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Plant reoviruses are able to multiply in gramineae plants and delphacid vectors
encountering different defense strategies with unique features. This study aims to
comparatively assess alterations of small RNA (sRNA) populations in both hosts upon
virus infection. For this purpose, we characterized the sRNA profiles of wheat and
planthopper vectors infected by Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae)
and quantified virus genome segments by quantitative reverse transcription PCR We
provide evidence that plant and insect silencing machineries differentially recognize the
viral genome, thus giving rise to distinct profiles of virus-derived small interfering RNAs
(vsiRNAs). In plants, most of the virus genome segments were targeted preferentially
within their upstream sequences and vsiRNAs mapped with higher density to the smaller
genome segments than to the medium or larger ones. This tendency, however, was
not observed in insects. In both hosts, vsiRNAs were equally derived from sense and
antisense RNA strands and the differences in vsiRNAs accumulation did not correlate
with mRNAs accumulation. We also established that the piwi-interacting RNA (piRNA)
pathway was active in the delphacid vector but, contrary to what is observed in virus-
infected mosquitoes, virus-specific piRNAs were not detected. This work contributes to
the understanding of the silencing response in insect and plant hosts.

Keywords: MRCV, Fijivirus, sRNAs, vsiRNAs, RNA silencing, wheat, planthopper, piRNAs

INTRODUCTION

Reoviridae is a large family of viruses that can infect fungi, vertebrates, invertebrates, and plants
(Attoui et al., 2011). Within this family, members of the Phytoreovirus, Oryzavirus, and Fijivirus
genera can multiply in several plant species and in arthropod vectors. In plants, they cause severe
diseases that threaten crop production worldwide (Lenardon et al., 1998; Dovas et al., 2004; Jiang
et al., 2008; Achon and Alonso-Duenas, 2009; Wang et al., 2009; Zhou et al., 2013). Mal de Río
Cuarto virus (MRCV) is a member of the genus Fijivirus that causes important losses in maize
production in Argentina (Lenardon et al., 1998). This virus infects also wheat, barley, oat, and
several grass weed species which constitute reservoirs of the virus throughout the year (Dagoberto
et al., 1985; Pardina et al., 1998; Laguna et al., 2000).
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MRCV virus particles have a double-shelled, icosahedral
structure, and contain 10 linear double-stranded RNAs (dsRNAs)
that code for six structural proteins (P1, P2, P3, P4, P8, and
P10) and seven non-structural proteins (P5-1, P5-2, P6, P7-
1, P7-2, P9-1, and P9-2) (Distéfano et al., 2002, 2003, 2005;
Guzmán et al., 2007; Firth and Atkins, 2009). Virus progeny
is produced and assembled within cytoplasmic inclusion bodies
called viroplasms, which are predominately composed of P9-1
(Maroniche et al., 2010, 2012; Llauger et al., 2017). In plants,
virus replication is limited to phloem tissues and causes severe
symptoms such as general stunting, multiple and small ears with
defective grain formation, and cell proliferations in the abaxial
ribs of the leaves (Nome, 1981). In insects, fijiviruses are acquired
by feeding on infected plants and transmitted in a persistent-
propagative manner (Hogenhout et al., 2008; Whitfield et al.,
2015). Delphacodes kuscheli (Hemiptera: Delphacidae) is the most
important natural vector of MRCV (Remes Lenicov, 1985). In a
closely related fijivirus, Jia et al. (2012) found that upon ingestion
virus particles enter the epithelial cells of the midgut where initial
replication occurs. Progeny viral particles cross the basal lamina
into visceral muscle cells aided by tubules composed by P7-
1 (Jia et al., 2014) and can be detected in the salivary glands
approximately 17 days post-acquisition (dpa). After this latency
period, for MRCV, only 20% of the viruliferous insects are able
to transmit the virus to wheat (Arneodo et al., 2002). In contrast
to the severe symptoms produced in plants, fijivirus infection in
insects marginally alters fecundity and hatchability of the eggs,
lifespan and/or feeding behavior (Arneodo et al., 2002; Tu et al.,
2013; Xu H. et al., 2014).

Small RNAs (sRNAs) are a type of non-coding RNAs of
20–30 nucleotides (nt) in length that regulate various biological
processes (Groszhans and Filipowicz, 2008). In plants and insects,
the small interfering RNA (siRNA) pathway is critical for antiviral
defense (Zvereva and Pooggin, 2012; Gammon and Mello, 2015).
In insects, siRNAs are also essential for the establishment of
persistent viral infections (Goic et al., 2013; Lan et al., 2016a).
In both hosts siRNAs based antiviral response is triggered after
dsRNAs produced during virus infections are recognized by
insect Dicer (DCR) or plant DCR-like (DCL) proteins and
then processed into 21–24-nt virus-derived siRNAs (vsiRNAs).
Argonaute (AGO) proteins loaded with one strand of the sRNA
duplex associate with other proteins giving rise to RNA-induced
silencing complexes that recognize and target complementary
viral RNAs to their specific inactivation. In plants, fungi,
and worms, RNA-directed RNA-polymerases (RDRs) use these
cleaved transcripts as templates to synthesize long dsRNAs that
are diced into secondary siRNAs enabling the amplification of
the silencing response (Wang et al., 2010). Apart from worms, no
RDRs have been found so far in animals (Zong et al., 2009). The
piwi-interacting RNA (piRNAs) pathway, another sRNA-based
mechanism only present in animals, was proposed to be involved
in antiviral defense in mosquitoes (Morazzani et al., 2012; Miesen
et al., 2016) but curiously not in adult flies (Petit et al., 2016).

Plant reoviruses may have originated from an ancestral insect
virus that later in time acquired the ability to multiply in plants
(Nault and Ammar, 1989). Due to frequent host alternation,
virus encounters different defense strategies with unique features.

In this work, we comparatively analyzed endogenous and viral-
derived sRNAs in MRCV-infected Triticum aestivum and the
planthopper vector D. kuscheli. In addition, we analyzed the
participation of the piRNAs pathway upon infection.

RESULTS

Analysis of Total sRNAs and vsiRNAs in
MRCV-Infected D. kuscheli Insect Vector
and Wheat Plants
Controlled infection experiments were performed to
comparatively assess the impact of MRCV infection in sRNAs
profiles in wheat and insect natural hosts. The experimental
design is schematized in Figure 1. Next, we sequenced sRNA
libraries from virus-infected wheat at 12 and 21 days post-
infection (dpi) and from infective D. kuscheli at 19 dpa with
two biological replicates per treatment. As controls, we included
wheat plants treated with non-viruliferous planthoppers and
planthoppers fed on non-infected plants. After filtering adaptors
and low-quality sequences, all libraries contained between 13 and
41 million reads. Next, we filtered the tRNA and rRNA-derived
sequences and grouped the remaining reads according to their
sizes. D. kuscheli libraries displayed a bimodal distribution of
total sRNA reads, with one peak of 21–23-nt sRNAs and a second
peak of 26–28-nt sRNAs (Figure 2A). The first peak may account
for DCR2 activity in planthoppers (Chen et al., 2012; Li et al.,
2013), whereas the second is most likely the result of the piRNA
pathway (Miesen et al., 2016). Wheat libraries showed peaks at 21
and 24-nt (Figure 2B). Even if there is no information available
on the specific roles of DCL proteins in wheat, this is the expected
distribution after DCL4, DCL2, and DCL3 activities described in
Arabidopsis and rice (Gasciolli et al., 2005; Bouché et al., 2006;
Liu et al., 2007; Tomato et al., 2012) and is in accordance to
observations in virus-infected wheat (Liu et al., 2014; Tatineni
et al., 2014).

We also assessed vsiRNA composition by mapping total reads
to a consensus sequence of MRCV genome and allowing zero,
one, or two mismatches (Supplementary Table S1). To assure
good quality mapping as well as to capture virus diversity,
we performed all further analysis with data allowing up to
one mismatch. Negligible number of reads mapped to MRCV
genome in the control treatments (Supplementary Table S1). In
D. kuscheli, 21-, 22-, and 23-nt vsiRNAs were the predominant
size classes with a peak at 22-nt (Figure 2C). Most plant-derived
vsiRNAs were 21- and 22-nt long (Liu et al., 2014) and their
relative number increased from 12 to 21 dpi (Figure 2D).

vsiRNAs Accumulate Differentially in
Planthoppers and Plant Hosts and Their
Density Does Not Correlate with RNA
Accumulation of Viral Segments
Figure 3 displays vsiRNAs mapping profiles along MRCV
genome. No strand bias was observed in any of the viral genomic
segments (Figure 3, shown by the bars next to each profile)
and vsiRNAs distribution in both hosts exhibited hot and cold
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FIGURE 1 | Schematic representation of the experimental design for sRNA analysis of planthoppers and plants infected with MRCV. Step 1: 500
D. kuscheli nymphs were allowed to feed on a single MRCV-infected wheat plant for 48 h. Step 2: the insects were moved to chambers containing non-infected
wheat plants for 17 days (latency period). During this period, upon sap ingestion, MRCV enters and multiplies in the planthopper midgut epithelial cells until reaching
a certain threshold, disseminates into midgut muscles cells, hemolymph and eventually reaches the salivary glands and the insect becomes infective. Step 3: 1:1
infection of 165 wheat seedlings in individual cages. Steps 4 and 5: individual insect and plant (young systemic leaves) samplings. Step 6: infected plants were
identified by the observation of viral symptoms and enzyme-linked immunosorbent assay (ELISA) tests followed by absolute RT-qPCR analysis to measure virus RNA
titters. Individual transmitting planthoppers were also identified based on infected plants. Step 7: pooling of samples. Step 8: insect and plant sRNAs extraction and
sequencing. Steps 1–3 were performed in growing chambers. Step 6 was performed in a greenhouse with controlled light and temperature conditions. The
experiment was repeated twice.

spots. Although hotspots are proposed to derive from folded RNA
regions (Szittya et al., 2010), we did not detect a clear correlation
between hotspots and RNA structures by in silico secondary
structure analysis (RNAfold from ViennaRNA Package; Gruber
et al., 2008, data not shown). Additionally, the absence of hotspots
common to both hosts appears to rule out this possibility.

The vsiRNAs profiles varied markedly between planthopper
and wheat MRCV hosts. In planthoppers, vsiRNA distribution
was homogeneous with hotspots evenly distributed along
the segments (Figure 3A). In plants, the read distribution
showed heterogeneous and conspicuous hotspots of vsiRNAs
accumulation along each of the genome segments. Some of the
peaks exhibited delayed phase mirror symmetry between strands
and, with the exception of S9, most of the reads mapped to
the third upstream sequences of the segments (Figure 3B and

Supplementary Figure S1). The mapping profiles were practically
identical in samples of 12 and 21 dpi (Supplementary Figure S2)
but the normalized number of MRCV-derived reads was around
seven times more abundant in the 21 dpi samples.

To analyze if some virus segments were preferentially targeted
by RNAi machinery, we quantified the number of vsiRNAs
mapping to each segment normalized by length and library size
(reads per kilobase per million reads, RPKM). A one-way analysis
of variance (ANOVA) test was performed and the segments
were classified according to significant differences of RPKM
(Figures 4A,B). In insects, segments S5, S6, and S8 showed
higher accumulation of vsiRNAs, whereas S4 and S9 were the less
densely targeted (Figure 4A). Interestingly, in plants, vsiRNAs
density increased as segment size decreased, except in the case
of S10 (Figure 4B). S9, which codes for the major component
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FIGURE 2 | Size distribution of total sRNAs and vsiRNAs in planthopper and wheat hosts. Total D. kuscheli (A) and wheat (B) sRNAs after MRCV infection.
D. kuscheli (C) and wheat (D) vsiRNAs after MRCV infection. Control insects were fed in non-infected plants. Control plants were treated with non-viruliferous
planthoppers. Insect sRNA samples were analyzed at 19 days post-acquisition (dpa). Wheat sRNA samples were analyzed at 12 and 21 days post-infection (dpi).
Reads are redundant and normalized (reads per million). Error bars: SD.

of the viroplasm (Maroniche et al., 2010), appears to trigger a
greater silencing response in plants. In sum, these results indicate
that the silencing machineries of both hosts react toward different
features of the viral genome, thus giving rise to distinct vsiRNA
profiles.

In reoviruses, transcription produces only positive sense
single-stranded RNAs that are released to the cytoplasm from
the transcriptional complexes inside the viral particles (Lourenco
and Roy, 2011). Thus, vsiRNAs are the result of the antiviral
response to dsRNA segments and/or to secondary structures of
viral mRNAs that might be exposed to the silencing machinery
(Szittya et al., 2010). To establish whether the differences in the
density of vsiRNAs per segment were related to variations in viral
RNA accumulation levels, we performed absolute quantitative
reverse transcription PCR (RT-qPCR) of the sense strand of
segments S1–S10 in insects (Figure 4C) and plants (Figure 4D).
Overall, we were unable to explain the differences in normalized
read counts by differences in RNA accumulation. For example,
S1 was highly expressed in plants but accumulated a lower
density of vsiRNAs, whereas S6 was poorly expressed in insects
but accumulated a higher density of vsiRNAs. These results

indicate that in MRCV-infected hosts, vsiRNAs accumulation is
not directly related to viral RNA accumulation and might rather
be a consequence of dsRNA accessibility to the dicing machinery.

piRNA Pathway Is Active in Planthoppers
But Virus-Derived piRNAs against MRCV
Were Not Detected
The piRNA pathway has been recently implicated in antiviral
defense in insects (Morazzani et al., 2012; Miesen et al., 2016).
However, we were unable to detect 26–28-nt sRNAs mapping
to MRCV genome in infected planthoppers (Figure 2C). We
then assessed if piRNA pathway is present and active in
D. kuscheli. Since there are no data available of D. kuscheli
transposable elements (TEs), we then mapped total sRNAs to
a Drosophila TE database obtained from FlyBase v.FB2016_05
(Attrill et al., 2015). On average, 3.97% of the reads mapped
to TEs in the database. Out of the 80 transposable elements
with more than 2000 mapping reads, 61 showed clear evidence
of being targeted by piRNAs. This is shown by the size of the
sRNAs and a sequence logo of 10-nt overlapping reads with a
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FIGURE 3 | Distribution of vsiRNAs from infected D. kuscheli (A) and
wheat (B) along the 10 dsRNAs segments of MRCV genome. Average
per-base coverage of vsiRNAs is represented in the y-axis and the nucleotide
position of MRCV genomic segments are represented across the x-axis.
vsiRNAs identical (dark gray) or complementary (light gray) to the positive
strands are displayed above and below of each segment, respectively.
A schematic representation of the predicted ORFs is shown across the x-axis.
Next to each panel, proportion of vsiRNAs reads mapping to the positive
(upper) or negative (lower) strands of each segment. A red line at 50% is
shown. Error bars: percent SD.

ping-pong signature. As an example, Figure 5 displays the results
for Drosophila melanogaster gypsy2 transposon. Indeed, 11,902
sRNAs predominantly 24–27-nt long (Figure 5A) mapped almost
exclusively to the antisense strand of gypsy2 (Figure 5B). A strong
bias of A in the 10th position of the sense strand and U in the

first position of the antisense strand was evident (Figure 5C).
Overall, these results indicate that the piRNA pathway is active
in planthoppers but unlike what has been found in other virus-
infected insects, we did not observe anti-MRCV piRNAs.

DISCUSSION

In insects, antiviral RNA silencing limits virus accumulation
and this process may lead to persistence (Lan et al., 2016b)
and can affect vector competence (Lan et al., 2016a) and
transmission efficiency (Argüello Caro et al., 2013; Matsukura
et al., 2015). Researchers have extensively studied siRNA pathway
in D. melanogaster and mosquitoes (Bronkhorst and Van Rij,
2014; Xu and Cherry, 2014) and to a lesser extent in leafhopper
and planthopper vectors that transmit persistent-propagative
viruses (Li et al., 2013; Lan et al., 2016b). In most of these
insects, DCR2 predominantly gives rise to 21-nt vsiRNAs that
limit virus infection (Galiana-Arnoux et al., 2006; Van Rij et al.,
2006; Wang et al., 2006; Schnettler et al., 2013; Sekhar Nandety
et al., 2013; Lan et al., 2016b). However, the results presented
here indicate that for D. kuscheli the 22-nt species is the most
abundant followed by the 21- and 23-nt long vsiRNAs (Figure 2),
in agreement with previous findings in other planthopper species
(Chen et al., 2012; Xu Y. et al., 2012, 2014; Li et al., 2013,
2014; Lan et al., 2016a). Interestingly, DCR2 from the brown
planthopper Nilaparvata lugens (Hemiptera: Delphacidae) lacks
the carboxy-terminal dsRNA binding domain (dRBD) that is
present in Drosophila and other insects (Zhang X.-Y. et al., 2013).
This difference could account for differences in the molecular
ruler that determines the sRNA length.

Insects and other animals produce piRNAs involved in
maintaining genome stability in germ line cells by targeting
transposons (Halic and Moazed, 2009). Interestingly, emerging
functions have been recently proposed for piRNAs (Czech and
Hannon, 2016; Sarkar et al., 2017) including their participation
in antiviral defense in mosquitoes (Morazzani et al., 2012;
Miesen et al., 2016). In fact, Lan et al. (2016b) detected
piRNAs in leafhoppers, whereas Xu et al. (2013) showed that
the planthopper N. lugens codes for piRNA pathway core
components including AGO 3, Piwi and Aubergine. Our study
allowed the detection of piRNAs in planthoppers for the first
time but failed to detect virus-derived piRNAs of 24–26-nt
(Figure 5C). Curiously, piRNA production or turnover seems
affected by MRCV infection. Even though the decrease shown
in Figure 2A is not statistically significant, the role of infection
in the control of transposons and host gene regulation deserves
further studies.

The model plant Arabidopsis codes for 4 DCLs, 6 RDRs,
and 10 AGOs, whereas wheat and other monocots code for
5 DCL proteins (Margis et al., 2006), 5 RDRs [RDR1, RDR2,
RDR3a, RDR3b, RDR6 (Zong et al., 2009), and possibly 19 AGOs
(Kapoor et al., 2008)]. DCL4, DCL2, and DCL3 are involved in
processing viral RNAs giving rise to vsiRNAs of 21-, 22-, and 24-
nt respectively. Parent et al. (2015) have established hierarchical
roles for DCL4 and DCL2 and reported that the 21-nt vsiRNAs is
the most abundant class followed by 22-nt vsiRNAs.
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FIGURE 4 | Average vsiRNAs reads per kilobase per million reads (RPKM) values of the individual MRCV segments (S01–S10) in D. kuscheli (A) and
wheat (B). One-way ANOVA grouping is shown with letters. Absolute quantification of the 10 MRCV genome segments (S01–S10) by RT-qPCR in D. kuscheli (C)
and wheat (D). Error bars: SD.

Small differences in the quality or quantity of the starting
samples can affect the outcome of sRNA analysis. For this reason,
the accumulation of defined species of sRNAs can be compared
within a sample but not between samples. In this sense, 21/24
sRNAs ratios are a useful parameter to understand the global
impact of infection on the biogenesis of sRNAs. Interestingly,
wheat MRCV infection in leaves yielded a 0.9 21-/24-nt ratio
at 21 dpi, due to a slight increase in 21-nt species and a
slight decrease in the 24-nt species upon infection. In turn,
control plants displayed a ∼0.6 21-/24-nt ratio. Along the same
line, infections with a phloem-limited rice virus (Rajeswaran
et al., 2014) and a wheat virus (Tatineni et al., 2014) displayed
similar slight changes in 21- and 24-nt species abundance. These
results contrast to what was reported in virus infections of
dicotyledonous plants where 21-/24-nt ratios are much higher
(Donaire et al., 2009; Herranz et al., 2015).

Our results showed vsiRNAs of both polarities in even
proportions (practically 50% of the reads for each segment;
Figure 3) in plant and insect hosts. Furthermore, these vsiRNAs
mapped to the entire genome. These findings suggest that
the templates for vsiRNAs production are full-length viral
dsRNAs. In plants, the activity of RDRs can account for the
antisense vsiRNAs. However, finding vsiRNAs derived from the

negative strand in D. kuscheli was somehow surprising since
in animal reoviruses negative strands are synthesized within
the preassembled cores protected from the silencing machinery
(Lourenco and Roy, 2011). Moreover, no RDRs have been so
far detected in insects (Zong et al., 2009). These findings are
in line with studies in insects infected with other members
of the family Reoviridae such as the leafhopper Homalodisca
vitripennis (Sekhar Nandety et al., 2013), the small brown
planthopper (Laodelphax striatellus) (Li et al., 2013), Bombyx
mori (Zografidis et al., 2015), and for Culicoides sonorensis-
derived cells (Schnettler et al., 2013).

So, how does the silencing machinery has access to viral
negative RNAs in insects? In animal reoviruses, virus assembly
is coupled with genome replication in a highly regulated
process. Rotavirus plus strand RNAs are selectively packaged
into assembling cores and the negative strands are synthesized
only after the structure of the virus polymerase is modified by
interaction with the major component of the core (Trask et al.,
2012; Gridley and Patton, 2014). A partial uncoupling of genome
replication and assembly could expose dsRNA to the silencing
machinery. Alternatively, inter segment complementarity prior
to the encapsidation could be the trigger for vsiRNAs production
(McDonald et al., 2016). This is supported by the study of Weber
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FIGURE 5 | Identification of piRNAs in D. kuscheli. Size distribution of D. kuscheli sRNAs mapping to Drosophila gypsy 2 TE (A); sequence logo showing
ping-pong amplification loop signature of piRNAs of 10 nt overlapped reads mapping to Drosophila gypsy 2 sense (B, upper panel) or antisense (B, lower panel) TE;
coverage graph of sRNAs mapping to sense (up) and antisense (low) strands of Drosophila gypsy 2 TE (C).

et al. (2006) in which they detected dsRNA in cells infected with
a mammalian orthoreovirus.

Another hypothesis to explain the presence of vsiRNAs
derived from the negative strand in insects is that parts of MRCV
genome are somehow integrated into the planthopper genome
after the infection (Liu et al., 2010). The transcription of such
integrated sequences may give rise to viral dsRNA that would
be recognized and processed by the RNAi machinery producing
vsiRNAs. In Drosophila, endogenous reverse transcriptases
convert viral RNA to DNA forms that produce dsRNAs upon
transcription. In turn, these dsRNAs are processed giving rise to
vsiRNAs that partially suppress virus replication contributing to
the establishment of a persistent infection (Goic et al., 2013).

An alternative possibility is that MRCV-derived endogenous
viral elements (EVEs) already exist integrated in planthopper
genomes. Such elements, many of them derived from viruses with
no DNA stage, are present in insect genomes (Drezen et al., 2016),
such as the brown planthopper nudivirus EVEs (Cheng et al.,
2014).

When we analyzed the distribution of vsiRNAs along the virus
genome (Figure 4), we identified hotspots in both hosts and in
the sense and antisense strands, particularly within the upstream
30% of almost all virus segments (Supplementary Figure S1).
This result could be partially explained by the well-known
dsRNAs panhandle structures formed by interactions between
reovirus 5′ and 3′ terminal ends. Alternatively, these heavily
targeted regions could be explained by a decoy mechanism
such as the one observed upon the infection with rice tungro
bacilliform virus, where decoy dsRNA restricts siRNA production
to the upstream region to protect other regions of the viral

genome from the repressive action of vsiRNAs (Rajeswaran
et al., 2014). We evaluated possible associations between internal
hotspots and RNA secondary structures within segments but
this approach did not satisfactorily explain our results (data
not shown). Nevertheless, further studies using more complex
models considering inter-segment complementarity should be
performed to test this hypothesis.

Remarkably, only in plants, vsiRNAs density increases as
segment size decreases (Figure 4B) and the small segments (S9,
and S8, 1879 and 1931 nt, respectively) were more efficiently
targeted than the medium (S7–S5, ranging in size between 3162
and 2186 nt) and the large ones (S1–S4, ranging in size between
4501 and 3566 nt). A higher abundance of these segment RNAs
cannot explain this finding, as they were measured by absolute
qPCR (Figure 4D). These differences may be reflecting the
sequential packaging mechanism proposed for animal reoviruses
that involves both RNA–protein and RNA–RNA interactions.
This process is believed to initiate with S10 and the rest of the
segments are sequentially packaged according to their size (Sung
and Roy, 2014; Fajardo et al., 2015, 2016; Boyce et al., 2016).
Therefore, the higher density of vsiRNAs toward the smaller
segments may reflect different access of the silencing machinery
toward the virus genome segments while they are engaged in
the formation of supramolecular RNA complexes through RNA–
RNA interactions driven by base pairing immediately prior to
packaging.

Altogether, our work reflects differences in patterns of
sRNAs from a snapshot sampling of different hosts in response
to a segmented dsRNA virus. Further understanding of the
underlying silencing mechanisms is necessary to improve the
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biotechnological use of RNAi as an antiviral strategy both in
plants and in insects.

MATERIALS AND METHODS

Source and Maintenance of Insects and
Virus
The D. kuscheli colony used in this study was obtained and reared
under artificial conditions since 2008 at the Vector’s Laboratory
of IPAVE-CIAP (INTA, Argentina). The MRCV isolate used
as the viral inoculum was obtained from infected oat plants
collected in 2008 in Río Cuarto, Córdoba Province, Argentina,
and maintained in wheat (T. aestivum cv. ProINTA Federal)
by consecutive transmissions using D. kuscheli as previously
described by Truol et al. (2001).

Transmission Trials to Obtain
MRCV-Infected Material
Transmission trials were carried out using wheat as host (Truol
et al., 2001) as described in Figure 1. Groups of male and
female D. kuscheli planthoppers were allowed to reproduce on
healthy wheat plants in plastic containers. Twenty-four hours
after oviposition, adults were removed and the plants were
grown in breeding chambers under controlled conditions of
temperature (24± 3◦C), humidity (50%), and photoperiod (16 h
light, 8 h dark) for egg development. Second instar nymphs
were obtained 6 days after hatching, and used for individual
transmission assays. At least 500 nymphs were allowed to feed
on MRCV-infected wheat or in non-infected wheat (as a control)
for 48 h (acquisition access period—AAP). The insects were
then moved to chambers containing non-infected wheat plants
for 17 days (latency period). Next, 1:1 transmission assays were
performed by individually transferring one insect to a single
non-infected wheat seedling cv Pro INTA Federal (Truol et al.,
2001) (inoculation access period—IAP). After 24 h, planthoppers
were individually placed in 1.5 ml microtubes in liquid nitrogen
and stored at −80◦C. Finally, the plants were conditioned
in a greenhouse with temperature controlled conditions and
daily irrigation. The plants were rotated regularly within the
greenhouse to reduce any positional effects. Twelve and 21 days
after IAP, the leaf previous to the flag leaf was collected, frozen in
liquid nitrogen and placed at−80◦C. MRCV symptoms appeared
near 30 days after IAP (Truol et al., 2001). Then, the wheat
plants were individually identified as MRCV symptomatic or
non-symptomatic and MRCV infection was confirmed by double
antibody sandwich ELISA (DAS-ELISA) at 50 dpi as in Truol
et al. (2001). Insects were classified as transmitting or non-
transmitting, according to whether they were able to inoculate
MRCV to wheat seedlings. The experiments were performed with
two replicates of 165 insects each.

Small RNA Sequencing and Mapping to
MRCV Genome
Total RNA from the younger fully expanded leaf of wheat
plants or whole insect pools were extracted using mirVana

(Thermo Fisher Scientific Inc.) according to the manufacturer’s
instructions. RNA integrity was verified using a Bioanalyzer
2100 RNA chip (Agilent Technologies). Then, 18–30-nt sRNAs
were excised from sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) gels, purified, used for sRNA
library preparation and finally sequenced using Illumina
technology. Low quality reads and adaptor contaminants
were clipped using Sickle and Scythe (Joshi and Fass, 2011;
Buffalo, 2014) and mapped to MRCV genome (GenBank
Accession numbers: NC_008733, NC_008730, NC_008732,
AF395873, NC_008735, NC_008731, NC_008736, AF395872,
NC_008737, and NC_008734) using Burrows-Wheeler Aligner
(BWA) (Li and Durbin, 2009). Consensus genome was built
using samtools and bcftools (Li et al., 2009) and then reads
were remapped to these sequences with BWA allowing zero,
one, or two mismatches. Unless other stated, read numbers
were scaled to “reads per million” (rpm) based on the total
sRNA read numbers of the corresponding library and average
values of the two biological replicates. Raw sequences were
deposited in NCBI Sequence Read Archive (SRA)1 under the
accession numbers SRR5270350, SRR5270349, SRR5270348,
SRR5270347, SRR5270346, SRR5270345, SRR5270344,
SRR5270343, SRR5270448, SRR5270447, SRR5270446, and
SRR5270445.

Analysis of D. kuscheli TEs
Delphacodes kuscheli reads were mapped to D. melanogaster TE
database from FlyBase v.FB2016_052 allowing one mismatch.
Only TEs with more than 2000 reads were kept for further
analysis. Then, size histograms of mapped reads were built for
each TE and 10-nt-overlapping reads were used for sequence logo
construction. Genome coordinates and sequences of mapped
reads were extracted using samtools and sequence logo was
constructed using custom R scripts and WebLogo (Crooks et al.,
2004).

Mapping Density Analyses
Average per-base coverage plots were built using bedtools
genomecov algorithm (Quinlan and Hall, 2010) and custom R
scripts. The number of reads mapping to each segment and the
number of reads mapping to each tenth part of each segment was
extracted using samtools and normalized according to the library
size.

Absolute qPCR
Primer sequences (Supplementary Table S2) were designed using
Primer3 software (Untergasser et al., 2012). Different plasmids
containing complete or partial sequences of MRCV segments
were used for the construction of external standard curves for
absolute quantification as previously described (Argüello Caro
et al., 2013). Synthesis of cDNA was carried out from 1 µg
of DNaseI-treated total RNA by using Superscript III (Thermo
Fisher Scientific Inc.) and random primers, according to the

1http://www.ncbi.nlm.nih.gov/sra
2http://flybase.org/static_pages/docs/datafiles.html#transposon_sequence_set
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manufacturer’s protocol. qPCR reactions were carried out in an
ABI7500 Real Time System (Applied Biosystems) using a Fast
SYBR Green Master Mix (Thermo Fisher Scientific Inc.). Each
20-µL reaction was comprised of 10 µL 2× Fast SYBR Green
Master Mix, 0.5 µL of forward and reverse primers (10 µM each),
8 µL distilled, deionized H2O, and 1 µL of a 10-fold dilution
of cDNA. D. kuscheli and wheat reactions were carried out with
three and six biological replicates, respectively. Reference genes
Dk-UBI for planthoppers (Maroniche et al., 2011) and Ta-GTPB
for wheat (Zhang K. et al., 2013) were used as internal controls
for normalization.
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