information in the frequency588

space for band power spectrum computation, but returns part of it locally589

in the image space with the segmentation according to the locally dominant590

frequency band. Hence, we are able to propose a spectral based segmenta-591

tion even in a more difficult region such as prefrontal cortex. On that matter,592

regional implementation of our spectral strategy on a patch of mesh corre-593

sponding to a lobe or a functional area (Broca for instance) is of possible594

interest. Nonetheless, further demonstration of concordance between spec-595

tral and developmental labeling for elements of CFP still exceeds the aim596

of the present work and certainly need more investigation, for instance on597

longitudinal data. Indeed, it is of important concern to try and validate on598

real biological data the different folding models proposed in the literature599

(Thompson et al., 1996; Mora and Boudaoud, 2006; Striegel and Hurdal,600

2009; Yotter et al., 2011). To a certain extent, the anatomical consistency of601

Spangy spectral segmentation brings a new point to the models that predict602

a frequency doubling with folding extension.603

604

Besides its categorial properties, Spangy provides two types of quantita-605

tive information.606

Firstly, the wavelength intervals associated with B4, B5 and B6 give a size607

for 1st, 2nd and 3rd order elements of CFP that can be seen as a surface-608

based or geodesic wavelength. Such a surface-based measure depends both609

on the local depth and the local width of the associated fold. Very few610

object-based morphometric data are available for cortical folds. The Brain-611

VISA morphometric toolbox allows maximum and mean depth assessment612

for well validated sulci models but provides no ramification-based segmen-613

tation. Nevertheless, the magnitude order for central sulcus is consistent614

with B4 associated wavelength range (Mangin et al., 2004). Object-based615

definition and computation of other size parameters such as volume-based616

(Euclidian) or surface-based (Riemanian) wavelength would be of great in-617

terest to compare with the measures provided by Spangy. Indeed, accurate618

CFP morphometry could open the field to a new quantitative characteriza-619

tion of folding during development or in congenital malformation such as620

lissencephaly (too few, too large folds) of polymicrogyri (too many, too tight621

folds) (Richman et al., 1975). But these two examples also emphasize that622

sizing of CFP elements is no enough for such a characterization, one needs623

to be able to give the global composition of CFP for each category.624
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This is precisely the second quantitative information provided by Spangy.625

Each folding band power is probably the best assessment of each spatial fre-626

quency interval to the CFP since spectral segmentation goes with certain627

loss of information: locally, an element of pattern can only be related to one628

band even if several folding orders are intricate. Nonetheless, back in the629

image, useful ramification count is allowed by CFP spectral segmentation.630

Here again, a regional analysis could be proposed by looking for lobar or631

functional area dominant frequency variations.632

633

In this work we propose a first application of this new insight provided by634

Spangy to the question of the relationship between brain size polymorphism635

and CFP complexity variation. The allometric relationship between brain636

size (hemispheric volume) and hemispheric surface area has been already re-637

ported (Toro et al., 2008). Some results even suggest that this allometry638

is not spatially homogenous and that local gyrification indexes seems to in-639

crease more in some brain regions than in others, prefrontal area for instance640

(Toro et al., 2008; Schaer et al., 2008). Gyrification indexes inform us on the641

amount of buried cortical surface but give no information about CFP. About642

this concern, hemispheric total folding power behaves as hemispheric gyri-643

fication index: they are highly correlated but both equally blind to shape644

and gyrification pattern (R = 0.8). The band power spectrum provided645

by Spangy precisely unwraps this black-box to reveal 3 orders of pattern646

elements of 3 increasing spatial frequency bandwidth which behave differen-647

tially with brain size and total folding pattern increase. Complexification of648

gyrification can be seen as an extension of CFP both by ramification and649

addition of disconnected new elements of pattern. Our results show that this650

type of complexification occurs with increasing brain size since the contri-651

bution to CFP of B4 low spatial frequencies is constant in terms of spectral652

power and number of pattern elements, the one of B5 medium spatial fre-653

quencies increase with the same allometric exponent than total folding power654

but with a number of pattern elements still constant, and the one of B6 high655

spatial frequencies shows both a much higher allometric exponent and an656

augmentation of number of pattern elements. To our knowledge, this is the657

first objective and quantitative demonstration of this allometric phenomenon658

suspected from radiological observations. Large brains are definitely twister659

because of an increased number of barbells, dimples and kinks of high spatial660

frequency that accommodate the allometric increase of cortical surface to be661

buried.662
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5. Conclusion663

At the end.664

Appendix A. Definition of spatial frequencies665

In one dimension, the eigenvalue problem (1) becomes666

u′′(x) = −λu(x) ∀x ∈ [0, L] (A.1)

and the solutions are obtained through the sine and cosine functions de-667

pending on boundary conditions (Dirichlet or Neumann for instance). An668

eigenfunction can be expressed on the form cos(πnx
L

) or sin(πnx
L

) with n an669

integer that gives the number of oscillations of the eigenfunction and the cor-670

responding eigenvalue is λn = (πn
L

)2. The frequency is classically defined as671

the inverse of the period or wavelength 2π
πn/L

and therefore equals
√
λn
2π

. In two672

dimensions we can have explicit formula in the case of a rectangular domain673

of size L and l and the eigenfunctions can be expressed in a decoupled way,674

for instance for Neumann boundary conditions:675

cos
(πmx

L

)
cos
(πny

l

)
∀(x, y) ∈ [0, L]× [0, l] (A.2)

and the corresponding eigenvalue is λn = (πm
L

)2+(πn
l

)2. Even if the concept of676

spatial frequency is ambiguous in 2D and depends on the oscillations along677

each direction x and y, we will consider that
√
λn has the dimension of a678

spatial frequency.679

Appendix B. Computation of resolution and thresholds680

For a given spatial resolution of a mesh, let d be the average edge distance681

between two contiguous vertices. Then, the average sign inversion spot (an682

isolated point of different sign than its neighbors) is around π(d/2)2 mm2
683

large (small disc of d mm diameter). For a given eigenfunction basis spatial684

resolution, let WL be the wavelength associated with last eigenfunction of685

the basis. Then, it is associated with an average size spot of π(WL/4)2 area686

(small disc of WL/2 mm diameter).687

688

For the adaptative thresholding in 2.7, we have made a similar reasoning:689

a noisy parcel in band k is roughly approximated by a circular shape of radius690

Rk. So we have the relation for the characteristic size :691
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2Rk <
1

2

WL(1)

2k
(B.1)

which implies that the area of the parcels satisfiies:692

Ak <
π2
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(
WL(1)

2k

)2

(B.2)

The adaptative threshold for each spectral band k is therefore given by the693

right term in the previous equation.694

Appendix C. Extensive formulations of the spectral segmentations695

We give here the formula for the segmentation according to the locally696

dominant frequency band:697

MBC(p) = arg max
k>0

(
sign(H(p))

nk
2∑

n=nk
1

Hnφn(p)

)
∀p ∈M (C.1)

The sign of the curvature indicates whether we are in a gyrus or a sulcus.698

699

For the segmentation according to the locally patterning frequency band,700

we start by computing the differential contribution of each frequency band701

to the CFP by subtraction between the CFP maps of two consecutive levels702

of cumulative synthesis :703

∀p ∈M SMk(p) = a− b where (C.2)

a = 1 if

nk
2∑

n=1

Hnφn(p) > 0 else a = 0 (C.3)

b = 1 if

nk−1
2∑
n=1

Hnφn(p) > 0 else b = 0 (C.4)

Then, we follow the procedure explained graphically in Fig. 5: We start704

from SMk for k = 6 (third row, first column) which counts 3 labels −1 (blue),705

0 (gray) or 1 (red). A vertex with label l will be assigned another label 3l.706

Then we consider SMk for k = 5 (third row, second column) and to each707

vertex with label l not previously re-labeled we assign the label 2l. The last708
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step is achieved for k = 4 where all vertices not re-labeled previously will709

keep their label l. Finally, the resulting segmentation is represented with a710

gyral mask (last row) and counts 3 labels: -3 (green), -2 (cyan) and -1 (dark711

blue).712
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Fig 1: Modeling framework for cortical folding.

a) The doubling frequency hypothesis. 1st row: brain of minimum size of the database
2nd row: brain of maximum size of the database, more folded cortical surface in the SFG
3rd row: theoretical model extrapolated from (Mora and Boudaoud, 2006). Left column:
coronal section perpendicular to the ACPC line and tangential to the genu of the corpus
callosum (T1-weighted images) Right column: pial surface of the right hemisphere SFS:
superior frontal sulcus, SFG: superior frontal gyrus, R: right, L: left.
b) Allometric scaling for cortical folding.
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Fig 2: Spangy process
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Fig 3: Spectral band design.

a) Eigenfunction associated wavelength (WL). Comparison between theoretical wavelength
(black) and empirical one (blue).
b) Spatial resolution. Visualization of the nodal domains of the last eigenfunction of the
basis for the median size brain of the database.
c) Spectral bands: limits of the frequency intervals according to the doubling frequency
hypothesis. Log-linear plot. min, med, max: brain of minimum, median and maximum
size of the database.
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Fig 4: Segmentation of CFP according to the locally dominant band.

1st and 2nd row show the series of band-pass filtered curvature. Plots show the decom-
position of curvature at point (I) (II) or (III). CFP segmentation is presented for median
size brain on a smoothed anatomy with a gyral mask (salmon red). TFP: total folding
power.
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Fig 5: Segmentation of CFP according to the locally patterning band.

1st and 2nd row show the series of low-pass filtered cortical folding pattern. Local magni-
fications show the subtraction step between two consecutive levels in the neighborhood of
points (I) and (II). CFP segmentation is presented for median size brain on a smoothed
anatomy with a gyral mask (salmon red).
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Fig 6: Spectral proportions.

a) Raw band spectrum for the whole dataset.
b) Normalized band spectrum i.e. spectral proportions for the whole dataset TFP: total
folding power.
c) Differences of spectral proportions between small (HV below mean-1SD) and large
(HV over mean+1SD) brains of the database. Student testing for mean differences. HV:
hemispheric volume, NS: non significant.
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Fig 7: Spectral segmentation of CFP along dataset.

Brains of increasing size, measured by their hemispheric volume. 1st column: regular pat-
tern of B4 low-pass filtered CFP. 2nd column: segmentation according to patterning band
showing increase of B6 tagged ramifications with size. 3rd column: segmentation accord-
ing to dominant band showing extension of B5 and B6 tagged surface. CFP segmentation
is presented on a smoothed anatomy with a gyral mask (salmon red).
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Fig 8: Anatomical- spectral correlations.

a) Primary folding fields corresponding to B4 low-pass filtered CFP. Comparison be-
tween regular pattern of B4 low-pass filtered CFP and primary folds described by (Chi
et al., 1977) for left hemisphere. Primary folds appears before 32weeks of gestation. The
schematic left hemisphere is adapted from (Chi et al., 1977) and switched to the right side.
SFS: superior frontal sulcus, IFS: inferior frontal sulcus, PrCS: pre-central sulcus, CS: cen-
tral sulcus, PoCS: post-central sulcus, PoSTS: posterior branch of the superior temporal
sulcus, IPS: intra-parietal sulcus. b) Spectral segmentations of the central region: 1st 2nd
and 3rd order elements of CFP.
Schematic interpretation of the segmentations is given in the 1st row. The number of 3rd
order elements is arbitrary since it increases with brain size. For each brain, the segmen-
tation is presented on the native (left) and totally smoothed (right) anatomy with a gyral
mask (salmon red). min, med, max: brain of minimum, median and maximum size of the
database.
c) Spectral segmentations of the central region for the whole CFP (without gyral masking).
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Fig 9: Allometric scaling for CFP extension.

a) Spectral sizing: bandwidth, resolution and brain size WL: wavelength, EV: eigen-
value/eigenfunction.
b) Band spectral power scaling. Isometry for B4, following global positive allometry for B5
(same scaling exponent than total folding power = 0.753), accentuated positive allometry
for B6 (1.213).
c) Scaling of the surface of dominance for each band. Same behavior than band spectral
power.
d) Scaling of the number of parcels of dominance for each band. The number is indepen-
dent of size for B4 and B5 but increases for B6.
e) Scaling of the number of patterned parcels for each band. Same behavior than number
of parcels of dominance.
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