

# Unusual Initial Abdominal Presentations of Invasive Meningococcal Disease

Ala-Eddine Deghmane, Tamazoust Guiddir, Marion Gros, Eva Hong, Aude Terrade, Mélanie Denizon, Muhamed-Kheir Taha

## ► To cite this version:

Ala-Eddine Deghmane, Tamazoust Guiddir, Marion Gros, Eva Hong, Aude Terrade, et al.. Unusual Initial Abdominal Presentations of Invasive Meningococcal Disease. Clinical Infectious Diseases, 2018, 67 (8), pp.1220-1227. 10.1093/cid/ciy257. pasteur-01950870

# HAL Id: pasteur-01950870 https://pasteur.hal.science/pasteur-01950870

Submitted on 30 Mar 2019  $\,$ 

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

| 1  | Unusual initial abdominal presentations of invasive meningococcal disease                                                                             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Tamazoust Guiddir <sup>1,2</sup> , Marion Gros <sup>2</sup> , Eva Hong <sup>1</sup> , Aude Terrade <sup>1</sup> , Mélanie Denizon <sup>1</sup> , Ala- |
| 3  | Eddine Deghmane <sup>1</sup> , Muhamed-Kheir Taha <sup>1</sup>                                                                                        |
| 4  |                                                                                                                                                       |
| 5  | Affiliations                                                                                                                                          |
| 6  | <sup>1</sup> Institut Pasteur, Invasive Bacterial Infections Unit National and Reference Centre for                                                   |
| 7  | Meningococci, Paris, France                                                                                                                           |
| 8  | <sup>2</sup> Department of Pediatrics, Bicêtre Hospital, Kremlin Bicêtre, France                                                                      |
| 9  |                                                                                                                                                       |
| 10 | Correspondance to: Muhamed-Kheir Taha Invasive Bacterial Infections Unit, Institut                                                                    |
| 11 | Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France. Email: mktaha@pasteur.fr Tel: +                                                             |
| 12 | 33145688438                                                                                                                                           |
| 13 |                                                                                                                                                       |
| 14 | 40-word summary                                                                                                                                       |
| 15 | Early abdominal presentations of invasive meningococcal disease are increasingly                                                                      |
| 16 | reported. Our work increases the awareness of these forms by clinicians. Rapid management                                                             |
| 17 | should reduce the high fatality rate that is associated with these presentations and avoid                                                            |
| 18 | unjustified interventions (e.g. appendectomy).                                                                                                        |
| 19 |                                                                                                                                                       |
| 20 |                                                                                                                                                       |
| 21 | Running title: Abdominal forms of meningococcal disease                                                                                               |
| 22 |                                                                                                                                                       |
| 23 |                                                                                                                                                       |

#### 24 Abstract

Background Invasive meningococcal disease (IMD) is recognized as septicemia and/or meningitis. However, early symptoms may vary and are frequently nonspecific. Early abdominal presentations have been increasingly described. We aimed to explore a large cohort of patients with initial abdominal presentations for association with particular meningococcal strains.

30 **Methods** Confirmed IMD cases in France between 1991-2016 were screened for the presence 31 within the 24 hours before diagnosis of at least one of the following criteria (1) abdominal 32 pain, (2) gastro-enteritis with diarrhea and vomiting, (3) diarrhea only. Whole genome 33 sequencing was performed on all cultured isolates.

34 **Results** We identified 105 cases (median age 19 years) of early abdominal presentations with 35 a sharp increase since 2014. Early abdominal pain alone was the most frequent symptom 36 (n=67, 64%), followed by gastro-enteritis (n=26, 25%) and diarrhea alone (n=12, 11%). 37 Twenty patients (20%) had abdominal surgery. A higher case fatality rate (24%) was 38 observed in these cases compared to 10.4% in all IMD in France (p=0.007) with high levels of 39 inflammation markers in the blood. Isolates of group W were significantly more predominant 40 in these cases compared to all IMD. Most of these isolates belonged to clonal complex ST-11 41 (cc11) of the sublineages of the South American-UK strain.

42 Conclusions Abdominal presentations are frequently provoked by hyperinvasive isolates of 43 meningococci. Delay in the management of these cases and the virulence of the isolates may 44 explain the high fatality rate. Rapid recognition is a key element to improve their management. 45

Key words: Abdominal; Meningococcal disease; typing, serogroup; whole genome
sequencing; clinical presentation

49

#### 50 Introduction

Invasive meningococcal disease (IMD) is an acute and severe infection caused by *Neisseria meningitidis* (Nm). It is a major cause of morbidity and mortality and is responsible for 1.2 million cases of IMD and 135,000 deaths each year worldwide [1]. Invasive isolates of Nm are usually capsulated and they are classified into serogroups according to their capsular polysaccharides. Six serogroups (A, B, C, W, Y and X) are responsible virtually of all IMD worldwide but with variable geographical distribution [1, 2].

57 Moreover, invasive meningococcal isolates frequently belong to hyperinvasive lineages that 58 were defined on the basis of molecular typing using multilocus sequence typing (MLST). This 59 approach determines the sequence types (ST) using DNA sequences of 7 meningococcal loci. 60 Close STs can be grouped into clonal complexes (cc) [3]. More recently, the next generation 61 sequencing methods allowed more resolution through the analysis of whole genome 62 sequencing (WGS) [4]. Interestingly, meningococcal hyperinvasive isolates of serogroup W 63 (NmW) belonging to the cc11 were resolved into several strains on the basis of core genome 64 MLST (cgMLST): the "Anglo-French-Hajj" strain and the "South American-UK" strain [5]. 65 The later strain was further shown to include two sublineages corresponding to the recent 66 expansion of this strain in Europe: the original UK strain" and the "UK 2013-strain [5, 6]. 67 These strains and sublineages have been co-circulating in France [7].

IMD is usually notified as septicaemia and/or meningitis but other clinical forms are also observed such as septic arthritis, pericarditis and invasive pneumonia [8]. However, the early symptoms at the onset of the disease may vary in frequency and time of appearance. Thompson et al [9] related the frequency and time of onset of the clinical features of IMD in children and adolescents before admission to hospital. Non-specific symptoms and signs were reported to appear early such as leg pain that was reported in 20-50% of patients with a median time of onset of 7 hours before admission. Diarrhea also was reported during the first 24 hours (median time of onset of 9 hours before admission) but to a lesser extent (6.6%). Abdominal presentations were also rarely reported in a previous French study and accounted for 1% of all IMD cases between 1999 and 2002 [10]. In 2012, in Chile and among IMD cases due to isolates of serogroup W, diarrhea was the only symptom that was significantly (p=0.03) over-represented among the fatal cases comparing with the survivors (56% vs 27%) [11]. More recently, Campbell et al reported that 7 out of 15 IMD cases (of whom 5 died) presented predominantly with a history of acute gastrointestinal symptoms in the 24 hours before attending hospital. These cases were all provoked by the currently expanding hypervirulent capsular serogroup W strain (the South American UK strain and its sublineages) [12]. The link of these NmW isolates with abdominal presentations of IMD remains to be evaluated in large cohorts of patients. We therefore aimed in this work to review the database of the French National Reference Centre to describe a large cohort of patients with abdominal presentation of IMD in terms of clinical, biological and bacterial parameters. We also aimed to analyze the association of different genomic types of meningococci with abdominal presentations of IMD. 

- -

99

#### 100 Methods

#### 101 **Ethics statement**

Samples and clinical data were received at the NRCM for routine typing and epidemiological surveillance that are institutional missions of the NRCM. Clinical information format was provided by the NRCM. Procedure of collecting samples and informations was submitted and approved by the CNIL N°1475242/2011 (*Commission Nationale de l'Informatique et des Libertés*). The patients were informed on the secondary use of samples/data and gave their consent for this use.

108

#### 109 **Isolates and database**

110 This is a retrospective study using the database of the French National Reference Centre for 111 Meningococci (NRCM) at the Institut Pasteur, Paris, France between 1991 and 2016. Isolates 112 and samples corresponded to biological confirmed cases of IMD that were defined as a 113 positive culture for N. meningitidis and/or positive testing PCR (used since 1998) in sterile 114 sites. IMD cases were screened using the following key words for the clinical presentations: "abdominal pain" or "diarrhea" or "vomiting" or "peritonitis" or "appendicitis" or 115 116 "appendicular syndrome" or "gastro-enteritis". Cases were also screened for the site of 117 sampling "peritoneal fluid".

118

#### 119 Inclusion and exclusion criteria

The cases included in the present study showed the following inclusion criteria: confirmed diagnosis of IMD and at least one abdominal symptom within the 24h before IMD diagnosis (i) abdominal pain only, (ii) gastro-enteritis with diarrhea and vomiting, (iii) or diarrhea only. Cases with associated co-morbidities that may explain abdominal symptoms were excluded.

124 Vomiting in the context of the meningeal syndrome without any other abdominal symptoms125 were not retained.

126

### 127 Clinical and biological data

Available epidemiological data (age, sex), clinical and biological data (C-reactive protein
(CRP) in blood), were collected from NRCM database or from medical reports of
hospitalization obtained after contact (phone, mail) of the different hospitals.

131

#### 132 Bacterial whole genome sequencing

PCR-confirmed cases were typed by MLST analysis and all cultured isolates were typed by
WGS. Typing data were expressed as a genetic formula (g:P1.PorA-VR1,PorAVR2:FetA :cc) that define the group (g), the two variable regions (VR1 and VR2) of the outer
membrane protein PorA, and of the VR of the protein FetA, as well as the clonal complex
(cc).

138 In this manuscript, group "g" will be used to refer to both serogroup and genogroup to 139 characterise cultured-confirmed and PCR-confirmed cases respectively. WGS was performed 140 by Illumina HiSeq 2000 sequencer (Illumina, San Diego, CA, USA) and assembled as 141 previously described [13]. Sequences are available through the PubMLST database which 142 runs on the Bacterial Isolate Genome Sequence Database (BIGSdb) platform [14]. WGS data 143 were analyzed using a "gene-by-gene" approach available through the PubMLST Genome 144 Comparator tool using *N. meningitidis* core genome v1.0 that includes 1605 core loci[14]. 145 SplitsTree4 (version 4.13.1) was used to visualize the resulting distance matrices as 146 Neighbour-net networks [15]. Further genomic analysis were performed for the period 2010-2016 to compare the NmW isolates of cc11 with abdominal presentations to all the NmW 147 148 isolates belonging to the cc11 in France [16]. The IDs of all culture isolates are given in the

| 149 | supplementary Table 1 to allow retrieving of WGS sequence in FASTA formats. Loci with          |
|-----|------------------------------------------------------------------------------------------------|
| 150 | alleles specific to isolates of serogroup W belonging related to the South American UK strains |
| 151 | were characterized according to the KEGG Orthology (KO) groupings of the KEGG database         |
| 152 | (www.kegg.jp).                                                                                 |
| 153 |                                                                                                |
| 154 | Statistical analysis:                                                                          |
| 155 | Data were analysed using the chi-square test, Student's t-test and analysis of variance        |
| 156 | (ANOVA), with p <0.05 considered to be statistically significant.                              |
| 157 |                                                                                                |
| 158 |                                                                                                |
| 159 |                                                                                                |
| 160 |                                                                                                |
| 161 |                                                                                                |
| 162 |                                                                                                |
| 163 |                                                                                                |
| 164 |                                                                                                |
| 165 |                                                                                                |
| 166 |                                                                                                |
| 167 |                                                                                                |
| 168 |                                                                                                |
| 169 |                                                                                                |
| 170 |                                                                                                |
| 171 |                                                                                                |
| 172 |                                                                                                |
| 173 |                                                                                                |

- 174 **Results**
- 175

#### 176 Clinical data of IMD patients with abdominal presentations

177 One hundred fourteen patients with abdominal presentation of IMD were initially 178 selected between 1991 and 2016, according to criteria of inclusion. Among these patients, 9 179 were excluded for the following reasons: (i) 3 patients had abdominal pain with constipation, 180 (ii) 2 patients had diarrhea 24h after the diagnosis of IMD and after starting antibiotic 181 treatment (iii) 1 patient had salpingitis with no link to the IMD, (iv) 2 patients had cirrhosis 182 and (v) 1 patient had an abdominal trauma. The final study population consisted of 105 patients with abdominal presentations of IMD. These cases corresponded to 92 culture-183 184 confirmed cases and 13 PCR-confirmed cases (Fig.1). The clinical data and characteristics of 185 the patients were depicted in Table 1. The male/female ratio was 0.81 (47 males and 58 186 females). The median age for all the 105 cases was 19 years (Interquartile range (Q1-Q3: 6.5-50): 14 years for group B "gB" meningococci cases (Q1-Q3: 2-51), 18 years for gC cases 187 188 (Q1-Q3: 8-35), 26 years for gW cases (Q1-Q3: 16.5-54.5) and 26 years for gY (Q1-Q3: 18-189 71.5). One case was due to gX (female of 78 years old). After the admission to the hospital, 190 cases were confirmed as IMD from CSF (n=25; 23%), from blood (n=67; 64%), from both 191 CSF and blood (n=9; 9%) and from peritoneal fluid (n=4; 4%).

The most frequent abdominal symptom was the abdominal pain only (n=67, 64%). One quarter of the cohort had gastro-enteritis (n=26, 25%) and diarrhea only represented 11% of the cohort (n=12). CRP levels was available for 58 cases with a mean value of 198 mg/L (the 95% confidence interval was (161-235)). In 20% of the cohort (n=20), the abdominal presentations at the admission led to an abdominal surgery on the basis of fever and the location of the pain in the right iliac fossa. The case fatality rate (among the 79 cases with known evolution) was 24% in these IMD cases with abdominal presentations and was significantly higher than that of all IMD (10.4%; p=0.007) and remain significant (p=0.01)

200 even if all patient with missing evolution data survived. There was no significant difference in

the fatality rate between cases with or without abdominal surgery.

202

### 203 Bacteriological characteristics of IMD with abdominal presentations

Cases with abdominal presentation (n=105) were compared to all cases of IMD (n=11979) addressed to CNRM in Paris during the period of the study. Two periods of increase of diagnosis of cases with abdominal presentation were observed (Fig. 2). The first was in the early 2000's that paralleled an increase in total cases and a predominance of serogroup C (Fig. 2). The second period showed a sharp increase that was observed since 2014.

The most frequent group among IMD cases with abdominal presentation was group C followed by group B (Table 2). Group W cases ranked third, followed by group Y. However, serogroup W cases increased rapidly since 2014, concomitantly with the sharp increase of IMD cases with abdominal presentation since 2014 (Fig. 2).

213 There was a significant lower proportion of group B among cases with abdominal 214 presentations compared to all cases of IMD. At the opposite, there were significant higher 215 proportions of groups C and W among cases with abdominal presentations compared to all 216 cases of IMD (Fig. 3). Clonal complexes data were available for 96 cases of all 105 cases 217 with abdominal presentations (91%). The cc11 was responsible for most of the cases with 43 218 cases (45%) with 33 cases due to NmC-cc11 and 10 cases due to NmW-cc11. We also 219 compared the distribution of clonal complexes for IMD cases with abdominal presentations to 220 that for all IMD. This analysis focused on the period 2010-2016 for which the MLST data 221 were available at the CNRM for at least 89% of all IMD cases (MLST data were available for 222 2891 cases of 3245 IMD total cases with percentage of completeness ranging for the period 223 2010-2016 between 87% to 94%). There were 27 cases (5 of group B, 7 group of C, 10 group 224 W, 4 of group Y and 1 of group X) of IMD with abdominal presentations and with MLST 225 data. Similar to the whole period of the study, the distribution of cases of groups B and W for 226 the period 2010-2016 differed significantly between all IMD cases and cases with abdominal 227 presentations: the proportions of group B cases were respectively 62% versus 29% and that of 228 group W were respectively 6% versus 29% with p values of 0.01 and <0.00001 respectively. 229 Moreover, the proportion of cc11 cases (n=17; 63%) was significantly higher than that for all 230 IMD (n=709; 25% respectively, p < 0.0001) (Fig. 4). Ten of these cc11 isolates belonged to 231 group W and 7 isolates to group C.

232

#### 233 Whole genome sequencing analysis of isolates from IMD with abdominal presentations

234 A core genome MLST tree was performed on all the 92 cultured isolates of cases with 235 abdominal presentation with a structure similar to that usually observed with invasive isolates 236 from IMD (Fig. 5). The 92 isolates were distributed mainly in the hyperinvasive clonal 237 complexes, in particularly, the cc11 that included mainly isolates of groups C and W. While 238 group C isolates were in several lineages of cc11, group W isolates were all within one 239 lineage (Supplementary figure and Fig. 6). The recent rapid increase of cases with abdominal presentation due to serogroup W prompted us to explore the genomic relationships of these 240 241 isolates with the circulating strains in Europe (the South American-UK strain and Anglo-242 French Hajj strain). We recently reported the resolution of all invasive group W isolates in 243 France between 2010 and 2016 (n=132 cases)[16]. We therefore analyzed the core genome 244 MLST tree of these isolates according to the presence of abdominal presentations and 245 identified on the tree the cases with these presentations (Fig.6). All isolates of the cases with 246 abdominal presentation were exclusively located within the two sublineages of the South American-UK strain (the original UK strain" and the "UK 2013-strain). The cases with 247 248 abdominal presentation represented 7.6% (n=10) of all IMD W cases for this period (n=132)

| 249 | but they represented 17% (n=10) of the cases due to isolates belonging South American-UK        |
|-----|-------------------------------------------------------------------------------------------------|
| 250 | strain (n=59). No major difference was detected between isolates with abdominal presentation    |
| 251 | and other isolates derived from South American-UK strain. However, 119 loci were identical      |
| 252 | in all group W/cc11 isolates of the two sublineages of the South American-UK strain but         |
| 253 | differed from the isolates of group W/cc11 belonging to the Anglo-French Hajj strain            |
| 254 | (Supplementary Table 2). These genes were distributed all over the chromosome. The              |
| 255 | annotation of these specific alleles revealed characterized function for 57.1% of these loci    |
| 256 | while there was no characterized function for 42.9 %. The annotated functions were:             |
| 257 | metabolic functions (35.3%); genetic information processing (14.1%); environmental              |
| 258 | information processing (5%); cellular processes (1%) and antigenic genes (1.7%). The            |
| 259 | antigenic genes were the genes encoding factor H binding protein (fHbp) and Neisseria           |
| 260 | heparin binding antigen (NHBA) two proteins involved in the meningococcal survival in body      |
| 261 | fluids through modulating the interaction with components of the innate immune response.        |
| 262 | These two proteins are also included in the proteins-based vaccines targeting group B isolates. |
| 263 |                                                                                                 |
| 264 |                                                                                                 |
| 265 |                                                                                                 |
| 266 |                                                                                                 |
| 267 |                                                                                                 |
| 268 |                                                                                                 |
| 269 |                                                                                                 |
| 270 |                                                                                                 |
| 271 |                                                                                                 |
| 272 |                                                                                                 |
| 273 |                                                                                                 |
|     |                                                                                                 |

#### 274 **Discussion**

275 We reported a large cohort of patients including 105 cases with initial abdominal presentation 276 of IMD during the 24h prior to the diagnosis. The first report of acute abdominal syndromes 277 of invasive meningococcal infection was published in 1917 [17]. Since then, few case-reports 278 have been described [18]. We were able to find 105 cases in 27 years in France in our study 279 (1% of all the 11979 IMD during this period). However, this presentation may be overlooked 280 resulting in underestimation of these forms. Abdominal symptoms like abdominal pain, 281 diarrhea, vomiting are not specific and may evoke viral infections as major differential 282 diagnosis. The abdominal pain alone was the most frequent (64%) early presentation among 283 these abdominal forms. Moreover, the localization of abdominal pain during IMD is 284 frequently around the right iliac fossa that may be misleading, as it would invoke "acute 285 abdomen" leading to urgent, but unwarranted, surgical intervention for an acute appendicitis 286 [19-23]. This may explain the high rate of morbidity in our study with 20% of unjustified 287 abdominal surgery. Abdominal pain may be overlooked in young children. This is an 288 important limitation to our retrospective study that may impact on the variable that were 289 analyzed. However, this point further underline the underreporting of abdominal presentation 290 of IMD. The missing data on survival for 26 cases is another limitation to this retrospective 291 study. In a review of 19 cases [18] of acute abdominal pain as initial presentation of IMD, 292 42% of surgical procedures were reported following suspicion of acute abdomen. The high 293 case fatality rate of 24% in our study is also worrying particularly when comparing to all 294 cases of IMD in France which rate is 10.4% [24].

The recent increase of the cases with abdominal presentation since 2014 seems to be driven by the increase of IMD cases due to cc11 isolates of groups C and W. While group C isolates belonged to several lineages of cc11, group W isolates with abdominal presentation belonged exclusively to the lineage of the South American UK strain (Fig. 4 and Fig. 5). These

observations are in line with those obtained in the UK and in Chile [11, 12] suggesting thatthese isolates are significantly associated with abdominal presentations of IMD.

301 Although hyperinvasive NmW isolates of cc11 are related, several genetic changes seem to 302 have occurred in the isolates belonging to the sublineages of the South-American-UK strain 303 compared to the isolates belonging to the Anglo-French-Hajj strain. These events may have 304 increased transmission leading to the recent expansion of the former isolates. These genetic 305 differences concerned mainly genes encoding diverse metabolic classes of function 306 (metabolism of carbohydrate, fatty acids amino-acids and nucleic acids). This observation is 307 in agreement with the hypothesis linking the emergence of hyperinvasive pandemic lineages 308 of meningococci group A in Sub-Saharan Africa to shifts in genes encoding metabolic 309 functions [25]. Linking virulence and meningococcal carbohydrate metabolism has been also 310 suggested [26, 27]. Changes in genes encoding metabolic functions may also impact genes 311 involved in the biosynthesis of virulence factors in the bacterial wall such as the 312 lipooligosaccharide and peptidoglycan that are potent inducers of inflammatory responses in 313 meningococci [28]. Few other changes occurred in genes encoding proteins involved in 314 virulence (such as fHbp and NHBA) that may impact on bacterial survival. These genetic 315 changes may therefore also increase within-host fitness of the isolates and lead to increase 316 virulence and the induction of strong inflammatory response. Although the pathophysiology 317 of abdominal pain in IMD remains obscure, the induction of the inflammatory response may 318 be involved. Several hypotheses are proposed such as mesenteric hypoperfusion or septic 319 epiploic micro infractions during the hematogeneous spread or immune complex deposition 320 [18, 29]. Inflammation and detectable meningococci were recently reported in a duodenal 321 biopsy during a case of meningococcemia with abdominal pain due to an isolate of group W 322 [30].

| 323 | In conclusion, abdominal presentation of IMD seems to increase and to be associated with the |
|-----|----------------------------------------------------------------------------------------------|
| 324 | worldwide expanding NmW/cc11 isolates of the South American-UK strain [5, 6]. Clinicians     |
| 325 | should be aware of this atypical presentation in the differential diagnosis of fever with    |
| 326 | abdominal pain to avoid delay of management of IMD.                                          |
| 327 |                                                                                              |
| 328 |                                                                                              |
| 329 |                                                                                              |
| 330 |                                                                                              |
| 331 |                                                                                              |
| 332 |                                                                                              |
| 333 |                                                                                              |
| 334 |                                                                                              |
| 335 |                                                                                              |
| 336 |                                                                                              |
| 337 |                                                                                              |
| 338 |                                                                                              |
| 339 |                                                                                              |
| 340 |                                                                                              |
| 341 |                                                                                              |
| 342 |                                                                                              |
| 343 |                                                                                              |
| 344 |                                                                                              |
| 345 |                                                                                              |
| 346 |                                                                                              |
| 347 |                                                                                              |

#### 348 Author's contributions

All authors participated in the design, analysis and interpretation of the study. MKT, TG and
AED were involved in all phases of the study. MKT, TG and MG performed data extraction,
analyzed patient data, statistical analysis, and made the bibliographic search. AED, EH, AT,
MD performed the bacteriological typing. MKT and TG wrote the manuscript and all authors
assisted with manuscript writing and editing.

354

### 355 Acknowledgments

This publication made use of the Neisseria Multi Locus Sequence Typing website (https://pubmlst.org/neisseria/) developed by Keith Jolley and sited at the University of Oxford [14]. The Wellcome Trust and European Union have funded the development of this site. We also acknowledge the PIBNET-P2M platform at the Institut Pasteur. We would like to thank all biologists and clinicians who sent the samples, the isolates and the medical reports of hospitalization of the cases. The National Reference center for meningococci is funded by the Institut Pasteur and Public Health France.

363

364

- 365 **Declaration of interests**
- 366 All authors declare no conflicts of interest.

367

368

369

370

371

## 373 **References**

374 1. Jafri RZ, Ali A, Messonnier NE, et al. Global epidemiology of invasive meningococcal disease. Popul Health Metr **2013**; 11(1): 17. 375 376 Harrison LH, Pelton SI, Wilder-Smith A, et al. The Global Meningococcal Initiative: 2. recommendations for reducing the global burden of meningococcal disease. 377 378 Vaccine 2011; 29(18): 3363-71. 379 Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing: a portable 3. 380 approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 1998; 95(6): 3140-5. 381 382 4. Maiden MC, van Rensburg MJ, Bray JE, et al. MLST revisited: the gene-by-gene 383 approach to bacterial genomics. Nat Rev Microbiol **2013**; 11(10): 728-36. 384 Lucidarme J, Hill DM, Bratcher HB, et al. Genomic resolution of an aggressive, 5. 385 widespread, diverse and expanding meningococcal serogroup B, C and W lineage. 386 J Infect **2015**; 71(5): 544-52. 387 6. Lucidarme J, Scott KJ, Ure R, et al. An international invasive meningococcal 388 disease outbreak due to a novel and rapidly expanding serogroup W strain, 389 Scotland and Sweden, July to August 2015. Euro Surveill **2016**; 21(45). 390 7. Parent du Chatelet I, Deghmane AE, Antona D, et al. Characteristics and changes 391 in invasive meningococcal disease epidemiology in France, 2006-2015. J Infect 392 2017; 74: 564-74. 393 Rosenstein NE, Perkins BA, Stephens DS, Popovic T, Hughes JM. Meningococcal 8. 394 disease. N Engl J Med 2001; 344(18): 1378-88. 395 Thompson MJ, Ninis N, Perera R, et al. Clinical recognition of meningococcal 9. 396 disease in children and adolescents. Lancet 2006; 367(9508): 397-403. 397 10. Vienne P, Ducos-Galand M, Guiyoule A, et al. The role of particular strains of 398 *Neisseria meningitidis* in meningococcal arthritis, pericarditis, and pneumonia. 399 Clin Infect Dis 2003; 37(12): 1639-42. 400 Moreno G, Lopez D, Vergara N, Gallegos D, Advis MF, Loayza S. [Clinical 11. 401 characterization of cases with meningococcal disease by W135 group in Chile, 2012]. Rev Chilena Infectol 2013; 30(4): 350-60. 402 403 12. Campbell H, Parikh SR, Borrow R, Kaczmarski E, Ramsay ME, Ladhani SN. 404 Presentation with gastrointestinal symptoms and high case fatality associated 405 with group W meningococcal disease (MenW) in teenagers, England, July 2015 to 406 January 2016. Euro Surveill 2016; 21(12). Veyrier FJ, Hong E, Deghmane AE, Taha MK. Draft Genome Sequence of a 407 13. 408 Neisseria meningitidis Serogroup C Isolate of Sequence Type 11 Linked to an 409 Outbreak among Men Who Have Sex with Men. Genome Announc **2013**; 1(5). 410 Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at 14. 411 the population level. BMC Bioinformatics **2010**; 11: 595. 412 Huson DH, Bryant D. Application of phylogenetic networks in evolutionary 15. studies. Mol Biol Evol 2006; 23(2): 254-67. 413 Hong E, Barret AS, Terrade A, et al. Clonal replacement and expansion among 414 16. 415 invasive meningococcal isolates of serogroup W in France. J Infect **2017**. 416 17. Moeltgen MH. Meningokokkenperitonitis. Zentralbl Chir 1917; 5: 94. 417 18. Akinosoglou K, Alexopoulos A, Koutsogiannis N, Gogos C, Lekkou A. Neisseria 418 *meningitidis* presenting as acute abdomen and recurrent reactive pericarditis. 419 Braz | Infect Dis **2016**; 20(6): 641-4.

| 420        | 19. | Tomezzoli S, Juarez Mdel V, Rossi SI, Lema DA, Barbaro CR, Fiorini S. [Acute          |
|------------|-----|---------------------------------------------------------------------------------------|
| 421        |     | abdomen as initial manifestation of meningococcemia]. Arch Argent Pediatr             |
| 422        |     | <b>2008</b> ; 106(3): 260-3.                                                          |
| 423        | 20. | Herault T, Stoller J, Liard-Zmuda A, Mallet E. [Peritonitis as a first manifestation  |
| 424        |     | of <i>Neisseria</i> type C meningitis]. Arch Pediatr <b>2006</b> ; 13(5): 456-8.      |
| 425        | 21. | Kelly SJ, Robertson RW. Neisseria meningitidis peritonitis. ANZ J Surg <b>2004</b> ;  |
| 426        |     | 74(3): 182-3.                                                                         |
| 427        | 22. | Bannatyne RM, Harnett NM, Cheung R. Protective effect of polymyxin B sulfate in       |
| 428        |     | experimental meningococcal infection in mice. Can J Microbiol <b>1977</b> ; 23(11):   |
| 429        |     | 1526-8.                                                                               |
| 430        | 23. | Wendlandt D, King B, Ziebell C, Milling T. Atypical presentation of fatal             |
| 431        |     | meningococcemia: peritonitis and paradoxical centrifugal purpura fulminans of         |
| 432        |     | late onset. Am J Emerg Med <b>2011</b> ; 29(8): 960 e3-5.                             |
| 433        | 24. | Parent du Chatelet I, Deghmane AE, Antona D, et al. Characteristics and changes       |
| 434        |     | in invasive meningococcal disease epidemiology in France, 2006-2015. I Infect         |
| 435        |     | <b>2017</b> ; 74(6): 564-74.                                                          |
| 436        | 25. | Watkins ER. Maiden MC. Metabolic shift in the emergence of hyperinvasive              |
| 437        |     | pandemic meningococcal lineages. Sci Rep <b>2017</b> : 7: 41126.                      |
| 438        | 26. | Shams F. Oldfield NI. Wooldridge KG. Turner DP. Fructose-1.6-bisphosphate             |
| 439        | -   | aldolase (FBA)-a conserved glycolytic enzyme with virulence functions in              |
| 440        |     | bacteria: 'ill met by moonlight'. Biochem Soc Trans <b>2014</b> : 42(6): 1792-5.      |
| 441        | 27. | Antunes A. Derkaoui M. Terrade A. et al. The Phosphocarrier Protein HPr               |
| 442        |     | Contributes to Meningococcal Survival during Infection. PLoS One <b>2016</b> : 11(9): |
| 443        |     | e0162434.                                                                             |
| 444        | 28. | Zarantonelli ML. Skoczynska A. Antignac A. et al. Penicillin resistance               |
| 445        |     | compromises Nod1-dependent proinflammatory activity and virulence fitness of          |
| 446        |     | <i>Neisseria meninaitidis</i> . Cell Host Microbe <b>2013</b> : 13(6): 735-45.        |
| 447        | 29. | Sanz Alvarez D. Blazquez Gamero D. Ruiz Contreras I. [Abdominal acute pain as         |
| 448        |     | initial symptom of invasive meningococcus serogroup A illness]. Arch Argent           |
| 449        |     | Pediatr <b>2011</b> : 109(2): e39-41.                                                 |
| 450        | 30. | Cheddani H, Desgabriel AL, Coffin E, et al. No Neck Pain: Meningococcemia. Am J       |
| 451        |     | Med <b>2018</b> ; 131(1): 37-40.                                                      |
| 452        |     |                                                                                       |
| 453        |     |                                                                                       |
| 454        |     |                                                                                       |
| 455        |     |                                                                                       |
| 456        |     |                                                                                       |
| 457        |     |                                                                                       |
| 458        |     |                                                                                       |
| 459        |     |                                                                                       |
| 460        |     |                                                                                       |
| 462        |     |                                                                                       |
| 463        |     |                                                                                       |
| 464        |     |                                                                                       |
| 465        |     |                                                                                       |
| 400<br>467 |     |                                                                                       |
| TU/        |     |                                                                                       |

Legends of figures

#### Figure 1. Flow chart of the study

**Figure 2. Distribution of IMD cases during the period 1991-2016**. Annual distribution of numbers of all IMD cases (left side axis) and numbers of IMD cases with abdominal presentation (right axis) are shown. All the cases (all serogroups) are presented as well as cases due to the most frequent groups (B, C and W) as indicated above each graph.

Figure 3. Percentage of groups B, C, W, Y and X among all IMD cases or cases with abdominal presentations. All the cases for each group are shown with the 95% confidence intervals for the whole study period 1991-2016. Asterisk indicate statistical significance (\*p<0.01, \*\*p<0.001 and \*\*\*p<0.0001).

Figure 4. Distribution of cases of IMD according to groups (A) or clonal complexes (B) during the period 2010-2016. The data are presented as percentage for all IMD cases (1) or cases with abdominal presentation (2). The corresponding years are indicated under each presentation.

**Figure 5.** Neighbour-net phylogenetic network of all the cultured isolates from IMD cases with abdominal presentations. The tree was performed on the basis of cgMLST. The groups are represented in different colours as indicated and the major clonal complexes (cc) are indicated in dashed lines.

**Figure 6.** Neighbor-net phylogenetic network of all IMD cases due to NmWcc11 cases in **France for the period 2010-2016.** NmW/cc11 cases with abdominal presentations are indicated in black circles. Dashed lines indicate the isolates that belonged to the Anglo-French-Hajj strain, the "original UK strain" and the "UK 2013-strain".

## Table 1 Clinical characteristic of patients with abdominal presentations

| Sex ratio (male/female)                                                                                   | 0.81                                 |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------|
| Median age (range)                                                                                        | 19 years (0.2-91)                    |
| Abdominal symptoms n, (%)<br>Abdominal pain only, n (%)<br>Gastro-enteritis, n (%)<br>Diarrhea only n (%) | 67 (64)<br>26 (25)<br>12 (11)        |
| Abdominal surgery, n (%)<br>(n=100)*                                                                      | 20 (20)                              |
| Other clinical symptoms<br>Purpura n (%)<br>(n=84)*<br>Meningeal irritation n (%)<br>(n=81)*              | 30 (36)<br>41 (51)                   |
| Death, n (%)<br>(n=79)*                                                                                   | 19 (24)                              |
| Site of sampling<br>Blood n (%)<br>CSF n (%)<br>Both n(%)<br>Peritoneal liquid n (%)                      | 67 (64)<br>25 (23)<br>9 (9)<br>4 (4) |

\*Total number of cases for which the corresponding data were available

| Bacterial Markers         | Values  |
|---------------------------|---------|
| Group n (%)               |         |
| В                         | 35 (33) |
| С                         | 44 (42) |
| Y                         | 8 (8)   |
| W                         | 17 (16) |
| Х                         | 1(1)    |
| Clonal Complexes n (%)**  |         |
| cc11                      | 43 (45) |
| cc32                      | 10 (10) |
| cc41/44                   | 9 (9)   |
| cc269                     | 2(2)    |
| Other cc and non-assigned | 32 (34) |

## Table 2 Bacterial characteristics of isolates from patients with abdominal presentations

\*Total number of cases for which the corresponding data were available \*\*Data for 96 cases with available cc









в







Supplementary Table 1

| id    | isolate     | year | serogroup | PorA_VR1 | PorA_VR2 | FetA_VR | ST (MLST) | clonal_complex (MLST)       |
|-------|-------------|------|-----------|----------|----------|---------|-----------|-----------------------------|
| 40273 | LNP28343abd | 2015 | Y         | 5-1      | 10-8     | F3-6    | 1627      | ST-167 complex              |
| 40279 | LNP28349abd | 2015 | W         | 5        | 2        | F1-1    | 11        | ST-11 complex/ET-37 complex |
| 40387 | LNP28359abd | 2015 | W         | 5        | 2        | F1-1    | 11        | ST-11 complex/ET-37 complex |
| 41586 | LNP28420abd | 2016 | С         | 5        | 2        | F3-3    | 11        | ST-11 complex/ET-37 complex |
| 41857 | LNP28585abd | 2016 | W         | 5        | 2        | F1-1    | 11        | ST-11 complex/ET-37 complex |
| 42399 | LNP28519abd | 2016 | В         | 5        | 2        | F2-9    | 33        | ST-32 complex/ET-5 complex  |
| 42440 | LNP28527abd | 2016 | В         | 17       | 16-3     | F5-5    | 3989      | NA                          |
| 44056 | LNP28630abd | 2016 | Y         | 18-1     | 3        | F3-4    | 3015      | NA                          |
| 46093 | LNP28706abd | 2016 | Х         | 5-1      | 2-2      | F5-1    | 10948     | NA                          |
| 46100 | LNP28713abd | 2016 | Υ         | 18-1     | 3        | F3-4    | 5436      | NA                          |
| 46745 | LNP28054abd | 2015 | W         | 5        | 2        | F1-1    | 11        | ST-11 complex/ET-37 complex |
| 46748 | LNP28099abd | 2015 | W         | 5        | 2        | F1-1    | 11        | ST-11 complex/ET-37 complex |
| 49253 | LNP28772abd | 2016 | W         | 5        | 2        | F1-1    | 11        | ST-11 complex/ET-37 complex |
| 49303 | LNP28792abd | 2016 | С         | 5        | 2        | F3-3    | 11        | ST-11 complex/ET-37 complex |
| 50819 | LNP26753abd | 2012 | W         | 5        | 2        | F1-1    | 11        | ST-11 complex/ET-37 complex |
| 50850 | LNP27754abd | 2014 | W         | 5        | 2        | F1-1    | 11        | ST-11 complex/ET-37 complex |
| 50856 | LNP27907abd | 2014 | W         | 5        | 2        | F1-1    | 1237      | ST-11 complex/ET-37 complex |
| 51010 | LNP28840abd | 2016 | W         | 5        | 2        | F1-1    | 11        | ST-11 complex/ET-37 complex |
| 54270 | LNP10941abd | 1992 | С         | 22-1     | 14       | F1-5    |           | ST-269 complex              |
| 54563 | LNP10049abd | 1991 | В         | 18-1     | 30-2     | F3-6    | 8567      | NA                          |
| 54564 | LNP10436abd | 1991 | С         | 12-1     | 13-1     | F3-9    |           | NA                          |
| 54565 | LNP11060abd | 1992 | С         | 5-1      | 10-4     | F3-6    | 11        | ST-11 complex/ET-37 complex |
| 54566 | LNP11548abd | 1993 | С         | 5        | 2        | F3-6    | 11        | ST-11 complex/ET-37 complex |
| 54567 | LNP11972abd | 1993 | С         | 21       | 16       | F3-6    | 11        | ST-11 complex/ET-37 complex |
| 54568 | LNP12043abd | 1993 | С         | 5        | 2        | F1-1    | 11        | ST-11 complex/ET-37 complex |
| 54569 | LNP12355abd | 1994 | С         | 18-3     | 1        | F5-3    | 206       | ST-41/44 complex/Lineage 3  |
| 54570 | LNP13122abd | 1994 | С         | 5        | 2        | F3-6    | 11        | ST-11 complex/ET-37 complex |
| 54571 | LNP13408abd | 1995 | С         |          | 2-2      | F5-75   | 11        | ST-11 complex/ET-37 complex |
| 54572 | LNP13755abd | 1995 | В         | 7        | 9        | F5-1    | 33        | ST-32 complex/ET-5 complex  |
| 54573 | LNP15138abd | 1997 | В         | 7-2      | 13-9     | F4-17   | 23        | ST-23 complex/Cluster A3    |

| 54574 | LNP15363abd | 1997 | В | 22   | 26    | F5-5   |      | NA                          |
|-------|-------------|------|---|------|-------|--------|------|-----------------------------|
| 54575 | LNP16393abd | 1998 | В | 7-2  | 4     | F1-5   | 41   | ST-41/44 complex/Lineage 3  |
| 54576 | LNP16397abd | 1998 | В | 7    | 16-26 | F3-3   | 32   | ST-32 complex/ET-5 complex  |
| 54577 | LNP16739abd | 1999 | В | 5-2  | 10    | F4-1   | 291  | ST-41/44 complex/Lineage 3  |
| 54578 | LNP17159abd | 1999 | В | 7-2  | 4     | F1-5   | 42   | ST-41/44 complex/Lineage 3  |
| 54579 | LNP17561abd | 2000 | В | 22   |       | F1-15  | 213  | ST-213 complex              |
| 54580 | LNP17566abd | 2000 | W |      | 1     | F4-1   | 22   | ST-22 complex               |
| 54581 | LNP17987abd | 2000 | С | 5    | 2-1   | F5-5   | 11   | ST-11 complex/ET-37 complex |
| 54582 | LNP17993abd | 2000 | W |      | 1     | F4-1   | 22   | ST-22 complex               |
| 54583 | LNP18254abd | 2000 | В | 5-2  | 10-2  | F1-1   |      | ST-254 complex              |
| 54584 | LNP18292abd | 2000 | С | 5    | 2     | F5-8   | 8    | ST-8 complex/Cluster A4     |
| 54585 | LNP18775abd | 2001 | В | 5-1  | 10-4  | F1-5   | 1403 | ST-41/44 complex/Lineage 3  |
| 54586 | LNP18914abd | 2001 | В | 7    | 16-26 | F3-3   | 6562 | ST-32 complex/ET-5 complex  |
| 54587 | LNP18915abd | 2001 | В | 22   | 14    | F5-1   | 34   | ST-32 complex/ET-5 complex  |
| 54588 | LNP18948abd | 2001 | В | 22-1 | 14    | F3-6   | 35   | ST-35 complex               |
| 54589 | LNP19006abd | 2001 | С | 18-7 | 9     | F1-7   | 571  | ST-41/44 complex/Lineage 3  |
| 54590 | LNP19020abd | 2001 | С | 5    | 2     | F3-6   | 11   | ST-11 complex/ET-37 complex |
| 54591 | LNP19425abd | 2002 | В | 12-1 | 13-1  | F5-12  | 4520 | ST-364 complex              |
| 54592 | LNP19477abd | 2002 | С | 18-1 | 30-1  | F3-7   | 11   | ST-11 complex/ET-37 complex |
| 54593 | LNP19808abd | 2002 | Υ | 5-2  | 10-2  | F4-1   |      | ST-23 complex/Cluster A3    |
| 54594 | LNP19811abd | 2002 | W | 5-1  | 10-4  | F1-18  | 2495 | ST-174 complex              |
| 54595 | LNP19969abd | 2002 | С | 7-1  | 1     | F1-120 | 1306 | ST-865 complex              |
| 54596 | LNP20098abd | 2002 | Y | 21   | 16    | F3-7   | 1466 | ST-174 complex              |
| 54597 | LNP20214abd | 2002 | С | 5    | 2-1   | F5-5   | 11   | ST-11 complex/ET-37 complex |
| 54598 | LNP20244abd | 2002 | С | 5-1  | 10-8  | F3-6   | 11   | ST-11 complex/ET-37 complex |
| 54599 | LNP20320abd | 2003 | С | 5    | 2-1   | F5-5   | 11   | ST-11 complex/ET-37 complex |
| 54600 | LNP20810abd | 2003 | С | 5-1  | 10-8  | F3-6   | 11   | ST-11 complex/ET-37 complex |
| 54601 | LNP20813abd | 2003 | W | 18-1 | 23    | F4-1   |      | ST-22 complex               |
| 54602 | LNP20830abd | 2003 | W | 5-1  | 10-52 | F1-18  | 174  | ST-174 complex              |
| 54603 | LNP21088abd | 2003 | В | 22   | 14-6  | F1-7   | 146  | ST-41/44 complex/Lineage 3  |
| 54604 | LNP21202abd | 2003 | W | 18-1 | 3     | F4-1   | 184  | ST-22 complex               |
| 54605 | LNP21299abd | 2004 | С | 5-1  | 10-8  | F5-17  | 11   | ST-11 complex/ET-37 complex |
| 54606 | LNP21447abd | 2004 | С | 5    | 2     | F5-9   | 11   | ST-11 complex/ET-37 complex |
| 54607 | LNP21763abd | 2004 | Υ | 5-2  | 10-2  | F2-13  | 23   | ST-23 complex/Cluster A3    |
| 54608 | LNP21819abd | 2004 | В | 22   | 13-13 | F1-5   | 8174 | NA                          |

| 54609 | LNP21887abd | 2004 | С | 5    | 2     | F5-9  | 11   | ST-11 complex/ET-37 complex |
|-------|-------------|------|---|------|-------|-------|------|-----------------------------|
| 54610 | LNP21936abd | 2004 | С | 5    | 2     | F5-9  | 11   | ST-11 complex/ET-37 complex |
| 54611 | LNP22117abd | 2004 | С | 5    | 2-1   | F5-5  | 11   | ST-11 complex/ET-37 complex |
| 54612 | LNP22143abd | 2005 | W | 18-1 | 3     | F4-1  | 22   | ST-22 complex               |
| 54613 | LNP22294abd | 2005 | В | 7    | 16    | F3-3  | 32   | ST-32 complex/ET-5 complex  |
| 54614 | LNP22323abd | 2005 | В | 5    | 2     | F5-8  | 8    | ST-8 complex/Cluster A4     |
| 54615 | LNP22516abd | 2005 | С | 5    | 2-1   | F5-5  | 11   | ST-11 complex/ET-37 complex |
| 54616 | LNP22638abd | 2005 | С | 5-1  | 10-8  | F3-6  | 11   | ST-11 complex/ET-37 complex |
| 54617 | LNP22840abd | 2005 | С | 5    | 2     | F5-5  | 8    | ST-8 complex/Cluster A4     |
| 54618 | LNP22912abd | 2005 | С | 5    | 2     | F3-3  | 11   | ST-11 complex/ET-37 complex |
| 54619 | LNP23213abd | 2006 | С | 7-1  | 1     | F3-6  | 11   | ST-11 complex/ET-37 complex |
| 54620 | LNP23290abd | 2006 | В | 19-1 | 15-11 | F5-1  | 269  | ST-269 complex              |
| 54621 | LNP23363abd | 2006 | С | 7-1  | 1     | F3-6  | 11   | ST-11 complex/ET-37 complex |
| 54622 | LNP23532abd | 2006 | Y | 5-1  | 10-1  | F4-1  | 23   | ST-23 complex/Cluster A3    |
| 54623 | LNP23749abd | 2006 | В | 7-2  | 13-2  | F1-5  | 40   | ST-41/44 complex/Lineage 3  |
| 54624 | LNP24131abd | 2007 | В | 7    | 16    | F3-3  | 32   | ST-32 complex/ET-5 complex  |
| 54625 | LNP24174abd | 2007 | С | 5-1  | 10-1  | F5-5  | 11   | ST-11 complex/ET-37 complex |
| 54626 | LNP24231abd | 2007 | С | 7-2  | 16-29 | F3-3  | 9074 | ST-32 complex/ET-5 complex  |
| 54627 | LNP24274abd | 2007 | С | 5    | 2-1   | F5-5  | 11   | ST-11 complex/ET-37 complex |
| 54628 | LNP24347abd | 2007 | В | 19   | 15    | F5-1  | 2501 | ST-32 complex/ET-5 complex  |
| 54629 | LNP26521abd | 2012 | В | 19   | 15    | F5-91 | 33   | ST-32 complex/ET-5 complex  |
| 54630 | LNP26626abd | 2012 | С | 7-4  | 1     | F3-6  | 11   | ST-11 complex/ET-37 complex |
| 54631 | LNP28018abd | 2015 | С | 5    | 2     | F3-3  | 11   | ST-11 complex/ET-37 complex |
| 54632 | LNP28033abd | 2015 | С | 5    | 2     | F3-3  | 11   | ST-11 complex/ET-37 complex |
| 54633 | LNP28072abd | 2015 | С | 5    | 2     | F3-3  | 11   | ST-11 complex/ET-37 complex |
| 54634 | LNP28134abd | 2015 | С | 5    | 2     | F3-3  | 11   | ST-11 complex/ET-37 complex |
| 54635 | LNP28229abd | 2015 | В | 7-1  | 14    | F1-96 | 303  | ST-41/44 complex/Lineage 3  |

NA= Not assigned

Supplementary Table 2

| LOCI     | DESCRIPTION of the products                                                  | correspondance in NMB and NMC | Classs                                                       | Othets                          |
|----------|------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|---------------------------------|
| NEIS0040 | DnaK suppressor protein                                                      | NMB0056                       | RNA metabolism                                               |                                 |
| NEIS0118 | transcription antitermination protein nusG                                   | NMB0126                       | Genetic information processing                               |                                 |
| NEIS0164 | valyl-tRNA synthetase                                                        | NMB0174                       | Genetic Information Processing;<br>Translation               | tRNA metabolism,                |
| NEIS0173 | outer membrane protein OMP85                                                 | NMB0182; NMC0173              | No hints in the KEGG database<br>(www.kegg.jp)               |                                 |
| NEIS0203 | L-serine dehydratase; NMB211,<br>NMC0203, NGO1773                            | NMB211                        | Metabolism; Biosynthesis of other secondary metabolites      | Biosynthesis of amino acids     |
| NEIS0224 | bifunctional glutamine-synthetase<br>adenylyltransferase/deadenyltransferase | NMB0224, NMC0224              | Metabolism                                                   |                                 |
| NEIS0242 | NADH dehydrogenase I chain F                                                 | NMB0246, NMC0242              | Metabolic pathways , Oxidative phosphorylation               |                                 |
| NEIS0306 | hypothetical protein                                                         | NMB1917,NMC0306               | No hints in the KEGG database<br>(www.kegg.jp)               |                                 |
| NEIS0309 | hypothetical protein                                                         | NMB1914, NMC0309              | No hints in the KEGG database<br>(www.kegg.jp)               |                                 |
| NEIS0320 | chromosomal replication initiation protein                                   | NMB1903; NMC0320              | Environmental Information Processing;<br>Signal transduction | Two-component system chemotaxis |
| NEIS0326 | leucyl-tRNA synthetase                                                       | NGO0006; NMB1897;<br>NMC0326  | Genetic Information Processing;<br>Translation               | tRNA metabolism,                |
| NEIS0336 | protein-L-isoaspartate O-<br>methyltransferase                               | NMB1885; NMC0336              | Metabolism; Lipid metabolism                                 | Fatty acid metabolism           |
| NEIS0339 | hypothetical protein                                                         | NGO0022; NMB1881;<br>NMC0339  | No hints in the KEGG database<br>(www.kegg.jp)               |                                 |
| NEIS0345 | orotate phosphoribosyltransferase pyrE                                       | NMB1874; NMC0345              | Metabolic pathway Pyrimidine metabolism                      |                                 |
| NEIS0346 | hypothetical protein                                                         | NGO0030; NMB1873;<br>NMC0346  | Genetic Information Processing;<br>Replication and repair    |                                 |
| NEIS0347 | putative acetyltransferase                                                   | NMB1872; NMC0347              | No hints in the KEGG database<br>(www.kegg.jp)               |                                 |
| NEIS0348 | hypothetical protein                                                         | NGO0032; NMB1871;<br>NMC0348  | No hints in the KEGG database<br>(www.kegg.jp)               |                                 |
| NEIS0349 | Factor H binding protein lipoprotein                                         | NMB1870                       | Antigenic gene                                               |                                 |

| NEIS0350 | fructose-1,6-bisphosphate aldolase (EC 4.1.2.13)             | NMB1869                                | Metabolic pathways, Carbon metabolism                                       |                          |
|----------|--------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------|--------------------------|
| NEIS0351 | putative integrase/recombinase                               | NMB1868; NMC0351                       | Metabolism; Carbohydrate metabolism                                         | Carbon metabolism        |
| NEISO443 | TpsA activation/secretion protein TpsB                       | NMB1780; NMC0443                       | No hints in the KEGG database (www.kegg.jp)                                 |                          |
| NEIS0491 | primosome assembly protein PriA                              | NMB0551; NMC0491                       | Genetic Information Processing;<br>Replication and repair                   | Homologous recombination |
| NEISO499 | hypothetical protein                                         | NMB0558; NMC0499                       | No hints in the KEGG database (www.kegg.jp)                                 |                          |
| NEIS0516 | glycine cleavage system<br>aminomethyltransferase T          | NMB0574; NMC0516                       | Metabolism; Carbohydrate metabolism                                         | Carbon metabolism        |
| NEIS0545 | putative nucleotide-binding protein                          | NMB0602; NMC0545                       | No hints in the KEGG database (www.kegg.jp)                                 |                          |
| NEIS0550 | preprotein translocase subunit SecD                          | NGO0189; NMB0607;<br>NMC0550           | Genetic Information Processing; Folding, sorting and degradation, transport | Protein export           |
| NEIS0580 | argH argininosuccinate lyase                                 | NMB0637, NMC0580                       | Metabolic pathways; Biosynthesis of amino acids                             |                          |
| NEIS0582 | putative deoxyribonucleotide<br>triphosphate pyrophosphatase | NMB0639; NMC0582                       | Metabolism; Nucleotide metabolism                                           | Purine metabolism        |
| NEIS0583 | hypothetical protein                                         | NGO0222; NMB0640;<br>NMC0583           | No hints in the KEGG database (www.kegg.jp)                                 |                          |
| NEIS0584 | inorganic pyrophosphatase                                    | NMB0641; NMC0584                       | Metabolism; Energy metabolism; Oxidative phosphorylation                    |                          |
| NEIS0585 | ntpA dATP pyrophosphohydrolase                               | NGO0224; NMB0642;<br>NMC0585; NMV_1767 | Metabolism; Metabolism of cofactors and vitamins                            | Folate biosynthesis      |
| NEISO611 | hypothetical protein                                         | NGO0232; NMB0662;<br>NMC0611           | No hints in the KEGG database (www.kegg.jp)                                 |                          |
| NEIS0632 | lipoprotein                                                  | NGO0252                                | No hints in the KEGG database<br>(www.kegg.jp)                              |                          |
| NEIS0641 | amidophosphoribosyltransferase                               | NGO0263; NMB0690;<br>NMC0641           | Metabolism; Nucleotide metabolism;<br>Amino acid metabolism                 |                          |
| NEIS0654 | ribosomal large subunit pseudouridine synthase D             | NGO0278; NMB0704;<br>NMC0654           | No hints in the KEGG database (www.kegg.jp)                                 |                          |
| NEIS0655 | transmembrane transport protein                              | NMB0705; NMC0655                       | No hints in the KEGG database<br>(www.kegg.jp)                              |                          |
| NEISO659 | hypothetical protein                                         | NGO0284; NMB0709;<br>NMC0659           | No hints in the KEGG database<br>(www.kegg.jp)                              |                          |
| NEIS0695 | hypothetical protein                                         | NGO0319; NMB0741;                      | No hints in the KEGG database                                               |                          |

|          |                                                      | NMC0695                      | (www.kegg.jp)                                                                                                                  |                                              |
|----------|------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| NEIS0710 | polynucleotide<br>phosphorylase/polyadenylase        | NGO0335; NMB0758;<br>NMC0710 | Metabolism; Nucleotide metabolism                                                                                              |                                              |
| NEISO718 | signal peptidase I                                   | NGO0343; NMB0765;<br>NMC0718 | Cellular Processes; Cellular community -<br>prokaryotes+Genetic Information<br>Processing; Folding, sorting and<br>degradation | Quorum sensing;<br>Protein export            |
| NEIS0742 | putative amino acid permease ATP-<br>binding protein | NGO0374; NMB0789;<br>NMC0742 | Environmental Information Processing;<br>Membrane transport                                                                    | ABC Transporter                              |
| NEIS0794 | histidyl-tRNA synthetase                             | NGO0426; NMB0854;<br>NMC0794 | Genetic Information Processing;<br>Translation                                                                                 | tRNA metabolism,                             |
| NEIS0865 | prophage-like protein                                | Vide                         | No hints in the KEGG database (www.kegg.jp)                                                                                    |                                              |
| NEIS0944 | putative outer-membrane receptor protein             | NMB0964; NMC0944             | No hints in the KEGG database (www.kegg.jp)                                                                                    |                                              |
| NEISO958 | pyridine nucleotide transhydrogenase                 | NMB0978; NMC0958             | Metabolism; Metabolism of cofactors and vitamins                                                                               | Nicotinate and<br>nicotinamide<br>metabolism |
| NEISO960 | NAD(P) transhydrogenase subunit alpha                | NMB0980; NMC0960             | Metabolism; Metabolism of cofactors and vitamins                                                                               | Nicotinate and<br>nicotinamide<br>metabolism |
| NEIS0961 | phosphoserine phosphatase                            | NMB0981; NMC0961             | Metabolism; Energy metabolism                                                                                                  |                                              |
| NEIS0966 | phage-related protein                                | NMB0986                      | No hints in the KEGG database<br>(www.kegg.jp)                                                                                 |                                              |
| NEIS0984 | D-lactate dehydrogenase                              | NMB0997; NMC0984             | Metabolism; Carbohydrate metabolism                                                                                            | pyruvate                                     |
| NEIS0995 | hypothetical protein                                 | NMB1003                      | No hints in the KEGG database<br>(www.kegg.jp)                                                                                 |                                              |
| NEIS1062 | ABC transporter ATP-binding protein                  | Vide                         | Environmental Information Processing;<br>Membrane transport                                                                    |                                              |
| NEIS1063 | putative periplasmic protein                         | NGO0835; NMB1124;<br>NMC1063 | No hints in the KEGG database (www.kegg.jp)                                                                                    |                                              |
| NEIS1065 | hypothetical protein                                 | NMB1125                      | No hints in the KEGG database<br>(www.kegg.jp)                                                                                 |                                              |
| NEIS1066 | putative periplasmic protein                         | NGO0834; NMB1126;<br>NMC1066 | No hints in the KEGG database (www.kegg.jp)                                                                                    |                                              |
| NEIS1067 | short chain dehydrogenase                            | NGO0832; NMB1127;<br>NMC1067 | Metabolism                                                                                                                     |                                              |
| NEIS1068 | putative oxidoreductase                              | NGO0831; NMB1128;            | Metabolism                                                                                                                     |                                              |

|          |                                                                        | NMC1068                      |                                                             |                                             |
|----------|------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------|---------------------------------------------|
| NEIS1070 | hscA chaperone protein HscA                                            | NMB1131                      | Genetic Information Processing                              |                                             |
| NEIS1078 | acetyl-CoA carboxylase<br>carboxyltransferase subunit alpha            | NGO0821; NMB1139;<br>NMC1078 | metabolism; Microbial metabolism in diverse environments    | carbon; fatty acid;<br>pyruvate; metabolism |
| NEIS1087 | putative biotin synthase                                               | NMB1146; NMC1087             | Metabolism; Metabolism of cofactors and vitamins            |                                             |
| NEIS1090 | dihydroxy-acid dehydratase                                             | NMB1150;NMC1090              | Metabolism; Microbial metabolism in diverse environments    |                                             |
| NEIS1117 | hypothetical protein                                                   | Vide                         | No hints in the KEGG database (www.kegg.jp)                 |                                             |
| NEIS1126 | ABC transporter ATP-binding protein                                    | NMB1226                      | Environmental Information Processing;<br>Membrane transport |                                             |
| NEIS1188 | putative dnaJ-family protein                                           | NMB1027; NMC1188             | No hints in the KEGG database (www.kegg.jp)                 |                                             |
| NEIS1219 | hypothetical protein                                                   | NMB1284; NMC1219             | No hints in the KEGG database (www.kegg.jp)                 |                                             |
| NEIS1253 | hypothetical protein                                                   | NMB1317A; NMC1253            | No hints in the KEGG database (www.kegg.jp)                 |                                             |
| NEIS1298 | exodeoxyribonuclease VII large subunit                                 | NMB1363; NMC1298             | Genetic Information Processing;<br>Replication and repair   |                                             |
| NEIS1365 | transcription elongation factor GreA                                   | NMB1430; NMC1365             | Genetic information processing                              |                                             |
| NEIS1370 | putative integral membrane protein                                     | NMB1435; NMC1370             | No hints in the KEGG database (www.kegg.jp)                 |                                             |
| NEIS1420 | hypothetical protein                                                   | NMB1485; NMC1420             | No hints in the KEGG database (www.kegg.jp)                 |                                             |
| NEIS1436 | arginyl-tRNA synthetase                                                | NMB1506; NMC1436             | Genetic Information Processing;<br>Translation              | tRNA metabolism,                            |
| NEIS1465 | DNA primase                                                            | NMB1146; NMC1087             | Metabolism; Metabolism of cofactors and vitamins            |                                             |
| NEIS1486 | phosphoribosylglycinamide<br>transformylase                            | NMB1566; NMC1486             | No hints in the KEGG database (www.kegg.jp)                 |                                             |
| NEIS1503 | imidazoleglycerol-phosphate<br>dehydratase                             | NMB1583; NMC1503             | Metabolism; Amino acid metabolism                           | Biosynthesis of amino acids                 |
| NEIS1549 | AniA nitrite reductase, major outer membrane copper-containing protein | NMC1549                      | Metabolism; Energy metabolism                               | Nitrogen metabolism                         |
| NEIS1554 | SerC phosphoserine aminotransferase                                    | NMB1640; NMC1554             | Metabolism; Amino acid metabolism                           | Biosynthesis of amino acids                 |
| NEIS1564 | putative disulphide bond formation                                     | NMB1649; NMC1564             | No hints in the KEGG database                               |                                             |

|          | protein                                                                                 |                               | (www.kegg.jp)                                                                              |                                                                                                                    |
|----------|-----------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| NEIS1590 | putative lipoprotein                                                                    | NMB1672; NMC1590              | No hints in the KEGG database (www.kegg.jp)                                                |                                                                                                                    |
| NEIS1596 | aromatic amino acid aminotransferase                                                    | NMB1678; NMC1596              | Metabolic pathway                                                                          | Biosynthesis of amino acids                                                                                        |
| NEIS1608 | phosphoglucosamine mutase                                                               | NMB1690; NMC1608              | Metabolism; Carbohydrate metabolism;<br>Metabolic pathways; Biosynthesis of<br>antibiotics |                                                                                                                    |
| NEIS1609 | folP dihydropteroate synthase                                                           | NMB1691; NMC1609              | Metabolic pathways; Metabolism of<br>cofactors and vitamins                                | Folate biosynthesis                                                                                                |
| NEIS1619 | rfaK alpha-1,2 N-acetylglucosamine transferase                                          | NMB1705; NMC1619              | Metabolism                                                                                 | Fatty acid metabolism                                                                                              |
| NEIS1622 | putative integral membrane ion transporter                                              | NMB1707; NMC1622              | No hints in the KEGG database<br>(www.kegg.jp)                                             |                                                                                                                    |
| NEIS1655 | GTP pyrophosphokinase                                                                   | NMB1735; NMC1655              | Metabolism; Nucleotide metabolism                                                          | Purine metabolism                                                                                                  |
| NEIS1742 | undecaprenyldiphospho-<br>muramoylpentapeptide beta-N-<br>acetylglucosaminyltransferase | NMB0422; NMC1742              | Metabolism; Glycan biosynthesis and<br>metabolism; Human Diseases; Drug<br>resistance      | Peptidoglycan<br>biosynthesis;<br>Vancomycin<br>resistance                                                         |
| NEIS1747 | phospho-N-acetylmuramoyl-<br>pentapeptide- transferase                                  | NMB0418; NMC1747              | Metabolism; Glycan biosynthesis and<br>metabolism; Human Diseases; Drug<br>resistance      | Peptidoglycan<br>biosynthesis;<br>Vancomycin<br>resistance                                                         |
| NEIS1754 | putative small periplasmic protein                                                      | NMB0412; NMC1754              | No hints in the KEGG database (www.kegg.jp)                                                |                                                                                                                    |
| NEIS1804 | hypothetical periplasmic protein                                                        | NMB0366; NMC1804;<br>NMV_0405 | No hints in the KEGG database (www.kegg.jp)                                                |                                                                                                                    |
| NEIS1808 | ampG putative integral membrane signal transducer protein                               | NMB0360; NMC1808              | Human diseases; Drug resistance                                                            | beta-Lactam<br>resistance<br>MFS transporter, PAT<br>family, beta-lactamase<br>induction signal<br>transducer AmpG |
| NEIS1848 | rpmA 50S ribosomal protein L27                                                          | NG01677                       | Genetic information processing                                                             |                                                                                                                    |
| NEIS1849 | hypothetical protein                                                                    | NMB0323; NMC1849              | No hints in the KEGG database (www.kegg.jp)                                                |                                                                                                                    |
| NEIS1871 | hypothetical protein                                                                    | NGO1692; NMB0310;<br>NMC1871  | No hints in the KEGG database (www.kegg.jp)                                                |                                                                                                                    |

| NEIS1872 | hypothetical protein                                          | NGO1693; NMB0309;<br>NMC1872 | No hints in the KEGG database (www.kegg.jp)                      |                             |
|----------|---------------------------------------------------------------|------------------------------|------------------------------------------------------------------|-----------------------------|
| NEIS1873 | dihydrofolate reductase                                       | NMB0308; NMC1873             | Metabolism; Metabolism of cofactors and vitamins                 |                             |
| NEIS1874 | phospho-2-dehydro-3-deoxyheptonate aldolase                   | NMB0307; NMC1874             | Metabolism; Biosynthesis of amino acids                          |                             |
| NEIS1875 | hypothetical protein                                          | NMB0306                      | No hints in the KEGG database (www.kegg.jp)                      |                             |
| NEIS1876 | hypothetical protein                                          | Vide                         | No hints in the KEGG database (www.kegg.jp)                      |                             |
| NEIS1877 | opcB hypothetical protein                                     |                              | No hints in the KEGG database (www.kegg.jp)                      |                             |
| NEIS1927 | cadmium resistance protein                                    | NGO2127; NMB1955;<br>NMC1927 | No hints in the KEGG database (www.kegg.jp)                      |                             |
| NEIS1929 | acetyltransferase                                             | NGO2125; NMB1957             | No hints in the KEGG database (www.kegg.jp)                      |                             |
| NEIS1930 | putative periplasmic protein                                  | NGO2124; NMB1958             | No hints in the KEGG database (www.kegg.jp)                      |                             |
| NEIS1933 | periplasmic/outer membrane protein                            | NmB1961                      | No hints in the KEGG database (www.kegg.jp)                      |                             |
| NEIS1934 | hypothetical protein                                          | Nmb1962; NmC1934             | Environmental Information Processing;<br>Membrane transport      | ABC Transporter             |
| NEIS1948 | chaperonin GroEL                                              | NGO2095; NMB1972;<br>NMC1948 | Genetic Information Processing; Folding, sorting and degradation | RNA degradation             |
| NEIS1949 | co-chaperonin GroES                                           | NGO2094; NMB1973;<br>NMC1949 | Genetic Information Processing                                   |                             |
| NEIS1951 | putative sodium-dependent inner<br>membrane transport protein | NGO2096; NMB1975;<br>NMC1951 | No hints in the KEGG database (www.kegg.jp)                      |                             |
| NEIS1952 | periplasmic/outer membrane protein                            | NGO2098; NMB1976;<br>NMC1952 | Metabolism; Amino acid metabolism                                | Biosynthesis of amino acids |
| NEIS1953 | putative lipoprotein                                          | NMB1977; NMC1953             | No hints in the KEGG database (www.kegg.jp)                      |                             |
| NEIS1964 | putative membrane transport solute-<br>binding protein        | NMB1989; NMC1964             | Environmental Information Processing;<br>Membrane transport      | ABC Transporter             |
| NEIS1997 | psedouridine synthase                                         | NMB2018                      | No hints in the KEGG database<br>(www.kegg.jp)                   |                             |
| NEIS1998 | phosphopantetheine adenylyltransferase                        | NGO2085; NMB2019;<br>NMC1998 | Metabolism; Metabolism of cofactors and vitamins                 | Metabolic pathways          |

| NEIS2002 | hypothetical protein             | NMB2023; NMC2002             | No hints in the KEGG database (www.kegg.jp)      |                                    |
|----------|----------------------------------|------------------------------|--------------------------------------------------|------------------------------------|
| NEIS2017 | tRNA pseudouridine synthase A    | NGO1811; NMB2036;<br>NMC2017 | Genetic Information Processing;<br>Translation   | tRNA metabolism,                   |
| NEIS2022 | hypothetical protein             | NMB2041; NMC2022             | No hints in the KEGG database (www.kegg.jp)      |                                    |
| NEIS2049 | putative oxidoreductase          | NMB2068; NMC2049             | Metabolism; Metabolism of cofactors and vitamins | Thiamine metabolism                |
| NEIS2081 | elongation factor Ts             | NMB2102; NMC2081             | Genetic information processing                   |                                    |
| NEIS2109 | NHBA                             | NGO1958; NMB2132;<br>NMC2109 | Antigenic gene                                   |                                    |
| NEIS2113 | putative periplasmic protein     | NMB2135; NMC2113             | No hints in the KEGG database (www.kegg.jp)      |                                    |
| NEIS2134 | rfaC Heptosyl transferase I      | NMB2156; NMC2134             | Metabolic pathways                               | Lipopolysaccharide<br>biosynthesis |
| NEIS2153 | 6-phosphogluconate dehydrogenase | NMB0015; NMC2153             | Metabolism; Carbohydrate metabolism              | pentose phosphate pathway          |



Supplementary figure. Neighbour-net phylogenetic network of the cultured isolates belonging to group C and clonal complex ST-11 from IMD cases with abdominal presentations. The tree was performed on the basis of cgMLST. The groups are clustered in open circle according to the years of isolation.