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ABSTRACT African green monkeys (AGM) and sooty mangabeys (SM) are well-
studied natural hosts of simian immunodeficiency virus (SIV) that do not progress to
AIDS when infected with their species-specific viruses. Natural hosts of SIV express
very low levels of the canonical entry coreceptor CCR5, and recent studies have
shown that CCR5 is dispensable for SIV infection of SM in vivo and that blocking of
CCR5 does not prevent ex vivo infection of peripheral blood mononuclear cells
(PBMC) from SM or vervet AGM. In both hosts, CXCR6 is an efficient entry pathway
in vitro. Here we investigated the use of species-matched CXCR6 and other alterna-
tive coreceptors by SIVagmSab, which infects sabaeus AGM. We cloned sabaeus CD4
and 10 candidate coreceptors. Species-matched CXCR6, CCR5, and GPR15 mediated
robust entry into transfected cells by pseudotypes carrying SIVagmSab92018ivTF
Env, with lower-level entry through GPR1 and APJ. We cloned genetically divergent
env genes from the plasma of two wild-infected sabaeus AGM and found similar
patterns of coreceptor use. Titration experiments showed that CXCR6 and CCR5
were more efficient than other coreceptors when tested at limiting CD4/coreceptor
levels. Finally, blocking of CXCR6 with its ligand CXCL16 significantly inhibited
SIVagmSab replication in sabaeus PBMC and had a greater impact than did the
CCR5 blocker maraviroc, confirming the use of CXCR6 in primary lymphocyte infec-
tion. These data suggest a new paradigm for SIV infection of natural host species,
whereby a shared outcome of virus-host coevolution is the use of CXCR6 or other
alternative coreceptors for entry, which may direct SIV toward CD4� T cell subsets
and anatomical sites that support viral replication without disrupting immune ho-
meostasis and function.

IMPORTANCE Natural hosts of SIV do not progress to AIDS, in stark contrast to
pathogenic human immunodeficiency virus type 1 (HIV-1)-human and SIVmac-
macaque infections. Identifying how natural hosts avoid immunodeficiency can elu-
cidate key mechanisms of pathogenesis. It is known that despite high viral loads,
natural hosts have a low frequency of CD4� cells expressing the SIV coreceptor
CCR5. In this study, we demonstrate the efficient use of the coreceptor CXCR6 by
SIVagmSab to infect sabaeus African green monkey lymphocytes. In conjunction
with studies of SIVsmm, which infects sooty mangabeys, and SIVagmVer, which in-
fects vervet monkeys, our data suggest a unifying model whereby in natural hosts,
in which the CCR5 expression level is low, the use of CXCR6 or other coreceptors to
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mediate infection may target SIV toward distinct cell populations that are able to
support high-level viral replication without causing a loss of CD4� T cell homeosta-
sis and lymphoid tissue damage that lead to AIDS in HIV-1 and SIVmac infections.

KEYWORDS African green monkey, CXCR6, coreceptor, natural host, simian
immunodeficiency virus, tropism

Over 40 species of African nonhuman primates (NHP) have been identified as
natural hosts of simian immunodeficiency virus (SIV), harboring endemic species-

specific viruses that appear to have coevolved with their hosts and cause little if any
disease (1). Sooty mangabeys (SM) and African green monkeys (AGM) are the best-
studied natural hosts. Despite sustained high viral loads following infection and the
short life span of infected cells (2–4), natural hosts typically maintain normal blood
CD4� T cell counts, lack chronic immune activation once acute infection resolves,
maintain normal lymph node architecture and function, and remain healthy (5, 6). In
stark contrast, infections of nonnatural hosts, including human immunodeficiency virus
type 1 (HIV-1) infection of humans and SIV infection of macaques, are characterized by
CD4� T cell loss, chronic immune activation, and progressive inflammation, fibrosis, and
dysfunction of lymphoid tissue (7). Understanding differences between natural and
nonnatural hosts can highlight key elements in pathogenesis and may elucidate novel
targets for intervention.

Several lines of evidence suggest that differential cell targeting may be a central
feature underlying distinct outcomes of infections of natural and nonnatural hosts. One
mechanism implicates CD4� T cell populations critical for immune cell homeostasis,
including T central memory (Tcm) and T stem cell memory (Tscm) cells, as studies have
shown that these subsets are infected at a lower frequency in SM than in rhesus
macaques (RM) (8, 9). Second, infected humans and RM show high levels of virus in
lymphoid tissue, particularly in germinal center CD4� T follicular helper (Tfh) cells,
which are critical for humoral immunity, and robust lymphoid tissue infection is
associated with progressive inflammation, fibrosis, and architectural damage (10, 11). In
contrast, lymph nodes of chronically infected SM and AGM are marked by a lower viral
burden, minimal fibrosis, and preserved function (11–14). Finally, CD4� Th17 cells,
which are required for gut immune barrier integrity, are maintained in natural host
infection but lost in infection of nonnatural hosts (15–17). The loss of gut barrier
integrity is linked to the translocation of bacterial products and chronic immune
activation in nonnatural hosts, a key feature absent in infected natural hosts (18–21).
These observations demonstrate the need to fully understand determinants of cell
targeting by SIV.

HIV/SIV cell targeting is determined largely at entry by the expression of CD4 and a
seven-transmembrane coreceptor. The established dogma has been that CCR5 is the
coreceptor used by SIV in vivo, although several other molecules have long been known
to support entry in transfected cells or cell lines in vitro (22–24). The level of CCR5
expression is very low on CD4� T cells of natural host species, which led to the
suggestion that restricted coreceptor availability may limit CD4� T cell infection (8, 9,
25). However, the high levels of viremia and short life span of infected cells in natural
hosts are comparable to those in nonnatural hosts (2–4), raising a paradox of robust SIV
replication and infected-cell turnover in the face of exquisitely low CCR5 levels. Several
years ago, our laboratory found that pathways other than CCR5 contributed to SIVsmm
entry and cell targeting in SM in vivo when we identified a common CCR5 deletion
allele in SM that abrogates surface CCR5 expression (26). SM that were homozygous for
CCR5-null alleles were infected with SIVsmm at a frequency similar to, and had viral
loads only slightly lower than, those of SM with wild-type CCR5. We then showed that
SM CXCR6 was an efficient coreceptor for SIVsmm in vitro and, using blocking agents,
that both CXCR6 and CCR5 were used by SIVsmm for infection of SM peripheral blood
mononuclear cells (PBMC) ex vivo (27, 28). Subsequently, a study of vervet AGM (which
inhabit East and Southern Africa) showed that CCR5 was dispensable for SIVagmVer
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infection of vervet PBMC, and vervet CXCR6 and GPR15 were robust coreceptors in vitro
(29). While that study did not identify the non-CCR5 coreceptor(s) responsible for
infection of vervet PBMC, it suggested that the use of alternative pathways to target
and enter cells was shared by other natural hosts of SIV.

In this study, we wished to understand coreceptor use in another natural host
infection, SIVagmSab infection of sabaeus AGM (which inhabit West Africa), and iden-
tify the pathways responsible for primary cell infection. Since previous studies of
SIVagmSab coreceptor use employed human-derived CD4 and coreceptors, yet small
amino acid differences can substantially impact coreceptor activity (30), we cloned
sabaeus CD4 and 10 candidate coreceptors. Additionally, since most SIVagmSab iso-
lates available have been passaged in human cell lines (31, 32), potentially altering
patterns of coreceptor use, we employed the recently described transmitter/founder
SIVagmSab (33) and cloned additional genetically diverse env genes from plasma of
wild, naturally infected sabaeus monkeys. Since coreceptor function can be highly
dependent on expression levels (34, 35), and also because AGM have a propensity to
downregulate CD4 (36), we analyzed entry with a range of coreceptor and CD4 levels.
Finally, we used blocking agents to confirm the pathways mediating entry into sabaeus
PBMC. We demonstrate here that species-matched sabaeus CXCR6/CD4 is as efficient
an entry pathway for SIVagmSab in transfected cells as CCR5/CD4 and that blocking of
CXCR6 inhibits SIVagmSab infection of sabaeus PBMC, with an impact that is substan-
tially greater than that of blocking of CCR5. These findings demonstrate a major role for
CXCR6 in sabaeus SIVagmSab infection and support the emerging idea that entry
mediated by non-CCR5 pathways, particularly CXCR6, is a common feature of SIV
infection of natural hosts.

RESULTS
Cloning and sequence analysis of sabaeus African green monkey CD4 and

candidate coreceptors. Recent work from our laboratory and others has described the
use of species-matched non-CCR5 coreceptors by the natural host viruses SIVsmm and
SIVagmVer (27–29). Here we asked whether an SIV of another natural host, SIVagmSab
of sabaeus AGM, also utilized species-matched alternative coreceptors in the context of
species-matched CD4. We first cloned CD4 from cDNA of two sabaeus monkeys and
identified two alleles that differed from each other by 5 amino acids (CD4-30 and
CD4-31) (Table 1). These differences included several previously described AGM CD4
polymorphisms (37, 38), and CD4-30 also contained a novel C-terminal serine. Two
polymorphisms fell within domain 1 of CD4 but not within residues implicated in
human CD4/HIV-1 gp120 interactions (39). Like other reported AGM CD4 alleles, these
sequences share �90% amino acid identity to human CD4 and are most closely related
to the CD4 molecules of other African green monkey subspecies, including vervet and
grivet (Table 1).

We then cloned APJ, CCR2b, CCR3, CCR4, CCR5, CCR8, CXCR4, CXCR6, GPR1, and
GPR15 from genomic DNA (gDNA) or cDNA using primers that lie outside the open
reading frame (ORF) of each gene (27). The sequences of most cloned coreceptors were
identical to those of the genes described in the recently sequenced sabaeus genome
(BioProject accession number PRJNA215854) (40). One exception was CCR2b, which
contained a conservative V340A difference. In addition, sabaeus CCR5 is known to be

TABLE 1 Sabaeus African green monkey CD4 moleculesa

CD4 clone

% amino acid identity to CD4 from:

Human
Rhesus
macaque

Sooty
mangabey

Grivet AGM
(Chlorocebus
aethiops)

Vervet AGM
(Chlorocebus
pygerythrus)

AGM Sab 30 90.6 95.4 95.0 99.1 98.9
AGM Sab 31 90.8 95.6 95.2 99.3 99.1
aCD4 was cloned from PBMC cDNA of two individual animals, yielding two AGM CD4 clones that are 98.9%
identical at the amino acid level (5 amino acids are different).
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polymorphic, and the clone generated here is unique to reported sequences but
contains several previously described AGM polymorphisms (N57S and R163G) (24). We
aligned the amino acid sequences of these 10 sabaeus AGM candidate coreceptors with
those of human, rhesus macaque, and sooty mangabey. As shown in Table 2, the amino
acid sequences of these coreceptors all vary from those of human, including in the N
terminus and second extracellular loop (ECL2), the two domains expected to interact
with Env based on studies of CCR5-Env interactions (41). These differences underscore
the importance of testing the coreceptor usage of SIVs on their species-matched
molecules.

The sabaeus sequences were overall more similar to those of other nonhuman
primates than to human sequences, and several were identical to those of other
monkeys at the amino acid level, such as GPR1 and CXCR4 (100% amino acid identity
between sabaeus monkeys and RM) and CCR4 (100% amino acid identity among
sabaeus monkeys, RM, and SM). Of note, CXCR6 of macaques (rhesus, pigtail, and
cynomolgus macaques) encodes an R at position 31, which results in poor coreceptor
activity for this molecule (30), but sabaeus CXCR6 possesses the more common S31
residue that is seen in SM and most other primate CXCR6 sequences and is associated
with efficient coreceptor function. The sabaeus CXCR6, GPR15, and CXCR4 amino acid
sequences are identical to those reported previously for vervet (29), while vervet GPR1,
APJ, CCR2b, CCR3, CCR4, and CCR8 sequences have not been reported.

SIVagmSab Envs use non-CCR5 coreceptors in vitro. We then tested the ability of
each candidate coreceptor to facilitate SIVagmSab entry in vitro and the impact of the
two distinct CD4 alleles. Luciferase reporter pseudotype viruses were generated, car-
rying Env from SIVagmSab92018ivTF, an infectious molecularly cloned transmitted/
founder virus derived from intravenous infection with an unpassaged SIVagmSab stock
(33). 293T cells were transfected with each candidate coreceptor in conjunction with
each of the two sabaeus CD4 alleles and infected with the pseudotype virus, and entry
was measured by luciferase production 3 days later. SIVagmSab92018ivTF readily
entered cells expressing species-matched CXCR6, CCR5, and GPR15 (Fig. 1). We saw
lower levels of entry through sabaeus GPR1 and APJ. Both sabaeus CD4 alleles were
used by SIVagmSab for entry, and there was no evidence that the specific CD4 allele
altered the preference for any coreceptor tested. Of note, SIVagmSab has been re-
ported to use human CXCR4 (33, 42), but we found no detectable entry through
species-matched CXCR4 and CD4. Because we observed no functional difference
between the two CD4 alleles, subsequent studies were done with CD4-31.

TABLE 2 Sabaeus African green monkey candidate coreceptorsa

AGM Sab
7TMR

% amino acid identity to 7TMR from:

No. of amino acids
differing from
human sequence

Human
Rhesus
macaque

Sooty
mangabey NTD ECL2

APJ 98.7 99.7 99.5 0 1
CCR2b 96.7 99.2 99.4 2 2
CCR3 93.5 98 97.2 6 4
CCR4 98.6 100 100 0 1
CCR5 97.4 99.1 98.9 2 1
CCR8 94.6 99.2 98.9 8 1
CXCR4 98.6 100 99.7 3 1
CXCR6 95.3 98.8 98.3 6 1
GPR1 98 100 99.7 1 1
GPR15 97.2 99.4 99.4 1 2
aSeven-transmembrane receptors (7TMRs) were cloned from PBMC genomic DNA or cDNA, and the amino
acid identity compared to human, rhesus macaque, and sooty mangabey molecules is shown. Also shown is
the number of amino acids differing from the sequence of the human molecule in the N-terminal domain
(NTD) and extracellular loop 2 (ECL2), which are implicated in coreceptor function based on studies with
CCR5.
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We then sought to expand this analysis to additional SIVagmSab envelopes. Aside
from SIVagmSab92018ivTF, all available SIVagmSab isolates have been passaged in
human cell lines (31, 32), making it difficult to be sure that adaptation had not occurred
in vitro and that their coreceptor usage pattern would reflect authentic SIVagmSab
phenotypes. Therefore, we cloned envelopes from plasma collected from two sabaeus
monkeys (monkeys 89042 and 89044) that were already infected upon their capture in
West Africa. SIV sequences of rev, tat, nef, and vpr (but not env) of plasma virus of AGM
89042 were described previously (43), whereas sequences of AGM 89044 had not been
previously characterized. We amplified env from plasma viral RNA (vRNA) and com-
pared these two field isolates to each other and to other SIVagmSab sequences. These
two env genes share 78% nucleotide sequence homology with each other and repre-
sent distinct sequences among reported SIVagmSab env genes, as shown in Fig. 2A.

We pseudotyped these SIVagmSab Envs on a luciferase reporter backbone and
tested their ability to use the full panel of potential coreceptors in conjunction with
sabaeus CD4-31 (Fig. 2B). Both Envs showed robust entry through sabaeus CXCR6,
CCR5, and GPR15 in transfected cells. They also showed similar moderate usages of
GPR1, but only one of the two Envs used APJ. Additionally, none of the Envs tested used
sabaeus CCR5, CXCR6, or GPR15 independently of CD4 (data not shown). Thus, the
alternative pattern of coreceptor use of SIVagmSab92018ivTF Env appears to accurately
reflect patterns of divergent SIVagmSab isolates from naturally infected animals, al-
though the low-level use of APJ is less consistent.

Efficient use of CXCR6 by SIVagmSab occurs with various CD4 levels. Cells
transfected with CD4 and a coreceptor allow the easy identification of potential
coreceptor function, but these experimental conditions of overexpression may not
reflect entry in the context of primary cells, where coreceptors and CD4 are likely
expressed at substantially lower levels. Therefore, we carried out experiments to assess
the impact of decreasing amounts of the coreceptor and CD4, in various combinations,
on entry supported by each of the coreceptors.

293T cells were first transfected with various amounts of each of the functional
sabaeus coreceptors (CCR5, CXCR6, GPR15, GPR1, and APJ), titrating the amount of
plasmid in 10-fold serial dilutions from 250 ng to 0.25 ng, in conjunction with our
standard amount of the sabaeus CD4 plasmid (250 ng). A parallel set of cells was
transfected with human CCR5, CXCR6, and GPR15 plasmids at the same concentrations
and stained by fluorescence-activated cell sorter (FACS) analysis, which revealed similar
levels of staining (percent positive and mean fluorescence intensity [MFI]) for each
coreceptor and decreasing coreceptor expression levels across the titrations that were
similar for the three coreceptors (data not shown). Cells transfected with sabaeus CD4
and coreceptor plasmids were then infected with the SIVagmSab92018ivTF reporter
virus.

FIG 1 Efficient use of alternative sabaeus coreceptors with two sabaeus CD4 molecules by prototype
SIVagmSab92018ivTF Env pseudotypes. 293T cells were transfected with sabaeus candidate coreceptors
in conjunction with each of the two sabaeus CD4 alleles. Cells were infected 48 h later with pseudotypes
carrying Env from the transmitter/founder SIVagmSab92018ivTF. Cells were then lysed 72 h later, and
luciferase content was measured as relative light units (RLU). Infections were carried out in triplicate, and
data (means � standard deviations) are representative of results from 4 replicate experiments.
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As shown in Fig. 3A, a 10-fold decrease (from 250 to 25 ng) had essentially no impact
on entry mediated by CXCR6 and CCR5, whereas entry through GPR15, APJ, and GPR1
was substantially affected. A hundredfold decrease (to 2.5 ng) resulted in an �50% loss
of entry for CXCR6 and CCR5 but had a substantially greater impact on GPR15 and
nearly abrogated entry through APJ and GPR1. Only when it was reduced by 3 orders
of magnitude (to 0.25 ng) was entry through CXCR6 and CCR5 markedly attenuated.
Thus, high coreceptor levels appear to be less critical for CXCR6 and CCR5 function than
for GPR15, GPR1, and APJ.

We then asked whether the amount of CD4 impacts the use of each coreceptor and
the relative dependence on coreceptor levels, focusing on CXCR6, CCR5, and GPR15
(Fig. 3B). This question is particularly relevant for SIVagm entry, since AGM CD4� T cells
downregulate CD4 upon entry into the memory pool (36), and CD4 may thus be a
limiting factor. For this, we tested a 100-fold difference, utilizing “high-CD4” (250 ng)
(comparable to data shown Fig. 3A) and “low-CD4” (2.5 ng) conditions. FACS staining
confirmed that titrating the amount of the AGM CD4 plasmid resulted in comparably
reduced levels of CD4 expression (data not shown).

As shown in Fig. 3B, the level of entry under low-CD4 conditions was approximately
half that under high-CD4 conditions for essentially all coreceptors and coreceptor
transfection levels. Furthermore, under low-CD4 conditions, entry through CXCR6
appeared least sensitive to decreasing coreceptor levels, showing relatively preserved
entry down to a 100-fold decrease in coreceptor plasmid transfection. These data
suggest that low levels of CD4 may be less of an obstacle to SIVagmSab entry through
CXCR6 than through other pathways. Collectively, these findings suggest that
SIVagmSab entry through sabaeus CXCR6 is at least as robust as entry through sabaeus
CCR5, including under conditions of limiting coreceptor and CD4 levels that may be

FIG 2 Divergent field isolate SIVagmSab Envs efficiently use alternative coreceptors in vitro. SIVagmSab
Envs were amplified from the plasma of two wild-infected sabaeus monkeys (animals 89042 and 89044).
(A) Maximum likelihood phylogenetic tree showing SIVagmSab89042 and SIVagmSab89044 env genes as
well as SIVagmSab92018ivTF and other previously described SIV env nucleotide sequences. Envs used in
this study are boxed, and the two env genes cloned here from wild, naturally infected animals are
indicated by arrows. Bootstrap values of �70% are indicated by an asterisk. The bar indicates 0.2
nucleotide substitutions per site. (B) 293T cells were transfected with each sabaeus candidate coreceptor
in conjunction with sabaeus CD4-31. Cells were then infected with luciferase reporter pseudotypes
containing field isolate SIVagmSab Envs or SIVagmSab92018ivTF Env. Cells were lysed and the luciferase
content was measured 72 h later. Infections were carried out in triplicate, and data (means � standard
deviations) are representative of results from 3 replicate experiments.
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relevant to AGM primary cells. In contrast, GPR15 is used efficiently in standard
transfection-overexpression conditions, but entry through this pathway may be more
sensitive to lower coreceptor levels, while GPR1 and APJ are less efficient and require
higher levels of the coreceptor to support entry.

SIVagmSab uses CXCR6 to infect primary sabaeus PBMC. We recently demon-
strated that replication of SIVsmm in SM primary PBMC was inhibited by blocking
CXCR6 with its chemokine ligand CXCL16 and by blocking CCR5 with the small-
molecule antagonist maraviroc and was reduced further by using both blocking agents
together (28). This indicated that both coreceptor pathways are used for SIVsmm
infection of cells of its natural host. Riddick et al. then showed that blocking of CCR5
had no impact on the replication of SIVagmVer in vervet PBMC, implicating the use of
non-CCR5 pathways (29). Therefore, having shown that sabaeus CXCR6 functions as an
efficient coreceptor in vitro, we asked if CXCR6 was in fact used for SIVagmSab infection
of sabaeus primary PBMC. To do this, we tested whether blocking entry through CXCR6
and CCR5, separately and together, would limit the replication of SIVagmSab in sabaeus
PBMC.

Since the sequences of these sabaeus coreceptors vary from those of human and
sooty mangabey homologs, we first asked if recombinant human CXCL16 and mara-
viroc would specifically block entry through sabaeus CXCR6 and CCR5, respectively.
293T cells were transfected with plasmids encoding sabaeus CD4 along with CCR5,
CXCR6, GPR15, GPR1, and APJ; pretreated for 1 h with CXCL16 (500 ng/ml) or maraviroc
(15 �M); and then infected with the SIVagmSab92018ivTF reporter pseudotype
(Fig. 4A). Both CXCL16 and maraviroc blocked entry through their cognate coreceptors
and were highly specific. However, entry inhibition was incomplete, with 18% entry
through CCR5 remaining despite maraviroc treatment and 11% entry through CXCR6
remaining despite CXCL16 treatment. Therefore, the use of these inhibitors is specific,
although it could potentially underestimate the amount of SIVagmSab entry through

FIG 3 Efficient use of sabaeus CXCR6 at low as well as high CD4 levels. (A) 293T cells were transfected
with sabaeus CD4-31 (250 ng of the plasmid) and 10-fold serial dilutions (starting at 250 ng) of plasmids
encoding sabaeus CCR5, CXCR6, GPR15, GPR1, and GPR15. Empty pcDNA3.1 was used as a filler such that
cells under each condition were transfected with an equal quantity of DNA (500 ng). Cells were infected
48 h later with the SIVagmSab92018ivTF Env luciferase reporter pseudotype, and luciferase content was
measured 72 h later. (B to D) Experiment performed as described above for panel A but with 10-fold
dilutions of CCR5 (B), CXCR6 (C), and GPR15 (D) in conjunction with either large amounts of CD4 (250 ng)
or small amounts of CD4 (2.5 ng). Entry levels were normalized to 100% based on RLU expression using
maximum CD4 and coreceptor amounts for each coreceptor. Data represent means � standard devia-
tions of results from three replicate experiments carried out in triplicate.
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each coreceptor. Unfortunately, no small molecule or other blocker against the orphan
receptor GPR15 is available, preventing a similar analysis of this coreceptor.

We then investigated the use of CXCR6 and CCR5 by SIVagmSab during infection of
sabaeus PBMC using cells from five uninfected animals. Sequencing of the CXCR6 and
CCR5 genes from the animals revealed identical CXCR6 sequences, while CCR5 revealed
previously described polymorphisms at residues 57, 93, and 163 (44). No animals
possessed CCR5 sequences predicted to be nonfunctional, but three were heterozy-
gous for R93, which has been reported to support SIVagm entry less efficiently (24),
although SIVagmSab replication in PBMC from these animals did not differ from that in
other animals (data not shown).

PBMC from the five animals were stimulated with phytohemagglutinin (PHA)
and interleukin-2 (IL-2) and then treated with CXCL16, maraviroc, both agents togeth-
er, or the vehicle alone. Cells were then infected with replication-competent
SIVagmSab92018ivTF derived from an infectious molecular clone, and virus replication
was quantified by measuring p27 levels in the culture supernatant at day 7. Blockade
of CCR5 resulted in a very slight but statistically significant 8% decrease in supernatant
p27 levels (range, 2 to 14%; P � 0.026 compared to the vehicle alone). In contrast,

FIG 4 Blocking entry through CXCR6 limits SIVagmSab replication in primary sabaeus lymphocytes. (A)
293T cells were transfected with plasmids encoding sabaeus CCR5, CXCR6, GPR15, GPR1, or APJ or an
empty vector (10 ng) in conjunction with sabaeus CD4-31 (1 �g). Cells were treated for 1 h with the
CXCR6 ligand CXCL16 (500 ng/ml), the CCR5 blocker maraviroc (MVC) (15 �M), or the vehicle alone and
then infected with a luciferase reporter pseudotype containing SIVagmSab92018ivTF Env. Cells were
lysed and luciferase content was measured 72 h later. Infections were carried out in triplicate, and data
(means � standard deviations) are representative of results from 3 replicate experiments. (B) Sabaeus
PBMC were stimulated for 3 days with PHA/IL-2; treated for 1 h with CXCL16 (500 ng/ml), maraviroc
(15 �M), both blocking agents, or the vehicle alone; and then infected in duplicate with
SIVagmSab92018ivTF using 5 ng of viral p27 Gag antigen. Infection was measured as p27 production in
the supernatant at day 7 and is shown for each treatment as a percentage of the value for the vehicle
alone (no drug). Each symbol represents data from a different animal’s PBMC, and shown are means and
standard deviations under each condition. *, P � 0.05; **, P � 0.01 (two-tailed paired t test). dpi, days
postinfection.
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blockade of CXCR6 decreased replication by 36% (range, 22 to 52%; P � 0.004
compared to the vehicle alone). The impact of blocking of CXCR6 was significantly
greater than that of blocking of CCR5 (P � 0.006). Blocking of both coreceptors
together reduced infection further, such that p27 levels were decreased 52% when
both agents were used (range, 40 to 72%; P � 0.005 and P � 0.001 compared to
CXCL16 alone and CCR5 alone, respectively). In contrast, CXCL16 had no effect on
infection of RM PBMC by SIVmac239 (which uses RM CXCR6 poorly and enters RM PBMC
entirely through CCR5 [28]) or on infection of human PBMC by HIV-1 BaL, indicating
that SIVagmSab/sabaeus PBMC blocking by CXCL16 was not a nonspecific effect of the
chemokine (data not shown).

These data confirm that CXCR6 supports SIVagmSab infection of primary lympho-
cytes in this natural host. These data also suggest that CCR5 does so as well, although
the quantitative contribution of CCR5 appears to be less than that of CXCR6 based on
these blocking results. Given the incomplete blocking by CXCL16 and maraviroc of their
coreceptors, it is unclear whether the remaining infection (�50%) is due to residual
entry through CXCR6 and CCR5 or the use of yet another alternative coreceptor.

DISCUSSION

In contrast to HIV-1- and SIVmac-infected nonprogressors that avoid pathogenesis
mainly by controlling viremia, natural hosts are able to tolerate sustained viremia
without disease, which is likely the result of prolonged coevolution with their SIVs.
Recent evidence suggests that one mechanism for this peaceful coexistence is linked to
patterns of host cell targeting in nonpathogenic infections (45). Since cell targeting is
determined largely by entry, in this study, we aimed to identify entry pathways used by
the natural host virus SIVagmSab. We found that diverse Envs, including those from
wild, naturally infected animals, used sabaeus CXCR6 very efficiently, and used GPR15
somewhat less so, in addition to CCR5. Robust CXCR6 use occurred at both high and
low CD4 levels. Blocking of CXCR6 inhibited SIVagmSab replication in PBMC, confirming
that it not only functions in transfection-based systems but also mediates infection of
primary target cells relevant to infection in vivo.

The in vitro use of alternative coreceptors by various SIVs was first observed years
ago, although most studies utilized human rather than species-matched molecules
(22–24). Nevertheless, CCR5 has long been considered the only coreceptor relevant to
SIV infection in vivo. One early-recognized exception was SIVrcm, which infects the
natural host red-capped mangabeys (RCM). Most RCM are CCR5 null due to a common
CCR5 deletion allele, and SIVrcm was found to use human CCR2 and CXCR6 but not
CCR5 (46, 47). More recently, our laboratory identified a common CCR5 deletion allele
in SM and showed that homozygous CCR5-null animals were infected at a frequency
similar to that of SM with wild-type CCR5 and maintained nearly equivalent viral loads
(26). We later identified SM CXCR6 as a robust coreceptor for SIVsmm Envs isolated from
both CCR5-null and wild-type animals and showed that CXCR6 mediated entry into SM
primary lymphocytes (along with CCR5 if it was present) (27, 28). More recently, it was
shown that blocking of entry through CCR5 by SIVagmVer did not hinder replication in
vervet PBMC and that species-matched CXCR6 and GPR15 were robust coreceptors in
transfected cells (29). Our findings here showing efficient alternative coreceptor usage
by SIVagmSab for sabaeus lymphocyte infection identify yet another natural host in
which CCR5 is dispensable, bolstering the idea that CCR5-independent alternative
coreceptor-mediated infection is a widely shared feature of SIV-natural host relation-
ships. This new paradigm stands in marked contrast to pathogenic SIVmac infection of
nonnatural host RM and HIV-1 infection of humans, where CCR5 is indispensable (28,
29, 48–52).

Across natural hosts, CCR5 expression is highly restricted, and the frequency of
CCR5� CD4� cells is low compared to that in nonnatural hosts (25). This exceedingly
low CCR5 expression level has represented a paradox given the sustained high-level
viremia seen in natural hosts. Similarly, cell-associated infection in natural hosts exceeds
the proportion of cells expressing CCR5 (53). The observation that alternative corecep-
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tors, particularly CXCR6, are used for SIV entry in infections of multiple natural hosts
provides an explanation for the robust replication in the face of limited CCR5 expres-
sion and suggests that CCR5� CD4� cells expressing CXCR6 (or other alternative
coreceptors) are a major site of virus replication in these species.

The use of alternative coreceptors in CCR5-low natural hosts, in contrast to CCR5-
dependent infection of nonnatural hosts, likely also contributes to distinct outcomes of
infection. Unique features of natural host infection include the resolution of immune
activation after acute infection, maintenance of gut immunity and integrity, an absence
of microbial translocation, less lymphoid tissue infection during chronic infection and
an absence of inflammation and fibrosis, and a lack of peripheral CD4� T cell depletion
(5, 6). A central mechanism underlying these distinct features is divergent cell subset
and anatomical targeting. While infected cells show rapid turnover in both natural and
nonnatural hosts, CD4� Tcm and Tscm cells are infected at a lower frequency in sooty
mangabeys than in rhesus macaques (8, 9), which likely allows the maintenance of
CD4� T cell homeostasis. Th17 cells are critical for gut immune barrier function, and
although their infection status in natural hosts is not fully defined, they are maintained
in infected SM and AGM but lost in SIVmac-infected RM and HIV-1-infected humans
(15–17). Associated with this, mucosal barrier integrity is maintained in natural hosts,
whereas nonnatural hosts experience a loss of barrier integrity, microbial translocation,
and chronic immune activation (18–21). Within lymphoid tissues, Tfh cells are heavily
infected throughout the course of HIV-1 and SIVmac infections in humans and RM, with
associated inflammation and fibrosis (10). In contrast, chronically infected natural hosts
show much less Tfh cell infection and lower levels of lymph node virus, with an absence
of inflammation and fibrosis and maintenance of lymph node architecture (11–14).
Differential virus targeting to various cell types and anatomical locations indicates that
the determinants of cell targeting are important determinants of distinct outcomes of
infection.

It has been suggested that on CD4� T cells, CXCR6 serves as an extralymphoid
homing receptor (54), and limited studies in humans suggest that it is expressed mainly
by memory T cells, particularly T cells in tissues such as lung and at sites of inflamma-
tion and cancer (55–57), although expression on naive cells has been reported as well
(58). Studies of CXCR6 expression on nonhuman primate natural host cells have been
hindered by a lack of cross-reactivity of anti-human CXCR6 antibodies. In vervet AGM,
CXCR6 mRNA was recently described for both naive and memory CD4� T cell subsets,
with divergent patterns of regulation between CCR5 and CXCR6 transcripts, but surface
protein expression levels were not determined (29). Thus, while restricted CCR5 ex-
pression likely protects certain critical subsets from SIV infection in natural hosts, the
CXCR6� CD4� cells that enable robust replication without inducing disease remain to
be defined. Finally, several studies have investigated SIV transmission and CCR5� CD4�

target cell availability (59–62). Our data suggest that to fully understand these rela-
tionships, it will be important to determine the frequency of CXCR6� target cells at the
sites of transmission in these animals.

Blocking of CXCR6 inhibited infection of sabaeus PBMC to a significantly greater
extent (36% reduction) than did blocking of CCR5 (only 8% reduction), suggesting that
CXCR6 may be quantitatively dominant in these cells. Alternatively, it is possible that
differences in blocking efficiencies for the two agents could be responsible, although
we think that this is unlikely to explain the minimal impact of maraviroc on infection
(28). Nevertheless, both agents together were not sufficient to completely inhibit
SIVagmSab infection. While this result may be due to incomplete blocking of CXCR6
and CCR5, we cannot exclude the possibility that additional coreceptors are used as
well. GPR15 is a potential candidate, as it is used in transfected cells (although less
efficiently than CXCR6 and CCR5 at limiting amounts of CD4 and the coreceptor) and
is expressed on human CD4� T cells (63). Interestingly, SIVmac can use RM GPR15 to
enter transfected cells in vitro, but blocking of CCR5 fully inhibits SIVmac replication in
RM PBMC, indicating that GPR15 does not mediate RM PBMC infection (28, 29).
Concordant findings were reported for other ex vivo and in vivo studies (64, 65). It is not
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clear why GPR15 might function in transfected cells but not in primary cells. However,
we could not directly test entry through GPR15 since its ligand has not been identified
and no small antagonist is available, so a role for GPR15 in addition to CXCR6 is
unresolved. Future studies using knockdown approaches could address this point. It is
unlikely that GPR1 and APJ serve as coreceptors for SIVagmSab in PBMC, given the
low-level function the we found in transfected cells and limited evidence (in humans
and rodents at least) for expression on CD4� T cells (66–70). Finally, while we tested all
of the major alternative coreceptors that have been reported for various SIVs, it is
possible that there are other, as-yet-unidentified seven-transmembrane receptor
(7TMR) molecules that could also mediate entry.

Previous studies of CCR5 and CXCR4 demonstrated that HIV-1 Env engages two
coreceptor domains, the N terminus and ECL2 (41, 71). In addition, viruses that use
multiple coreceptors may preferentially engage one of the two domains on each
coreceptor (72). It will be interesting to determine whether this two-site model applies
to CXCR6 use by SIV Envs. SIV use of the CXCR6 N terminus is supported by the
observation that a single amino acid change in this region renders RM CXCR6 a poor
SIV coreceptor compared to CXCR6 from other primates (30). Further experiments, such
as domain swapping and site-directed mutagenesis, will be required to accurately
identify the contribution of these domains to SIV Env interactions.

The AGM cells included in this study were polymorphic for CCR5, concordant with
previously reported observations (24, 44). Some AGM CCR5 polymorphisms limit
SIVagm replication in vitro, which, combined with the low frequency of CCR5� CD4� T
cells, suggests a long history of coevolution between SIVagm and its host, driven by
deleterious consequences of CCR5-mediated infection (24, 44). In contrast, all CXCR6
alleles sequenced here were identical, suggesting distinct evolutionary pressures ex-
erted on these two coreceptors. We speculate that the lack of AGM CXCR6 diversity
despite the prolonged AGM-SIVagm coexistence reflects a benign outcome when
CXCR6 is used to enter target cells.

With the data reported here, the use of a non-CCR5 pathway in species-matched
lymphocyte infection has been shown for three viruses infecting natural hosts,
SIVagmSab, SIVsmm, and SIVagmVer, and CXCR6 use specifically has been confirmed
for the former two viruses. These viruses are quite diverse: SIVagm and SIVsmm
represent two distinct SIV lineages, and studies combining molecular clock analyses
with biogeography place their most recent common ancestor �100,000 years ago (73).
Furthermore, SIVagmSab and SIVagmVer infect nonsympatric subspecies of African
green monkeys in West and East/Southern Africa, respectively, which also diverged
over 100,000 years ago (73). Despite these divergences, the common use of non-CCR5
entry pathways suggests that this pattern is the norm among natural hosts that harbor
endemic SIV strains and is likely the result of virus-host coevolution. In contrast,
CCR5-restricted entry occurs only in more recent zoonotic infections, such as SIVmac
and HIV-1 infections, in hosts where CCR5� CD4� cells are abundant. While CCR5-only
entry is possible because of high CCR5 expression levels in these hosts, why alternative
coreceptors no longer support primary lymphocyte infection is unclear. For SIVmac-RM,
the main barrier to CXCR6 use is the R31 polymorphism in RM CXCR6 (30), while for
HIV-1, it is mainly a function of Env that limits the use of CXCR6 (although exceptions
are well described [23, 74]). Thus, in order to understand the emergence of HIV-1, it will
be important to define the species-matched coreceptor usage patterns of SIVgsn/
SIVmus/SIVmon, which is the natural host virus forerunner for Env of SIVcpz, which gave
rise to HIV-1 (75–78).

In summary, our study supports a model of SIV/HIV tropism whereby in nonnatural
hosts, an abundance of CCR5� cells results in infection and disruption of CD4� T cell
subsets and lymphoid tissues, which leads to immunodeficiency. In contrast, in infec-
tion of natural hosts, where the frequency of CCR5� cells is low, the use of CXCR6 (and
possibly other coreceptors) directs SIV toward cells that are able to support viremia
without causing immunodeficiency. Defining CXCR6� cells, in both blood and tissues,
will be essential for understanding natural host cell targeting.
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MATERIALS AND METHODS
Sabaeus African green monkey PBMC. PBMC from sabaeus AGM (derived from a Caribbean-born

colony [79]) were isolated by density gradient centrifugation from whole blood that was collected as
previously described (25), cryopreserved, and thawed before use. Animals were housed at the University
of Pittsburgh in accordance with the Guide for the Care and Use of Laboratory Animals (83), the
Association for Assessment and Accreditation of Laboratory Animal Care, and the Animal Welfare Act.
Animal procedures were approved by the IACUC of the University of Pittsburgh.

Cloning of sabaeus CD4 and coreceptor molecules. Genomic DNA was isolated from resting
sabaeus AGM PBMC by using the QIAamp DNA blood minikit (Qiagen), and RNA was isolated from both
resting and concanavalin A (ConA)/IL-2-stimulated PBMC by using the RNeasy Plus kit (Qiagen). cDNA
was synthesized by using the Superscript III First Strand kit (Invitrogen), using random hexamers (for
CD4), oligo(dT) (for CXCR4), or gene-specific primers (for CCR2b and CCR4). Primers for 7TMR cDNA
synthesis and PCR amplification were previously described (27), as were the CD4 primers (AGM-CD4-for2
and AGM-CD4-rev) (29). Sabaeus CD4 and full-length 7TMRs were amplified from genomic DNA (APJ,
CCR3, CCR5, CCR8, CXCR6, GPR1, and GPR15) or cDNA (CD4, CCR2b, CCR4, and CXCR4) by using Phusion
High Fidelity DNA polymerase (New England BioLabs). 7TMRs were amplified from AGM 30, and CD4 was
amplified from AGM 30 and AGM 31. Reaction mixtures included 50 ng gDNA or 2 �l cDNA synthesis
reaction mix, and cycling conditions were those described in the kit protocol, as previously reported (27),
but annealing temperatures were modified as follows: 64°C for APJ, CCR3, CCR4, CCR8, CXCR6, GPR1,
GPR15, and CXCR4; 60°C for CCR2b; 61°C for CCR5; or 72°C for CD4. Amplicons were ligated into
pcDNA3.1� by using dual-restriction enzyme digestion (CCR2b, CCR3, CCR4, CCR8, or CXCR6) or into the
pcDNA3.1D/V5-His-TOPO vector by TOPO directional cloning (CD4, APJ, GPR1, CCR5, CXCR4, or GPR15)
using the pcDNA3.1 Directional TOPO Expression kit (Invitrogen). Clones were screened by restriction
digestion and confirmed by Sanger sequencing. Nucleotide and amino acid alignments were performed
by using the ClustalW algorithm in MacVector 13.5.2, and 7TMR membrane topology predictions were
made by using TMpred (http://www.ch.embnet.org/software/TMPRED_form.html).

Cloning and sequence analysis of SIVagmSab envelopes. Envs were derived from plasma samples
stored at the Institut Pasteur, which were previously collected in Senegal from two sabaeus AGM (animals
89042 and 89044) that were SIV positive (SIV�) upon capture. Viral RNA was isolated from plasma by
using the Viral RNA minikit (Qiagen), and cDNA was synthesized by using Superscript III reagents and a
specific primer (5=-CTCCWCCCTGGAAAGTCCCKCT-3=) modified from a primer reported previously (33).
SIVagmSab Envs were then PCR amplified with primers that were designed by using Primer3 (80) based
on previously reported SIVagmSab sequences (forward primer 5=-CACCCCSCTCCAGGCCTGTRNCAATA-3=
and reverse primer 5=-CCARCCATCSACWATDCCCC-3=). Amplicons were cloned into pcDNA3.1D/V5-His-
TOPO (Invitrogen) and screened by colony PCR and restriction analysis. Properly sized inserts were
screened for function by generating pseudotype virions and testing them on transfected 293T cells
expressing sabaeus CD4 and CCR5 or CXCR6.

Functional SIVagmSab env clones were sequenced by using an Illumina MiSeq instrument, and reads
were aligned by using Geneious 7.1.7 software (Biomatters Ltd.). A maximum likelihood phylogenetic
tree was generated with PhyML v3.0 (81), using the portion of previously reported SIVagm sequences
overlapping our two novel env genes (1,882 bp) (59). One thousand bootstrap replicates were performed.

Coreceptor functional analyses using pseudotyped virus. To generate pseudotype virus, 293T
cells were transfected with plasmids encoding SIVagmSab Envs and the pNL43-Luc-E-R� backbone (82)
by using Fugene 6 (Promega), as previously described (27). The following day, cells were washed, and
fresh medium was added. The supernatant was collected 2 days later and spun with 5% sucrose to pellet
cell debris, and p24 Gag antigen levels were quantified by an enzyme-linked immunosorbent assay
(ELISA). Pseudotype virus was treated with DNase (Roche) prior to use (50 U/ml for 15 min) to avoid
inadvertent target cell transfection by residual backbone plasmid DNA.

Coreceptor function was tested as previously described (27). Briefly, 2.5 	 105 293T cells were plated
per well into 12-well plates and transfected by using Fugene 6 with plasmids encoding CD4 and the
coreceptor (or empty pcDNA3.1�), using 250 ng each, except where otherwise noted. Cells were
replated 24 h later at 2 	 104 cell/well in 100 �l in 96-well plates and infected the following day with
pseudotype viruses using equivalent amounts of virus based on p24 antigen content. Plates were
spinoculated for 2 h at 1,200 	 g and incubated for 72 h at 37°C. To measure entry, cells were lysed, and
luciferase content was quantified as relative light units (RLU), as described previously (27), by using a
Luminoskan Ascent instrument (Thermo Labsystems). For all experiments, target cells were infected in
parallel with vesicular stomatitis virus G (VSVg) pseudotypes to ensure that differences in entry were
SIV/coreceptor specific. To confirm that equivalent amounts of the coreceptor plasmid yielded similar
levels of expression and that titration experiments resulted in similar decreases in expression levels for
different coreceptors, 293T cells were transfected with human CCR5, CXCR6, and GPR15 and stained by
FACS analysis using anti-human coreceptor antibodies 3A9 (CCR5; BD Pharmingen), K041E5 (CXCR6;
BioLegend), and 367902 (GPR15; R&D Systems). Validation of AGM CD4 plasmid titration experiments was
done similarly, using antibody L200 (BD Pharmingen).

To test the activity and specificity of blocking agents on sabaeus CCR5 and CXCR6, target cells
transfected with CD4 and the coreceptor were pretreated for 1 h at 37°C with recombinant human
CXCL16 (500 ng/ml; R&D Systems), maraviroc (15 �M; obtained from the NIH AIDS Reagent Program), or
the vehicle alone (dimethyl sulfoxide [DMSO]). Cells were infected with pseudotype virus in the
continued presence of blocking agents and harvested 72 h later for measurement of luciferase activity.

Sabaeus PBMC infection. Cryopreserved sabaeus PBMC were thawed and stimulated with PHA-P (5
�g/ml; Sigma) in complete medium (RPMI 1640 with 10% fetal bovine serum [FBS], 1% L-glutamine, and
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1% penicillin-streptomycin), and IL-2 (100 U/ml) was added the following day. After 72 h of stimulation,
2 	 105 cells/well were plated into 96-well round-bottom plates and incubated for 1 h at 37°C with
recombinant human CXCL16 (500 ng/ml), maraviroc (15 �M), both agents together, or the vehicle alone
(DMSO). Cells were then infected by spinoculation (1,200 	 g for 90 min) with SIVagmSab92018ivTF
derived from an infectious molecular clone (33) using 5 ng viral p27 Gag antigen and then incubated at
37°C overnight. The following morning, cells were washed two times and resuspended in 200 �l
complete medium containing IL-2 and appropriate blockers, and twice weekly, half of the supernatant
was removed and replaced with fresh medium containing IL-2 and blocking agents. Virus replication was
monitored by p27 Gag antigen production in the supernatant by an ELISA (Perkin-Elmer). Infections were
carried out in duplicate in 5 independent experiments using cells from different animals, and levels of
p27 at day 7 in the absence of blocking agents ranged from 5,000 to 16,000 pg/ml.

Accession number(s). Sabaeus AGM CD4 and coreceptor sequences cloned here were deposited in
GenBank under accession numbers KY225904 to KY225915. SIVagmSab env sequences were deposited
in GenBank under accession numbers KY225916 and KY225917.
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