Supplementary Information:

Nonsense-mediated mRNA Decay Substrates Involve Distinct and Successive Upf1-bound Complexes

Marine Dehecq, Laurence Decourty, Abdelkader Namane, Caroline Proux, Joanne Kanaan, Hervé Le Hir, Alain Jacquier, Cosmin Saveanu

Access to primary data (mass-spectrometry and RNASeq):

RNASeq data. GEO accession GSE102099

MS data. MS data are available via ProteomeXchange with identifier **PXD007159**.

<u>Contents :</u>

Supplementary Figures :

Fig. S1 - Workflow for quantitative analysis of MS/MS results from affinity purified complexes.
Fig. S2 - N-terminal and C-terminal tagged Upf1 enrich similar sets of specific proteins.
Fig. S3 - Controls of total tagged protein levels in the presence or absence of other NMD components.
Fig. S4 - Alignment of hSmg6, hSmg5, hSmg7, Ebs1 and Nmd4 domains sequences.

Fig. S5 - Deletion of NMD4 and EBS1 stabilize a set of transcripts that is also stabilized in the absence of UPF1.

Fig. S6 - The helicase domain of Upf1 alone can destabilize RPL28 pre-mRNA, an NMD reporter. Fig. S7 - Comparison between the canonical SURF/DECID model and our extended Detector/Effector model.

Strains, oligonucleotides and plasmid tables.

Supplementary tables:

Table **S1** - LTOP2 values for the proteins identified in affinity purified samples Table **S2** - Average LTOP2 values and standard deviation of the results from independent

Table **S2** - Average LTOP2 values and standard deviation of the results from independent replicate experiments.

Table **S3** - Enrichment values in purification over total protein content (log2 transformed values). Table **S4** - Average enrichment values and standard deviation of the results from independent replicate experiments.

Table **S5** - Summary of the number of replicates, the number of proteins robustly quantified and the efficiency of RNase treatment for each purification type.

Table **S6** - RNASeq raw data analysis results summary.

Note: tables **S1** to **S4** are provided as a single separate Excel Office Open XML file, and **S5** and **S6** as individual spreadsheet files.

Fig. S1. Workflow for quantitative analysis of MS/MS results from affinity purified complexes.

Notes about the depicted procedure: 1. MaxQuant output for peptide intensities and their association with a given protein was used as the main input for computing LTOP2 scores and enrichment. To calculate the false discovery rate (FDR) of the MS/MS analysis, MaxQuant builds reverse sequence « artificial » proteins that serve as negative controls for the identification procedure. Reversed sequences and common contaminants (trypsin, keratins) were removed from further analyses in the early steps of the analysis.

2. A protein group corresponds to a single protein or several proteins with very high sequence similarity that cannot be discriminated by peptide analysis. For further analyses, we used the identity of the protein of the group with most coverage.

3. The TEV protease was added in each purification experiments with the same relative amount to elute complexes from beads. This step is important to be able to compare replicates between them and the different purification types.

4. The comparison of our input LTOP2 with the abundance data from Ho et al. 2017, allowed to calculate a factor that served to adjust LTOP2 values and make them compatible with the dynamic range and scale of published abundance values.

Fig. S2. N-terminal and C-terminal tagged Upf1 enrich similar sets of specific proteins. **a)** Estimation of the levels of overexpression for N-terminal tagged Upf1 fragments, in comparison with chromosomally C-terminal tagged protein. G6PDH was used as a loading control. Serial dilutions were used to test the ability of the immunoblot signal to estimate protein levels. **b)** Enrichment values for purifications done with chromosomally C-terminal tagged Upf1 (x axis) and N-terminally TAP tagged Upf1.

Fig. S3. Controls of total tagged protein levels in the presence or absence of other NMD components. Total protein extracts from the described strains were tested by immunoblot to detect the protein A part of the TAP tag. G6PDH was used as a loading control.

а			
hSmg6 hSmg5 yNmd4	1239 849 1	1 10 20 30 40 50 50 70 80 MELEIRPLFLVPD- NGFIDHLASLARLLESRKYILVVPLIVINELDGLAKGQETDHRAGGYARVVQEKARKSIEFL 13 AQSAMSP-YLVPDTQALCHHLPVIRQLATSGRFIVIIPRTVIDGLDLLKKEHPGARDGIRYL 90 MTQYNFIIDASAFEKGLGNIKRWCSDCTEAVTLNFYIPTFTLNELDFLQQRRKSFAARESLKFI 65	13 9
hSmg6 hSmg5 yNmd4	1314 910 66	81 90 100 110 120 130 140 150 160 EQRFESR DSCLRALTSR GNELESIAFRSEDITGQLGNNDDLILSCCLHYC SCCLHYC 130 EAEFKKG NRYIRCOKEV GKSFERHKLK RO-DADAWTLYKILDSC KQL 95 DRLDDSKFANLKVFIEFPEVLDIILWSDVMEH NDSSG KI N IAKLYKLKNLKSCIYKCYLEGNE 129	66 5 9
hSmg6 hSmg5 yNmd4	1367 956 130	161 170 180 190 200 210 220 230 240 AKDFMPASKEEPIRLLREVVLLTDRNLR VKALTRNVPVRD 141 TLAQGAG-EE-DPSGMVTIITGPLDNPSVL SGPMQAALQAAAHAS 99 GLH-WILSEDPQIREMAMQCNIPSCSIVDVDSILSKDMNDKSFRESEKFNNMMLKNG-TKEESEN 193	07 9 3
hSmg6 hSmg5 yNmd4	1408 1000 194	241 250 260 268 VDIKNVLDFYKQWKEIG 1418 GREIIRTNFNKTVYASRGT-GELWSP 218	
D hSmg6 [14-3-3] hSmg5 [14-3-3] hSmg7 [14-3-3] yEbs1 [14-3-3]	576 19 1 23	10 20 30 40 50 60 70 80 QQQELHRLLRVADNQELQLSNLLSRDRI-SPEGLEKMAQLRAELLQLYERCILL-DIEFSDNQNVDQIL- 64 TKRLYRAVVEAVHRLDLILCNKTAYQEVFKPENISLRNKLRELCVKLMFLHPVDYGRKAEELL-81 MSLQSAQYLRQAEVLKADMTDSKLGPAEVWTSRQALQDLYQKMLVT-DLEYALDKKVEQDL-60 SILKSNQLFQDYALLNGFLAFVHSKLNAAILTSIESQCGKSFAA-DLDSFDQSSISSILD 59	2
hSmg6 [14-3-3] hSmg5 [14-3-3] hSmg7 [14-3-3] yEbs1 [14-3-3]	643 82 61 60	90 100 110 120 130 140 150 160 WKNAFYQVI EKFR	7 4 5 9
hSmg6 [14-3-3] hSmg5 [14-3-3] hSmg7 [14-3-3] yEbs1 [14-3-3]	698 135 116 140	170180190200210220230240KLEDYMDGLAIRSKPUSASGKEMDWAQMACHRCLVYLGDLSRYQEQASDTANYGKARSWY75ELOCCIDWTHVTDPLIGCK	4059
hSmg6 [14-3-3] hSmg5 [14-3-3] hSmg7 [14-3-3] yEbs1 [14-3-3]	755 201 176 210	250 260 270 280 290 300 LKAQHIAPKNGRPYNQLALLAVYTRRKLDAVYYYMRSLAASNPILTAKESLMSLFEETKRK815 YQALSVAPQIGMPFNQLGTLAGSKYYNVEAMYCYLRCIQSEVSFEGAYGNLKRLYDKAAKMYHQL265 RHAAQLVPSNGQPYNQLAILASSKGDHLTTIFYYCRSIAVKFPFPAASTNLQKALSKALES236 RLASLVLPSAGETYSQAGAIFLQTGNLGIAVFNFVKGMMTKMPSPVSIKNFGALMVDNK291	
•			
hSmg5 [HHR] hSmg7 [HRR] yEbs1 [292-585]	267 237 292	10 20 30 40 50 60 70 80 KKCETRKLSPGKKRCKDIKRLLVNFMYLQSLLQPKSSSVDSELTSLCQSVLEDFNLCLFYLPSSPN 33 RDEVKTKWGVSDFIKAFIKFHGHVYLSKSLEKLSPLREKLEEQFKRLLFQKAFNSQQLVHVTVINL- 30 RDEVKTKWGVSDFIKAFIKFHGHVYLSKSLEKLSPLREKLEEQFKRLLFQKAFNSQQLVHVTVINL- 30	3 2 8
hSmg5 [HHR] hSmg7 [HRR] yEbs1 [292-585]	334 303 349	90 100 110 120 130 140 150 160 LSLASEDEEEYESGYA-FLPDL-LIFOMVIICLMCVHSLERAGSKQYSAAIAFTLALFSHLVNHVN 39 FQLHHLRDFSNETEOHTYSQDEQLCWTQLLALFMSFLGILCKCPLQNES-35 NNGIKLRHLENALYETMSARYLNNIKTIFHNLIITIGGFHLLKRRSDVSAKTLKDLRSNELDYLNFAFKYIAHILNDI-42	727
hSmg5 [HHR] hSmg7 [HRR] yEbs1 [292-585]	398 353 428	170 * 180 190 200 210 220 230 240 IRLQAELEEGENPVPVLMAEGLLPAVKVFLDWLRTNPDLIIVCAQSSQSLWNRLSVLLNLLPAAG 69 QEESYNAYPLPAVKVSMDWLRLRP-RVFQEAVVDERQYIWPWLISLLNSF	9
hSmg5 [HHR] hSmg7 [HRR] yEbs1 [292-585]	700 402 497	250 260 270 280 290 300 310 320	543
hSmg5 [HHR] hSmg7 [HRR] yEbs1 [292-585]	766 909 65	330 340 350 360 VRICCIRSFGHFIARLQGSILOFNPEVGIFVSIAQSEQESLLQQA 809 IRQQRLISIGKWIADNQPRLIQCENEVGKLLFITEIPELILEDPS 499 * (410-647) for hSmg5 LRLQAVVNISSQLLQ-NNNCGVEWSDNKSRYIFN 585	

Fig. S4: Alignment of hSmg6, hSmg5, hSmg7, Ebs1 and Nmd4 domains sequences. Alignment of the PIN domains of hSmg6, hSmg5 and ScNmd4 (a), the 14-3-3 domains of hSmg6, hSmg5, hSmg7 and Ebs1 (b) and of the helical hairpin region (HHR) of hSmg5, hSmg7 and Ebs1 (292-585) (c). These alignments were obtained with the algorithm Mafft with default parameters; colour represents percentage of identity or similarity (BLOSUM62).

Fig. S5. Deletion of *NMD4* and *EBS1* stabilize a set of transcripts that is also stabilized in the absence of *UPF1*. **a**) Workflow used for RNAseq experiments and analyses. (B) to (G) Examples of NMD substrates sequencing profiles in WT, *upf1* Δ , *nmd4* Δ and *ebs1* Δ experiments. NMD substrates belong to different classes, intron containing (RPL28; **b** and **c**), uORF (DAL7, DAL2; **d** and **e**), non-coding RNA (SUT439; **f**) and long 3'UTR (YOR304C-A; **g**). Profiles were normalized using the samples median counts. For RPL28 (**b** and **c**), we represented the profile of the entire transcript showing that the signal in the exon is similar in each strain (**b**). A zoom of the intron region (**c**) shows a higher signal in this specific region of unspliced RPL28 in mutants by comparison of WT. H. Scatter plot of transcript log2 fold change in *upf1* Δ against *ebs1* Δ . The dashed line represents the limit over which RNA are considered as stabilized, a value of 0.5 in log2 (1.4 fold change).

Fig. S6. The helicase domain of Upf1 alone can destabilize RPL28 pre-mRNA, an NMD reporter. Total RNA from wild-type or $upf1\Delta$ strain transformed with an empty plasmid (pControl) or plasmids expressing various Upf1 fragments (see Figure 3A) was tested by reverse transcription and quantitative PCR. The levels of RPL28 pre-mRNA were normalized using an NMD-insensitive transcript (RIM1) and an NMD efficiency score was calculated based on the difference between a wild type and a $upf1\Delta$ strain.

a SURF/DECID NMD model

b Extended Detector/Effector model

Fig. S7. Comparison between the canonical SURF/DECID model (a) and our extended Detector/Effector model (b) for NMD. Orange and blue squares mark equivalent steps in both models. Light grey elements in the revised model represent optional steps that can further enhance the NMD process under certain conditions and in specific organisms.

Strains used in this study

Dehecq et al., Detection and degradation of nonsense-mediated mRNA decay substrates involve two distinct Upf1-bound complexes

strain	original strain	Genotype	Reference
LMA2154 (BY4741)		MATa ura3∆0 his3∆1 leu2∆0 met15∆0	Brachmann et al. 1998
LMA2155 (BY4742)		MATa $ura3\Delta 0$ his $3\Delta 1$ leu $2\Delta 0$ lys $2\Delta 0$	Brachmann et al. 1998
LMA2194 (UPF1-TAP)	BY4741	NAM7-TAP::HIS3MX	Ghaemmaghami et al., 2003
LMA3730 (UPF1-TAP)	BY4741	NAM7-CRAP::URA3	This study
LMA2192 (UPF2-TAP)	BY4741	NMD2-TAP::HIS3MX	Ghaemmaghami et al., 2003
LMA3731 (UPF2-TAP)	BY4741	NMD2-CRAP::URA3	This study
LMA2193 (UPF3-TAP)	BY4741	UPF3-TAP::HIS3MX	Ghaemmaghami et al., 2003
LMA4263 (UPF3-TAP)	BY4741	UPF3-CRAP::URA3	This study
LMA3317 (NMD4-TAP)	BY4741	NMD4-TAP::HIS3MX	Ghaemmaghami et al., 2003
LMA3728/3729 (NMD4-TAP)	BY4741	NMD4-CRAP::URA3	This study
LMA4264 (DCP1-TAP)	BY4741	DCP1-TAP::HIS3MX	Ghaemmaghami et al., 2003
(EBS1-TAP)	BY4741	EBS1-CRAP::URA3	This study
LMA3312 (HRR25-TAP)	BY4741	HRR25-TAP::HIS3MX	Ghaemmaghami et al., 2003
LMA3849 (UPF1-TAP/NMD4-HA)	BY4741	NAM7-CRAP::URA3 / NMD4-HA::KANMX6	This study
LMA3851 (UPF1-TAP/EBS1-HA)	BY4741	NAM7-CRAP::URA3 / EBS1-HA::KANMX6	This study
LMA3852 (UPF1-TAP/EDC3)	BY4741	NAM7-CRAP::URA3 / EDC3-HA::KANMX6	This study
LMA1667 (upf1∆)	BY4741	NAM7::KANMX6	Giaever et al., 2002
LMA1669 (upf2∆)	BY4741	NMD2::KANMX6	Giaever et al., 2002
LMA1671 (upf3∆)	BY4741	UPF3::KANMX6	Giaever et al., 2002
LMA3732 (nmd4∆)	BY4741	NMD4::KANMX6	Giaever et al., 2002
LMA4112 (UPF2-TAP/upf1∆)	BY4741	NAM7::KANMX6 / NMD2-CRAP::URA3	This study
LMA4113 (UPF3-TAP/upf1∆)	BY4741	NAM7::KANMX6 / UPF3-CRAP::URA3	This study
LMA4114 (NMD4-TAP/upf1∆)	BY4741	NAM7::KANMX6 / NMD4-CRAP::URA3	This study
LMA3739 (UPF1-TAP/upf2∆)	BY4741	NMD2::KANMX6 / NAM7-CRAP::URA3	This study
LMA4701/4702 (NMD4-TAP/upf2∆)	BY4741	NMD2::KANMX6 / NMD4-CRAP::URA3	This study
LMA3735 (UPF1-TAP/upf3∆)	BY4741	UPF3::KANMX6 / NAM7-CRAP::URA3	This study
LMA3736 (UPF1-TAP/nmd4∆)	BY4741	NMD4::KANMX6 / NAM7-CRAP::URA3	This study
LMA4523 (upf1∆/upf2∆)	BY4741	NAM7::HIS3MX / NMD2::KANMX6	This study
LMA4524 (upf1∆/upf3∆)	BY4741	NAM7::HIS3MX / UPF3::KANMX6	This study
LMA4525 (upf1∆/ebs1∆)	BY4741	NAM7::HIS3MX / EBS1::KANMX6	This study
LMA4678 (upf1∆/nmd4∆)	BY4741	NAM7::HIS3MX / NMD4::KANMX6	This study
LMA3853/3854 (nmd4∆/ebs1∆)	BY4742	NMD4::ProMFalpha2NAT / EBS1::KANMX6	This study

Plasmids used in this study

Dehecq et al., Detection and degradation of nonsense-mediated mRNA decay substrates involve two distinct Upf1-bound complexes

Plasmid pRS316	Description and ID (yeast marker) pRS316 (URA3)	Reference Sikorski & Hieter, 1989
pCM189-NTAP	pl.1233 (H1) (URA3)	This study
pCM189-NTAP-NAM7-FL	pl.1442 (TAP-UPF1-FL) (URA3)	This study
pCM189-NTAP-NAM7-CH	pl.1443 (TAP-UPF1-CH) (URA3)	This study
pCM189-NTAP-NAM7-NoCH	pl.1444 (TAP-UPF1-Cter) (URA3)	This study
pCM189-NTAP-Upf1 2-853	pl.1521 (TAP-UPF1-NoSQ) (URA3)	This study
pCM189-NTAP-Upf1 208-853	pl.1522 (TAP-UPF1-Cter-NoSQ) (URA3)	This study
pDEST14-NAM7	pl.1350 – Gateway destination vector	This study
pDONR201-NAM7	pl.1330 – Gateway source vector	This study
pCRBlunt-CRAP(6-HisTAP)	pl.1287 – TAP to CRAP cassette vector	This study

Oligonucleotides used in this study

Oligonucleotide	Usage	Sequence
CS887_fw_RPL28intron	real time PCR forward primer	CCATCTCACTGTTGAGACGG
CS888_rv_RPL28intron	real time PCR reverse primer	CTCAGTTTGCGATGGAAGAG
CS889_rv_RPL28exon2	real time PCR reverse primer	ATGTTGACCACCGGCCATAC
CS946_RPL28_fw_exonoverlapQPCR	real time PCR forward primer	TCACGTCTCAGCCGGTAAAG
CS1076_fw_RIM1Qex1ex2	real time PCR forward primer	GTTAGAAAAGGCGCTTTGGTATATG
CS1077_rv_RIM1QRTex2	real time PCR reverse primer	AACCGTCGTCTCTCTCGAAG
CS1429_DAL7_fwQ	real time PCR forward primer	TGAAACTTTGCCAGCGGCCTTC
CS1430_DAL7_rvQ	real time PCR reverse primer	TCCCAACGACCACAGTTCAAACC
CS1359_fw_NAM7_2_pTM189Not	construction oligonucleotide	ttaagaaaatctcatcctccggggcacttGATgcgG TCGGTTCCGGTTCTCACAC
CS1361_rv_NAM7_208_pTM189Notv1	construction oligonucleotide	ATAACTAATTACATGATGCGGCCCTC CTGCAGGGCTTAATTGGATCTCCATT TTGCCTC
CS1362_fw_NAM7_s208_pTM189Not	construction oligonucleotide	ttaagaaaatctcatcctccggggcacttGATgcgA ATAAAGACGCTACAATTAATGATATT GACG
CS1364_rv_NAM7_971_pTM189Notv2	construction oligonucleotide	ATAACTAATTACATGATGCGGCCCTC CTGCAGGGCTTATATTCCCAAATTGC TGAAGTC
CS1393_rv_UPF1_853STOP_pTM189 Notv2	construction oligonucleotide	ATAACTAATTACATGATGCGGCCCTC CTGCAGGGCTTActgaggacgaactaattga ac