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DNA REPAIR AND MUTATIONS DURING QUIESCENCE IN YEAST

Life is maintained through alternating phases of cell division and quiescence. The causes and consequences of spontaneous mutations have been extensively explored in proliferating cells, and the major sources include errors of DNA replication and DNA repair. The foremost consequences are genetic variations within a cell population that can lead to heritable diseases and drive evolution. While most of our knowledge on DNA damage response and repair has been gained through cells actively dividing, it remains essential to also understand how DNA damage is metabolized in cells which are not dividing. In this review, we summarize the current knowledge concerning the type of lesions that arise in non-dividing budding and fission yeast cells, as well as the pathways used to repair them. We discuss the contribution of these models to our current understanding of age-related pathologies.

INTRODUCTION

Age-related diseases including cancer and neurodegeneration are the major threats to human health in developed countries and represent a challenge for individual patient care and public health systems. Somatic mutations cause not only cancer but also abnormalities in the brain and recent findings indicate that a range of age-related diseases is linked to defective DNA repair pathways [START_REF] Garinis | DNA damage and ageing: new-age ideas for an age-old problem[END_REF][START_REF] Burtner | Progeria syndromes and ageing: what is the connection?[END_REF]. Genetic instability has been implicated in several neurodegenerative disorders, including amyotrophic lateral sclerosis [START_REF] Julien | Amyotrophic Lateral Sclerosis[END_REF]) and ataxia [START_REF] Lim | A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration[END_REF], and it has been proposed that the highly metabolically active neurons are particularly sensitive to DNA damage and that their postmitotic lifespan relies on specific DNA surveillance and repair systems. Therefore, the stability and homeostasis of the genetic material in post-mitotic tissues may play a greater role than anticipated, and raises the question of how DNA damage is repaired in non-dividing cells.

All organisms exist in two cell states: proliferation, whereby the cell number increases by division, and quiescence, which sustains life during the non-dividing phase. The majority of the cells in human body tissues and organs are non-dividing, so quiescence is a common life form for the cell. However, this latter state contains two separate conditions depending upon their capacity to re-enter the cell cycle. For example, the yeast model systems and stem cells sustain a reversible quiescent state and can resume proliferation, whereas post-mitotic cells are metabolically active, but irreversibly arrested.

In addition to being the most common cell state on earth [START_REF] Lewis | The Ecology of Quiescent Microbes[END_REF], quiescence (or G0) plays a critical role in normal metazoan development and disease [START_REF] Kim | Identification of bronchioalveolar stem cells in normal lung and lung cancer[END_REF][START_REF] Suda | Hematopoietic stem cells and their niche[END_REF][START_REF] Abbott | Cancer: the root of the problem[END_REF]). In complex eukaryotes, quiescence is essential for stem-cell maintenance [START_REF] Suda | Hematopoietic stem cells and their niche[END_REF] as well as for activating cells for wound healing [START_REF] Chang | Aging and survival of cutaneous microvasculature[END_REF] and sexual reproduction, and this is particularly important for female gametes. Both wound healing and sexual reproduction requires regulated exit from G0 [START_REF] Gouge | Nitric oxide as a regulator of embryonic development[END_REF]. Quiescent cells are directly involved in the establishment and persistence of microbial infectious diseases such as tuberculosis [START_REF] Parrish | Mechanisms of latency in Mycobacterium tuberculosis[END_REF], cryptosporosis [START_REF] Alexander | Antifungal resistance trends towards the year 2000. Implications for therapy and new approaches[END_REF] and anthracis [START_REF] Murray | Defining the requirements for immunological control of mycobacterial infections[END_REF][START_REF] Gray | Sleeping beauty": quiescence in Saccharomyces cerevisiae[END_REF].

It is also important in the environment, since the vast majority of all microbes exist in an unculturable, quiescent state [START_REF] Kaeberlein | Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment[END_REF]. Fortunately, several recent developments, including the ability to use genome-scale tools to understand this state, have facilitated studies into the quiescent state, especially in yeast [START_REF] Allen | Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures[END_REF][START_REF] Yang | Chromosome or chromatin condensation leads to meiosis or apoptosis in stationary yeast (Saccharomyces cerevisiae) cells[END_REF].

Nonetheless, genetic studies of post-mitotic cells face several complications: with the exception of germ and stem cells, post-mitotic cells do not generate descendants and thus do not transmit their genetic traits. Despite the ongoing progress of DNA sequencing technologies [START_REF] Kalisky | Genomic analysis at the single-cell level[END_REF], mutations in individual post-mitotic cells remain difficult to identify. Indeed, in response to excessive DNA damage or mutations, postmitotic cells activate a cell death program that reduces the window for molecular genetic studies [START_REF] Behrens | Impact of genomic damage and ageing on stem cell function[END_REF]. Control of cell proliferation and quiescence remains a central problem in biology. The switches from proliferation to quiescence and vice versa have a broad range of implications for development, differentiation, cancer and longevity. To understand these important biological functions better, the mechanisms of quiescence and particularly those pertaining to the repair capabilities of the quiescent cells must be studied. Indeed, cells must have evolved strategies to protect and neutralize physical and chemical attacks as well as DNA repair mechanisms to prevent the accumulation of DNA damage responsible for mutations and cell death, allowing them to survive through division or arrest.

In this review, we will examine our current knowledge concerning the repair mechanisms at work in non-dividing yeast cells as well as the consequence of a natural time-related mutagenesis. We will focus on budding and fission yeast chronological lifespan (CLS) that measures the reproductive capacity of the cells as a function of time [START_REF] Fabrizio | The chronological life span of Saccharomyces cerevisiae[END_REF][START_REF] Kaeberlein | Lessons on longevity from budding yeast[END_REF]) and highlight the approaches taken in each of these model systems.

QUIESCENCE INDUCTION IN YEAST MODELS

Budding and fission yeasts have been excellent model organisms for studying cell proliferation. The pioneering studies of the genetic control of the cell division cycle in Saccharomyces cerevisiae by Hartwell [START_REF] Hartwell | Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants[END_REF] and in Schizosaccharomyces pombe by Nurse [START_REF] Nurse | Genetic control of cell size at cell division in yeast[END_REF]) testify to it. These two yeasts are evolutionarily distant and the features found in both species are often also found in human cells. A similar assumption can be made for quiescence as well, for which a striking conservation of the regulatory strategies used to exit the cell cycle and enter a reversible quiescent state has been observed [START_REF] Miles | A common strategy for initiating the transition from proliferation to quiescence[END_REF]. Although the cause for quiescence might greatly vary between yeast and human, the underlying mechanisms for quiescence require the same set of genes and similar mechanisms. Quiescence in multicellular organisms is difficult to study because of the multiple environmental signals that control it. By contrast, in budding and fission yeast, quiescence entry and exit are solely conditioned by nutrient availability (Figure 1). The quiescence entry program relies greatly on the information transmitted by two nutrient signaling pathways. These are the Target Of Rapamycin Complex 1 (TORC1) pathway, regulated by the available carbon and/or nitrogen source, and the glucose-responsive protein kinase A (PKA) pathway [START_REF] Gray | Sleeping beauty": quiescence in Saccharomyces cerevisiae[END_REF][START_REF] Virgilio | The essence of yeast quiescence[END_REF][START_REF] Bontron | Yeast endosulfines control entry into quiescence and chronological life span by inhibiting protein phosphatase 2A[END_REF]). The target of rapamycin complex (TORC) is important for the transition between proliferation and quiescence from yeast to humans. Genes controlling quiescence are conserved from yeast to humans, and support the use of yeast model systems to study the mechanisms of diseases affecting human dormant cells.

Severe reduction of the nutritional conditions in the environment trigger microbial quiescence to adapt the cells for survival during stress. During this stage, cells stop growing and acquire a distinct array of physiological, biochemical, and morphological traits that confer on cells both the ability to survive extended periods of starvation and to transit back to the proliferating state upon feeding [START_REF] Lillie | Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation[END_REF].

Most S. cerevisiae stationary phase cells are produced in limited glucose conditions. Cell growth is transiently arrested and the cells switch to a respiratory mode of energy production at the 'diauxic shift' [START_REF] Herman | Stationary phase in yeast[END_REF]. The cellular responses initiated at the diauxic transition include the transcriptional induction of genes whose products are involved in respiration, fatty acid metabolism, and glyoxylate cycle reactions, and, likely as a consequence of turning on respiratory activity, of genes encoding antioxidant defenses that allow scavenging and/or the destruction of reactive oxygen species (ROS) [START_REF] Jamieson | Oxidative stress responses of the yeast Saccharomyces cerevisiae[END_REF][START_REF] Costa | Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases[END_REF]. In the post-diauxic growth period, only non-fermentable carbon sources are available to support growth and cells slowly grow and utilize the ethanol produced during an earlier stage of culture fermentation. Finally, when this ethanol is exhausted, the cells enter the stationary phase where cell proliferation stops [START_REF] Werner-Washburne | Stationary phase in the yeast Saccharomyces cerevisiae[END_REF][START_REF] Gray | Sleeping beauty": quiescence in Saccharomyces cerevisiae[END_REF]). However, the majority of early studies have assumed that cultures in stationary phase are homogeneously composed of a single cell type, and it was shown that a significant fraction of cells begin to differentiate into quiescent and non-quiescent cell fractions that can be separated by centrifugation on Percoll gradients [START_REF] Allen | Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures[END_REF][START_REF] Werner-Washburne | Aging and the survival of quiescent and nonquiescent cells in yeast stationary-phase cultures[END_REF]. Quiescent cells contain sequestered mRNAs that are released into the cytoplasm in a stress-specific manner, survive for up to three weeks, and retain a high level of reproductive competence, genome stability, and low reactive oxygen species (ROS).

Additionally, the vast majority of these cells are daughter cells that have never budded [START_REF] Aragon | Release of extraction-resistant mRNA in stationary phase Saccharomyces cerevisiae produces a massive increase in transcript abundance in response to stress[END_REF][START_REF] Caldecott | Single-strand break repair and genetic disease[END_REF]. Thus, the structure and heterogeneity of the stationary phase cells have important implications on a variety of levels for aging studies, especially studies of CLS.

In S. pombe, the diauxic shift does not occur because S. pombe lacks the glyoxylate cycle enzymes required for the utilization of ethanol for growth after glucose depletion [START_REF] Heslot | Respiratory metabolism of a "petite negative"yeast Schizosaccharomyces pombe 972h[END_REF][START_REF] De Jong-Gubbels | Metabolic fluxes in chemostat cultures of Schizosaccharomyces pombe grown on mixtures of glucose and ethanol[END_REF][START_REF] Flores | Carbohydrate and energy-yielding metabolism in nonconventional yeasts[END_REF].

S. pombe cells enter the stationary phase with a 2C DNA content and lose viability rapidly [START_REF] Costello | Fission yeast enters the stationary phase G0 state from either mitotic G1 or G2[END_REF]. In this regard, one must be careful when comparing stationary phase cell results from both yeasts before extending the comparisons to higher eukaryotes.

In the wild, nitrogen removal triggers meiosis in yeast. However, if the nitrogen source is removed from the medium of heterothallic cells, budding (Figure 1A) and fission yeast cells (Figure 1B) require autophagy to enter quiescence [START_REF] Takeda | In quiescence of fission yeast, autophagy and the proteasome collaborate for mitochondrial maintenance and longevity[END_REF][START_REF] An | Autophagy is required for G₁/G₀ quiescence in response to nitrogen starvation in Saccharomyces cerevisiae[END_REF]. S. pombe divides rapidly twice with no cellular elongation, becomes short and spherical to enter in G1 with a 1C DNA content before reaching the quiescent state [START_REF] Baker | The genetic control of meiosis[END_REF][START_REF] Nurse | Gene required in G1 for commitment to cell cycle and in G2 for control of mitosis in fission yeast[END_REF][START_REF] Egel | 2 Mating-Type Genes, Meiosis, and Sporulation[END_REF]) (Figure 1B). Cells, upon nitrogen removal, immediately repress the growth-related mRNAs while transiently inducing stress-related mRNAs, which help to adjust the proteome for extended quiescence [START_REF] Marguerat | Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells[END_REF].

After several days of nitrogen starvation, cells acquire heat resistance similar to that observed in spores, but differ from spores in their requirement of glucose for viability [START_REF] Egel | 2 Mating-Type Genes, Meiosis, and Sporulation[END_REF]. In this mode of quiescence entry, the cells are viable for months provided the medium is exchanged for fresh medium every other week, metabolically active, exhibit stress-responsive signaling and are highly efficient in DNA damage repair [START_REF] Mochida | Distinct modes of DNA damage response in S. pombe G0 and vegetative cells[END_REF]. Also, they contain transcripts that are distinct from proliferating cells and the cells greatly alter their constituents upon the replenishment of the nitrogen source to restore proliferation [START_REF] Shimanuki | Two-step, extensive alterations in the transcriptome from G0 arrest to cell division in Schizosaccharomyces pombe[END_REF]. In these quiescent cells, protein translation is diminished but sugar catabolism, protein and nucleic acid recycling mechanisms, trafficking, and vesicle fusion ishighly active [START_REF] Yanagida | Cellular quiescence: are controlling genes conserved?[END_REF]. TORC1 promotes protein translation and ribosome biogenesis and is required for the exit from quiescence, suggesting that diminished protein biosynthesis is important for maintaining the G0 phase [START_REF] Shimanuki | Two-step, extensive alterations in the transcriptome from G0 arrest to cell division in Schizosaccharomyces pombe[END_REF].

The major advantage of inducing quiescence of prototrophic cells by removing nitrogen is that it is a synchronized process working on low density cultures that survive for a few months in a controlled medium. Indeed, prototrophy has surfaced as an important factor when comparing transcriptome analyses since it has recently been shown that deletions of the same metabolic gene in a different background, even when supplemented, could provoke profoundly altered transcriptomic, proteomic and metabolic profiles [START_REF] Jacquier | Systems biology: Supplementation is not sufficient[END_REF][START_REF] Alam | The metabolic background is a global player in Saccharomyces gene expression epistasis[END_REF]. Thus, quiescence of S. pombe is precisely defined under a simple nutritional change so that results can be interpreted and scrutinized rigorously.

MAJOR SOURCES OF DNA DAMAGE

DNA damage can originate in extrinsic and intrinsic sources [START_REF] Gensler | DNA damage as the primary cause of aging[END_REF][START_REF] Lombard | DNA repair, genome stability, and aging[END_REF][START_REF] Hoeijmakers | DNA damage, aging, and cancer[END_REF]). Extrinsic sources include chemicals, radiation, and viruses. Intrinsic sources include spontaneous chemical reactions and reactive oxygen species (ROS). Endogenous causes of DNA damage, "the enemy from the inside" are the major threats reducing CLS [START_REF] Gensler | DNA damage as the primary cause of aging[END_REF] (Figure 2).

Reactive Oxygen Species

A common cause of damage to DNA and other macromolecules in non-dividing cells is exposure to ROS, which include superoxide, hydrogen peroxide, hydroxyl radicals and singlet oxygen. In DNA, oxidized bases, abasic sites and single-and double-strand breaks result from exposure to ROS [START_REF] Jackson | The contribution of endogenous sources of DNA damage to the multiple mutations in cancer[END_REF][START_REF] Bont | Endogenous DNA damage in humans: a review of quantitative data[END_REF]. Organisms cope with ROS through antioxidant enzymes that eliminate ROS or convert them to less harmful molecules. However, the production of ROS can overpower those defense mechanisms, resulting in oxidative stress (reviewed in [START_REF] Friedberg | DNA Repair and Mutagenesis[END_REF]. ROS can produce many different kinds of damage and mutations in DNA. For instance, the cytosine base alone can undergo oxidative damage producing at least 40 different modified species [START_REF] Jackson | The contribution of endogenous sources of DNA damage to the multiple mutations in cancer[END_REF]. Some oxidized bases are mispaired and lead to base substitutions when DNA replicates during the exit of quiescence. Several studies have indicated that damage arising from mitochondrial production of reactive oxygen species contributes to the chronological ageing process [START_REF] Burhans | Acetic acid effects on aging in budding yeast: are they relevant to aging in higher eukaryotes?[END_REF]. Consistent with this view, oxidative damage to proteins and mitochondria accumulates with chronological age [START_REF] Fabrizio | The chronological life span of Saccharomyces cerevisiae[END_REF][START_REF] Rockenfeller | Apoptotic death of ageing yeast[END_REF].

Cyclobutane Pyrimidine dimers (CPDs)

Among the causes of extrinsic damage to quiescent yeast cells, UV light triggers the formation of CPDs that is characterized by covalent linkages between adjacent pyrimidines in the same DNA strand. It is the most frequent type of photoproduct produced when DNA is exposed to UV irradiation. The type of CPD most frequently found in DNA consists of a thymine dimer, which is known to be mutagenic [START_REF] Friedberg | DNA Repair and Mutagenesis[END_REF].

DNA strand breaks

DNA strand breaks can be caused by intrinsic oxidative damage to DNA or by extrinsic ionizing radiation [START_REF] Friedberg | DNA Repair and Mutagenesis[END_REF]. Strand breaks can occur during metabolic processes like transcription relaxation by topoisomerase I or endonucleolytic cleavage. Interestingly, the disruption of pathways involved in single-strand break repair often results in neurodegeneration rather than carcinogenesis or progeria. Because ROS are one of the major causes of single-strand breaks, it is possible that the oxygen consumption in the nervous system makes it more susceptible to defects in single-strand break repair, thus contributing to neurological decline. In support of this view, the number of single-and double-strand breaks in the neurons of rat cerebral cortex is considerably increased with age [START_REF] Rao | DNA repair in aging rat neurons[END_REF][START_REF] Wei | Long Neural Genes Harbor Recurrent DNA Break Clusters in Neural Stem/Progenitor Cells[END_REF].

Abasic (AP) sites, depurination and depyrimidination

An abasic site (AP) site is formed when a base is lost from the DNA by cleavage of an N-glycosyl bond, leaving the sugar-phosphate chain intact [START_REF] Friedberg | DNA Repair and Mutagenesis[END_REF]. At normal physiological conditions, it has been estimated that 50,000-200,000 AP site lesions persist at a steady-state level in mammalian cells [START_REF] Nakamura | Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues[END_REF]. Abasic sites are potentially mutagenic and can be produced by a spontaneous loss of bases from DNA. Abasic sites can also be produced by ROS [START_REF] Nakamura | Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues[END_REF], as well as being produced in intermediate steps of the base excision repair pathway. Inefficient or incomplete base excision repair might leave abasic sites in DNA.

Deamination

Deamination involves the loss of amino groups from DNA bases. Almost all DNA bases undergo deamination in spontaneous reactions, with the exception of thymine -which does not have an amino group. Most types of deamination produce a base that does not naturally occur in DNA (the only exception is the deamination of 5-methylcytosine), and this facilitates the identification and excision of the deaminated base by a DNA glycosylase.

The most common type of deamination event in cells is deamination of cytosine into uracil, which leads to the transformation of G:C to G:U that is potentially mutagenic. This event occurs at a rate of about 100-500 bases per cell per day in mammalian cells, in spontaneous deamination reactions [START_REF] Friedberg | DNA Repair and Mutagenesis[END_REF]. Interestingly, one possible reason why the genetic code, which is thought to have been initially carried in RNA bases (A, C, G, U), was replaced by the current code carried in DNA bases is so a deaminated C converted to a U can be easily recognized as damage [START_REF] Alberts | Molecular Biology of the Cell[END_REF].

DNA can also contain 5-methylcytosine, which base pairs with guanine and is involved in silencing gene expression at CpG sequences. The deamination of 5-methylcytosine into thymine leads to the transformation of a G:C to G:T base pair, which is also potentially mutagenic. Interestingly, although only about 3% of the C bases in human DNA are methylated, G:C to A:T transitions at the sites of those methylated cytosines account for about one-third of the single-base mutations in inherited human diseases [START_REF] Cooper | The CpG dinucleotide and human genetic disease[END_REF][START_REF] Alberts | Molecular Biology of the Cell[END_REF]. Note that cytosine or methyl-cytosine deamination leads to C:G to T:A mutations as well.

As quiescent cells are metabolically and transcriptionally active, transcription is most likely an important contributor to the accumulation of DNA damage in the absence of replication [START_REF] Kim | Transcription as a source of genome instability[END_REF]. During transcription, the non-templated strand is exposed, and cytosines in the context of ssDNA have >200x higher kinetic of deamination [START_REF] Lindahl | Instability and decay of the primary structure of DNA[END_REF].

IMPORTANCE OF DNA REPAIR PATHWAYS IN QUIESCENCE

Overview

When the cells arrest cell division and become quiescent, repair of the damaged components becomes crucial to maintain viability. This is particularly true for post-mitotic neurons that are metabolically and transcriptionally active, consuming a large proportion of oxygen and glucose, thus generating high levels of reactive oxygen species (ROS). In 1956 Harman proposed that oxygen species with one unpaired electron (free radicals) may cause aging [START_REF] Harman | Aging: a theory based on free radical and radiation chemistry[END_REF]). The free radical theory of aging became one of the most widely accepted theories after the overexpression of antioxidant enzymes was shown to extend longevity and after most long-lived model organisms were shown to be resistant to oxidative stress [START_REF] Longo | Mutations in signal transduction proteins increase stress resistance and longevity in yeast, nematodes, fruit flies, and mammalian neuronal cells[END_REF][START_REF] Finkel | Oxidants, oxidative stress and the biology of ageing[END_REF].

In complex organisms, the activity of some DNA repair pathways was found to decline with age (Freitas and de Magalhães 2011), but it has not be formally demonstrated that enhanced DNA repair extends lifespan although the evidence from many lines of investigation suggests that DNA damage is a significant causal factor in normal aging [START_REF] Burhans | DNA damage and DNA replication stress in yeast models of aging[END_REF]. In non-dividing cells, DNA repair machinery is continuously required to maintain the genetic message intact and functional, and accumulating evidence supports the idea that DNA damage, pathological DNA or protein-RNA/DNA structures or defects in DNA damage response or repair can lead to recurrent genomic disorders [START_REF] Garinis | DNA damage and ageing: new-age ideas for an age-old problem[END_REF]. Accumulation of proteins damaged by oxidation with chronological age has also been observed in both fission and budding yeasts. This situation is best illustrated in recessive ataxia caused by mutations in genes involved in DNA repair, such as mre11 (Ataxia Telangiectasia-Like Disorder -ATLD), nbs1 (Nijmegen Breakage Syndrome -NBS1), tdp1 (SpinoCerebellar Ataxia with Neuropathy 1 -SCAN1), aptx (Ataxia with Oculomotor Apraxia 1 -AOA1), senx (Amyotrophic Lateral Sclerosis 4 -ALS4, Ataxia with Oculomotor Apraxia 2 -AOA2) and ighmbp2 (Spinal Muscular Atrophy with Respiratory Distress 1 -SMARD1) (overviewed in Jayadev and Bird 2013). Mre11 and Nbs1 are members of the MRN complex participating to the DNA damage repair/response and telomere maintenance [START_REF] Williams | Interplay of DNA repair, homologous recombination, and DNA polymerases in resistance to the DNA damaging agent 4-nitroquinoline-1-oxide in Escherichia coli[END_REF]. Human tyrosyl DNA phosphodiesterase (TDP1) repairs Topoisomerase1-DNA covalent complexes that can be induced by replication-and transcription-mediated DNA damage [START_REF] Caldecott | Single-strand break repair and genetic disease[END_REF]. Aptx (aprataxin) removes AMP from 5'-termini and is implicated in short-patch repair of oxidative single-strand breaks [START_REF] Ahel | The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates[END_REF]. Senx (Senataxin) is a RNA/DNA helicase that has been implicated in transcription termination of Pol II transcription at snoRNAs and other noncoding RNAs in yeast [START_REF] Kim | Distinct pathways for snoRNA and mRNA termination[END_REF][START_REF] Arigo | Regulation of yeast NRD1 expression by premature transcription termination[END_REF]. Recently, budding yeast Sen1 has been shown to restrict the occurrence of RNA/DNA hybrids that may naturally form during transcription, when nascent RNA hybridizes to DNA prior to its packaging into RNA protein complexes [START_REF] Mischo | Yeast Sen1 helicase protects the genome from transcription-associated instability[END_REF]. These hybrids displace the non-transcribed strand and create R-loop structures whose accumulation can be prevented by Sen1. Finally, the Ighmbp2 helicase shares significant similarity with Senataxin, which is mutated in human SMARD1 and in mouse neuromuscular degeneration [START_REF] Cox | Identification of the mouse neuromuscular degeneration gene and mapping of a second site suppressor allele[END_REF]. The activities of these genes support the idea that defects in transcription-related DNA lesions and single-strand breaks may play a role in the generation of ataxia and motor neuron diseases [START_REF] El-Khamisy | TDP1-dependent DNA single-strand break repair and neurodegeneration[END_REF]. This hypothesis is consistent with the fact that post-mitotic neurons are facing high levels of oxidative stress and transcriptional activity [START_REF] Caldecott | Single-strand break repair and genetic disease[END_REF].

Taken together, these data suggest that DNA repair pathways are essential for maintenance of the neurons by protecting these metabolically and transcriptionally highly active nonproliferating cells against free radical-induced DNA damage and genomic instability (Figure 3).

ROS detoxification and Base Excision Repair (BER)

Endogenous ROS are metabolic byproducts disseminated from many subcellular compartments, in particular during respiration and incorporation of uracil [START_REF] Arcangioli | Unrepaired oxidative DNA damage induces an ATR/ATM apoptotic-like response in quiescent fission yeast[END_REF]. The ROS produced in the mitochondria represent the predominant group of chemicals attacking DNA. Endogenous and exogenous DNA alterations may cause simple base changes or more complex and clustered lesions [START_REF] Sage | Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival[END_REF]. The complex DNA lesions are more difficult to repair and can spontaneously or enzymatically lead to single or double strand breaks that can generate point mutations, deletions, duplications, translocations, aneuploidy or cellular death.

Studies have suggested that DNA damage or genomic instability may directly cause neuronal degeneration. Mutations in superoxide dismutase 1 (SOD1), a major cytoplasmic antioxidant enzyme that metabolizes superoxide radicals to molecular oxygen and hydrogen peroxide, account for 10 to 20% of all familial forms of ALS [START_REF] Cleveland | From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS[END_REF].

Expansion of CAG triplet repeats in the androgen receptor gene is responsible for Spinal and Bulbar Muscular Atrophy (SBMA) (La [START_REF] Spada | Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy[END_REF]) and expansion of hexanucleotide GGGGCC repeats in the C9ORF72 gene for some forms of ALS and Fronto-Temporal Dementia (FTD) [START_REF] Renton | A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD[END_REF][START_REF] Dejesus-Hernandez | Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS[END_REF]. Finally, expansion of unstable triplet repeats (Friedreich ataxia (GAA), X fragile (CGG) and Huntington (CAG))

and deficits in DNA repair can cause related neurodegenerative disorders [START_REF] Rass | Defective DNA repair and neurodegenerative disease[END_REF][START_REF] Orr | Trinucleotide repeat disorders[END_REF]. The instability of the repeats reflects their unfaithful repair, generating a persistent signal to the DNA damage checkpoint. Unstable repeats in quiescence are to some extent similar to the lesions persisting in the absence of the dedicated DNA repair machinery, a field that is still not yet actively studied.

Like mammalian cells, S. cerevisiae expresses a cytosolic (Sod1) and a mitochondrial (Sod2) superoxide dismutase that are required for long-term survival [START_REF] Longo | Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo[END_REF]. The expression of human SOD1 in yeast sod1 null mutants completely reverses the survival defects, suggesting that the function of this enzyme is conserved from yeast to mammals, although Sod1 is only required under a high concentration of oxygen or superoxide [START_REF] Fabrizio | The chronological life span of Saccharomyces cerevisiae[END_REF]. Superoxide toxicity thus contributes to aging and death in model organisms.

BER is the major pathway for the repair of damaged bases [START_REF] Wallace | Enzymatic processing of radiation-induced free radical damage in DNA[END_REF]. As a first step, oxidized bases are removed by specialized glycosylases, leaving behind abasic sites (AP apurinic/apyrimidinic). However, AP sites can occur spontaneously after hydrolytic attack of the N-glycosidic bond between base and sugar [START_REF] Çağlayan | Reprint of "Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair[END_REF]. AP sites are a major threat to genomes because of their abundance and capacity to block DNA replication and transcription and to cause mutations [START_REF] Boiteux | Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae[END_REF]. The subsequent step is the cleaving of the DNA backbone by an AP-endonuclease (or alternatively by an AP lyase), resulting in the formation of a single strand break (SSB). BER proceeds by a removal of the baseless DNA backbone residue and a gap-filling DNA synthesis of one or a few nucleotides.

After 8 days of lysine-depletion induced quiescence in budding yeast, the amount of spontaneous AP sites in the cells was found increased about tenfold compared to the exponential cells [START_REF] Steinboeck | The relevance of oxidative stress and cytotoxic DNA lesions for spontaneous mutagenesis in non-replicating yeast cells[END_REF]. Similarly, AP endonuclease function was involved in the optimal survival of a mixed population of stationary cells. However, overexpression of AP endonucleases does not extend this survival [START_REF] Maclean | Base excision repair activities required for yeast to attain a full chronological life span[END_REF]. Increased concentrations of ROS cause oxidative damage to DNA (reviewed in [START_REF] Cooke | Oxidative DNA damage: mechanisms, mutation, and disease[END_REF].

Depending on the dose, cycling yeast cells display a wide range of responses to ROS [START_REF] Temple | Complex cellular responses to reactive oxygen species[END_REF], from adaptation to low doses [START_REF] Jamieson | Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione[END_REF][START_REF] Collinson | Inducibility of the response of yeast cells to peroxide stress[END_REF] up to apoptotic death [START_REF] Laun | Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis[END_REF][START_REF] Fabrizio | Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae[END_REF]). For the case of lysine starvation-induced cell-cycle arrest, only the accumulation of hydrogen peroxide has been reported so far [START_REF] Eisler | Starvation for an essential amino acid induces apoptosis and oxidative stress in yeast[END_REF]. Such cytotoxic DNA lesions may stimulate local DNA processing or turnover in non-replicating cells, thereby providing the chance for potentially error-prone repair or translesion synthesis. Some evidence for the latter processes has been found [START_REF] Heidenreich | Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells[END_REF]Heidenreich and Eisler 2004;[START_REF] Heidenreich | Polymerase zeta dependency of increased adaptive mutation frequencies in nucleotide excision repair-deficient yeast strains[END_REF][START_REF] Heidenreich | Epistatic participation of REV1 and REV3 in the formation of UV-induced frameshift mutations in cell cycle-arrested yeast cells[END_REF][START_REF] Halas | Evaluation of the roles of Pol zeta and NHEJ in starvation-associated spontaneous mutagenesis in the yeast Saccharomyces cerevisiae[END_REF][START_REF] Heidenreich | A mutation-promotive role of nucleotide excision repair in cell cycle-arrested cell populations following UV irradiation[END_REF].

Single-strand break repair and checkpoint response

In fission yeast, Topoisomerase I (Top1) introduces transient SSBs to relax the DNA during DNA replication and transcription. If a DNA polymerase or RNA polymerase encounters the DNA-Top I intermediate complex before DNA ligation, then Top1 remains covalently trapped to the 3 ' ends of the DNA breaks [START_REF] Pommier | Repair of and checkpoint response to topoisomerase Imediated DNA damage[END_REF]. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a well-conserved SSB repair enzyme [START_REF] Pouliot | Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes[END_REF] hydrolyzing a variety of 3' lesions including the phosphodiester bond linking Top1 to the 3 'end of DNA ends [START_REF] Yang | A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases[END_REF][START_REF] Interthal | The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily[END_REF] leaving ends which are further processed [START_REF] Vance | Uncoupling of 3'-phosphatase and 5'-kinase functions in budding yeast. Characterization of Saccharomyces cerevisiae DNA 3'-phosphatase (TPP1)[END_REF]. As a consequence, eukaryotic cells mutated in tdp1 are sensitive to the anticancer drug camptothecin (CPT), which specifically traps Top1 on DNA [START_REF] Pouliot | Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes[END_REF][START_REF] El-Khamisy | Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1[END_REF][START_REF] Miao | Hereditary ataxia SCAN1 cells are defective for the repair of transcription-dependent topoisomerase I cleavage complexes[END_REF]. Current models propose that physiological Top1 or ROS-induced SSB is responsible for neuronal dysfunction in the absence of the DNA end processing enzyme, Tdp1, but there is as yet no conclusive evidence for this hypothesis [START_REF] Rass | Defective DNA repair and neurodegenerative disease[END_REF][START_REF] El-Khamisy | TDP1 facilitates repair of ionizing radiationinduced DNA single-strand breaks[END_REF].

The contribution of Tdp1 to genome stability in non-dividing has been investigated in S. pombe cells where it was shown that tdp1 mutant cells progressively accumulate unrepaired oxidative DNA damage, which ultimately induces an ATM/Tel1-dependent apoptotic-like program in G0 (Ben [START_REF] Hassine | Tdp1 protects against oxidative DNA damage in non-dividing fission yeast[END_REF]. Indeed, quiescent fission yeast compromised for DNA repair exhibits a DNA-damage checkpoint response (Tel1 and Rad3) leading to nuclear DNA degradation and cell death [START_REF] Arcangioli | Unrepaired oxidative DNA damage induces an ATR/ATM apoptotic-like response in quiescent fission yeast[END_REF]).

Among the cells that do not form colonies, about one-half were enlarged, indicating an attempt to re-enter into the vegetative cycle, whereas the other half did not change their appearance, suggesting that they died during the G0 period. DAPI staining of the nuclei revealed that DAPI-negative cells accumulate in the tdp1 population and FACS analysis revealed a new population of propidium iodide-negative tdp1 cells that reaches 21% after 8 days in G0. This loss in viability does not depend on the function of Top 1. Analysis of the reentry into the vegetative cycle through the microscopic observation of Rad52-YFP foci [START_REF] Lisby | Rad52 forms DNA repair and recombination centers during S phase[END_REF] as a function of time indicated that tdp1 mutants exhibit a progressive and dramatic increase in the proportion of nuclei containing Rad22-YFP foci during the first DNA replication that fades during the second DNA replication. This indicates that the mutant cells accumulate DNA damage in G0, that is massively repaired during the first round of replication. The involvement of the HR process in DNA repair in the tdp1 mutant was confirmed by the rapid and extensive death of the tdp1 rhp51 double mutant strain. However, the lack of cancer predisposition in SCAN1 [START_REF] Takashima | Mutation of TDP1, encoding a topoisomerase Idependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy[END_REF] suggests that most of the lesions are repaired without gross genetic alterations. In addition, it was shown that the production of endogenous ROS by-products by mitochondria is a major cause for the accumulation of DNA lesions in the absence of Tdp1 (Ben Hassine and Arcangioli

2009).

Although DSBs and blocked replication forks are known to alert the DNA damage checkpoints [START_REF] Bartek | DNA damage response as an anti-cancer barrier: damage threshold and the concept of 'conditional haploinsufficiency[END_REF][START_REF] Lavin | Defective responses to DNA single-and doublestrand breaks in spinocerebellar ataxia[END_REF], little is known about whether and how simple lesions, such as SSBs, alert the DNA damage checkpoints, but it was reported in human cells that XRCC1 is phosphorylated in an ATMdependent manner, suggesting that SSBs can also trigger checkpoint responses in G1 [START_REF] Chou | Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair[END_REF].

Double-strand breaks

When DSBs in cell cycle-arrested budding yeast cells were investigated by pulsed field gel electrophoresis no significant number of broken chromosomes resulting from spontaneously occurring DSBs was observed (Heidenreich, unpublished results). However, with a specific H2A antibody, a progressive accumulation of DSBs during lysine starvation-induced cellcycle arrest was observed, a part of which is NAC (N-acetyl cysteine -a radical scavenger) sensitive suggesting that it originates from ROS-induced DNA damage. A similar increase in spontaneous DSB formation in carbon source-starved yeast cells has also been documented by [START_REF] Pawar | Checkpoint kinase phosphorylation in response to endogenous oxidative DNA damage in repair-deficient stationary-phase Saccharomyces cerevisiae[END_REF]. It should nonetheless be kept in mind that, although sensitive, H2A phosphorylation can also be triggered by lesions that are not DSBs [START_REF] Marti | H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks[END_REF].

Repair of DSBs triggered by -ray irradiation was monitored by pulsed field gel electrophoresis (PFGE) on S. pombe chromosomes. Restoration of chromosomes in G0 cells is 2 to 3-times slower than in growing cells. Accordingly, the γ-ray sensitivity of G0 cells was considerably more perceptive, suggesting a slower rejoining of DSBs in G0 than in vegetative cells [START_REF] Mochida | Distinct modes of DNA damage response in S. pombe G0 and vegetative cells[END_REF].

The involvement of NHEJ was examined in cells lacking Ku80 after γ-ray irradiation. Mutant cell viability was more sharply decreased in G0 than in cycling cells. In G0 cells after γ-ray irradiation, the repair of broken DNA took 24 h. In the ∆pku80 mutants, the bulk of broken chromosome DNA still remained unrepaired after 24 h. In fission yeast, when the UVDE endonuclease is present, UV irradiation can also cause DNA strand breaks whose repair is slower in G0 cells. These results suggest that the repair of broken DNA formed by UV or γray in G0 cells depends on NHEJ. The repair of breaks in G0 and cycling cells requires the Rad3/ATR checkpoint. Interestingly, while the breaks were mostly repaired in quiescent cells they are not at all in cycling cells deleted for Crb2 or Chk1 [START_REF] Mochida | Distinct modes of DNA damage response in S. pombe G0 and vegetative cells[END_REF].

Nucleotide excision repair (NER)

The involvement of NER was determined in budding yeast by using antibodies against thymine dimer [START_REF] Mccready | Repair of 6-4 photoproducts in Saccharomyces cerevisiae[END_REF]. Subsequently, this method was used in the first experiment showing that fission yeast cells do actually repair lesions in quiescence and not only during the first round of replication when they exit from G0 [START_REF] Mochida | Distinct modes of DNA damage response in S. pombe G0 and vegetative cells[END_REF]. Although slower than in cycling cells, the level of thymine dimer rapidly decreases as a function of time in non-dividing cells. Accordingly, G0 cells are much more sensitive to UV irradiation, suggesting that a damage repair process other than the elimination of thymine dimer is very inefficient in G0. Addition of nitrogen to the medium triggers re-entry into the cell cycle, and cells become resistant to UV irradiation after DNA replication [START_REF] Mochida | Distinct modes of DNA damage response in S. pombe G0 and vegetative cells[END_REF]. S. pombe Crb2 is required for the activation of a checkpoint kinase Chk1 and the repair of damaged DNA [START_REF] Du | Retention but Not Recruitment of Crb2 at Double-Strand Breaks Requires Rad1 and Rad3 Complexes[END_REF][START_REF] Nakamura | Histone H2A phosphorylation controls Crb2 recruitment at DNA breaks, maintains checkpoint arrest, and influences DNA repair in fission yeast[END_REF][START_REF] Sanders | Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage[END_REF]). In G0 cells, the signal for Chk1 hyper-phosphorylated by Cdc2 and Rad3 [START_REF] Saka | Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1[END_REF][START_REF] Esashi | Cdc2 phosphorylation of Crb2 is required for reestablishing cell cycle progression after the damage checkpoint[END_REF] after irradiation was greatly diminished, and absent in chk1 mutants [START_REF] Mochida | Distinct modes of DNA damage response in S. pombe G0 and vegetative cells[END_REF]. Additionally, G0 cells deleted for Rad3 and Crb2 are hypersensitive to UV, and the rate of thymine dimer repair was only slightly slower in rad3 cells, suggesting an additional role for Rad3 in G0.

RNA interference

In recent years, RNA interference has been shown to be an important contributor in DNA repair, closely associated with HR proteins, in many organisms including humans (d'Adda di Fagagna 2014;[START_REF] Francia | DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors[END_REF]. RNA interference was shown to play an important role in long term quiescence in S. pombe. RNAi-guided heterochromatic silencing is a major epigenetic pathway in S. pombe, which has one copy of each of the key enzymes involved: Dicer (Dcr1), Argonaute (Ago1) and RNA-dependent RNA polymerase (Rdp1) [START_REF] Roche | RNA interference is essential for cellular quiescence[END_REF]. RNAi mutants are viable but lose silencing of the pericentromeric repeats [START_REF] Volpe | Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi[END_REF] resulting in chromosome segregation defects [START_REF] Volpe | RNA interference is required for normal centromere function in fission yeast[END_REF]. RNAi both promotes heterochromatin formation at centromeres allowing proper chromosome segregation during G0-entry, and prevents heterochromatin formation at the rDNA locus during quiescence maintenance.

In RNAi mutants, loss of viability is linked to an over-accumulation of H3K9me2 at rDNA as a consequence of a stalled RNA pol I. The rDNA locus plays a central role in aging [START_REF] Ganley | Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging[END_REF] and H3K9me is a hallmark of rDNA silencing in plants [START_REF] Pontvianne | Histone methyltransferases regulating rRNA gene dose and dosage control in Arabidopsis[END_REF] as well as in mammalian cells [START_REF] Murayama | Epigenetic control of rDNA loci in response to intracellular energy status[END_REF]. The role of RNAi at rDNA may thus be evolutionarily conserved, as it was shown that Dicer physically associates with rDNA in mammalian cells [START_REF] Sinkkonen | Dicer is associated with ribosomal DNA chromatin in mammalian cells[END_REF]. Interestingly, there is evidence that during evolution, RNAi and heterochromatin proteins (H3K9me, HP1) have been lost together, a loss which has happened independently in distinct fungal lineages such as budding yeasts [START_REF] Drinnenberg | RNAi in budding yeast[END_REF]. In budding yeasts, the loss of RNAi is correlated with the ability to acquire Killer RNA viruses [START_REF] Drinnenberg | Compatibility with killer explains the rise of RNAideficient fungi[END_REF].

In Caenorhabditis elegans [START_REF] Ketting | Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans[END_REF] and Drosophila melanogaster [START_REF] Jin | Dcr-1 maintains Drosophila ovarian stem cells[END_REF], Dicer mutants affect germ cells, which also spend long periods in quiescence. Given the importance of quiescence in the life cycle of unicellular as well as multicellular organisms, it is likely that epigenetic pathways will be found to be essential in neurons, germ cells and cancer stem cells, which can spend many years in a quiescent state.

MUTATIONS IN G0

Overview

Despite occasional reports on stationary-phase mutations in bacteria [START_REF] Ryan | Spontaneous Mutation in Non-Dividing Bacteria[END_REF][START_REF] Grigg | The reversible suppression of stationary phase mutation in Escherichia coli by caffeine[END_REF], it was long believed that spontaneous mutations generally arise in the course of genome duplication, either by DNA polymerase errors or by replication of damaged DNA.

Intermittent times of environmentally enforced quiescence was believed to be merely resting stages, also regarding spontaneous mutagenesis. In the last few decades, however, it has become increasingly evident that mutations occur readily during cell cycle arrest or slow proliferation. Since the majority of cells in nature spend large parts of their lifetimes under proliferation-limiting conditions, spontaneous mutations arising in cells in this state might even outnumber the incidence of proliferation-dependent mutations.

In the absence of DNA replication, the introduction of mutations into a genome must result from some form of DNA processing or turnover, including transcription. Undeniably, the accuracy of DNA repair enzymes is not absolute and errors occur during the necessary repair of spontaneous DNA damage as a consequence of a decay of the DNA or the attack by reactive endogenous molecules. Replication-independent mutations reflect the mechanistic difference with proliferation-dependent mutagenesis. This term is, however, infrequently used, and many researchers prefer "adaptive mutation" [START_REF] Steele | An examination of adaptive reversion in Saccharomyces cerevisiae[END_REF][START_REF] Baranowska | Effects of the CDC2 gene on adaptive mutation in the yeast Saccharomyces cerevisiae[END_REF][START_REF] Heidenreich | Starvation for a specific amino acid induces high frequencies of rho-mutants in Saccharomyces cerevisiae[END_REF].

Adaptive or selection-induced mutations are defined as mutations that occur in non-dividing cells as a response to prolonged non-lethal selective pressure such as starvation for an essential amino acid. Adaptive mutation in the broad sense also designates the analogous phenomenon pioneered in Escherichia coli (early work reviewed by [START_REF] Foster | Adaptive mutation: the uses of adversity[END_REF][START_REF] Rosenberg | Mutation for survival[END_REF][START_REF] Hall | Activation of the bgl operon by adaptive mutation[END_REF].

The importance of adaptive mutations comes from the assumption that it may trigger an accelerated evolution of microorganisms and in multicellular organisms contribute to a breakout of somatic cells from negative growth regulation to carcinogenesis.

During cell division, the spontaneous mutation rate is expressed as the probability of mutations per generation and is measured by fluctuation assay [START_REF] Luria | Mutations of Bacteria from Virus Sensitivity to Virus Resistance[END_REF][START_REF] Lea | The distribution of the numbers of mutants in bacterial populations[END_REF]. More direct measurements using next generation sequencing, including mutation accumulation (MA) [START_REF] Halligan | Spontaneous mutation accumulation studies in evolutionary genetics[END_REF] and de novo mutations [START_REF] Conrad | Variation in genome-wide mutation rates within and between human families[END_REF]) improved the mutation rate estimations and led to the definition of their spectrum in budding and fission yeast [START_REF] Zhu | The influence of the mismatch-repair system on stationary-phase mutagenesis in the yeast Saccharomyces cerevisiae[END_REF]Behringer and Hall 2015;[START_REF] Farlow | The Spontaneous Mutation Rate in the Fission Yeast Schizosaccharomyces pombe[END_REF].

Conversely, during quiescence it is expressed per unit of time. The major sources include errors of DNA replication and DNA repair and the foremost consequences are genetic variations within a cell population that can lead to heritable diseases and drive evolution.

Knowledge of the rate and spectrum of spontaneous mutations is of fundamental importance to understand their origin.

The efficiency and accuracy of the repair of DNA lesions in quiescence remain unknown, and lesions are converted into mutations either during quiescence or when cells re-enter the vegetative cycle.

Budding yeast

Adaptive mutation experiments using S. cerevisiae rely on the starvation for an essential amino acid or nucleobase. After depletion of internal reserves, the cell cycle arrests and only cells that have already acquired prototrophy manage to continue to grow. In this system, it is presently unclear whether the cells actually enter a true G0 phase or whether the mutations are truly produced in quiescence and not during the last round of DNA replication. This inherent problem of adaptive mutation assays is that the experiment starts by a culture during which proliferation-dependent revertants arise that are carried over to the starvation plates [START_REF] Heidenreich | Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells[END_REF]. Because pre-existing revertants proliferate faster, it is possible to somehow discriminate between proliferation-dependent revertants and adaptive revertants by their time of colony appearance. Crossfeeding, the ability to restart proliferation feeding on nutrients excreted by older revertant colonies, can also bias the experimental interpretations and was reported to be troublesome when using tryptophan auxotrophy alleles [START_REF] Storchová | Accumulation of Ade+ reversions in isoauxotrophic stains of Saccharomyces cerevisiae allelic in RAD6 during adenine starvation[END_REF][START_REF] Storchová | Starvation-associated mutagenesis in yeast Saccharomyces cerevisiae is affected by Ras2/cAMP signaling pathway[END_REF][START_REF] Gil | Development of papillae on colonies of two isopolyauxotrophic strains of Saccharomyces cerevisiae allelic in RAD6 during adenine starvation[END_REF] or the his1-7 allele [START_REF] Lax | Regulatory mutants at the his1 locus of yeast[END_REF][START_REF] Borstel Von | Topical reversion at the HIS1 locus of Saccharomyces cerevisiae. A tale of three mutants[END_REF][START_REF] Marini | Starvation in yeast increases non-adaptive mutation[END_REF]. In other systems, crossfeeding only infrequently occurs after 2 weeks of starvation [START_REF] Steele | An examination of adaptive reversion in Saccharomyces cerevisiae[END_REF].

Using this approach, the mutation frequencies were determined in strains affected in the major DNA repair pathways. Mutations in many pathways increase the incidence of adaptive mutation, suggesting that they contribute directly or indirectly to the suppression of adaptive mutation.

Mutations in the Double Strand Break Repair pathway (DSBR) [START_REF] Haber | Partners and pathways: repairing a double-strand break[END_REF][START_REF] Symington | Role of RAD52 Epistasis Group Genes in Homologous Recombination and Double-Strand Break Repair[END_REF]) have shown that the genes of the Rad52 epistasis group required for Homologous Recombination (HR) have no effect on the production of adaptive mutations in a frameshift detection assay, either in haploid or diploid cells. However, the deletion of the genes coding for the obligatory constituents of the Non-Homologous End Joining (NHEJ) pathway exhibit a 50% reduction of the replication-independent mutation frequency in haploid cells.

Sequencing the mutations showed that the events are small deletions within mononucleotide repeats [START_REF] Heidenreich | Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells[END_REF].

The analysis of the single Translesion Lesion Synthesis (TLS) polymerases Rev1p, Rev3p and polymerase η has indicated that they do not significantly change the incidence of adaptive frameshift mutations. The knockout of all three TLS enzymes did not have an effect either. A deficiency in Nucleotide Excision Repair (NER) elevates adaptive mutations in non-irradiated cells and depends on a functional Rev3 polymerase. Rev3 is also required for the occurrence of increased frequencies of adaptive mutants in the NER-proficient cells following UV irradiation. In the absence of UVs, some activity of NER is required in non-dividing cells to repair poorly understood types of spontaneously occurring lesions [START_REF] Heidenreich | Polymerase zeta dependency of increased adaptive mutation frequencies in nucleotide excision repair-deficient yeast strains[END_REF].

The role of replicative Pol δ and Pol ε in adaptive mutagenesis was studied using temperaturesensitive or proofreading-deficient alleles of the essential genes coding for the catalytic subunits of these polymerases. Temperature-sensitive alleles in DNA polymerase  revertant colonies accumulated in a time-dependent manner in the absence of any detectable increase in cell number. Therefore, when the proofreading activity of DNA polymerase  is impaired under restrictive conditions, the frequency of adaptive mutations is markedly enhanced [START_REF] Baranowska | Effects of the CDC2 gene on adaptive mutation in the yeast Saccharomyces cerevisiae[END_REF]. Similar results, but to a lesser degree, were obtained with the proofreading exonuclease mutant of Pol ε [START_REF] Babudri | Stationary-phase mutations in proofreading exonuclease-deficient strains of the yeast Saccharomyces cerevisiae[END_REF], suggesting that the proofreading activities play a role in the avoidance of mutation formation not only during replication, but also during cell-cycle arrest.

The major pathway for correction of errors that escaped proofreading is the Mismatch Repair (MMR) pathway that recognizes the mismatch and corrects it [START_REF] Jiricny | The multifaceted mismatch-repair system[END_REF]. The crucial factor for this process is the ability to discriminate between the original template strand and the new altered strand. In eukaryotes, the necessary information is most likely provided by direct interaction with the DNA replication machinery and/or the presence of DNA termini in the newly synthesized strand [START_REF] Pavlov | Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast[END_REF]. If this information is not available, as supposed in arrested cells, MMR proteins might potentially just as well lead to a fixation of a mutation instead of a correction to the original sequence. In addition, a mismatch can also occur by the spontaneous deamination of 5-methylcytosine to thymine or of a cytosine to uracil, and thus may cause base substitutions but no frameshifts.

A transient deficiency in the MMR capacity during prolonged starvation was associated with adaptive or stress-induced mutagenesis in E. coli [START_REF] Longerich | Adaptive mutation sequences reproduced by mismatch repair deficiency[END_REF][START_REF] Harris | Mismatch repair protein MutL becomes limiting during stationary-phase mutation[END_REF][START_REF] Bjedov | Stress-induced mutagenesis in bacteria[END_REF] and Bacillus subtilis (Pedraza-Reyes and Yasbin 2004) and prompted its investigation in S. cerevisiae. As anticipated, the frequency of LYS2 revertants was found to be extremely elevated in MMR mutants (The influence of the mismatch-repair system on stationary-phase mutagenesis in the yeast Saccharomyces cerevisiae. 2002).

Finally, the hypothesis of the existence of a hypermutable subpopulation was proposed [START_REF] Hall | Spontaneous point mutations that occur more often when advantageous than when neutral[END_REF]) in adaptive mutation studies in E. coli. A testable prediction of this hypothesis is that the frequency of nonselected additional mutations should be higher in adaptive revertant clones than in clones derived from nonreverted cells. This idea was substantiated by several studies in E. coli (reviewed by [START_REF] Hall | Activation of the bgl operon by adaptive mutation[END_REF][START_REF] Foster | Mechanisms of stationary phase mutation: a decade of adaptive mutation[END_REF][START_REF] Galhardo | Mutation as a stress response and the regulation of evolvability[END_REF]. In budding yeast, Steele and Jinks-Robertson [START_REF] Steele | An examination of adaptive reversion in Saccharomyces cerevisiae[END_REF] reported that they failed to detect additional auxotrophies in over 1500 adaptive revertants.

However, since it is uncertain whether an effect could have been expected with this number of probes, it is hard to estimate the significance of this result and it is too early to reject the possibility of a transiently hypermutable subpopulation in starving yeast populations.

Fission yeast

In fission yeast, we have developed many approaches to determine survival and mutagenesis (Figure 4). Mutation frequencies of quiescent cultures have been resolved by plating samples from prototrophic strains taken at various time points onto medium containing 5-fluoroorotic acid (5-FOA) that selects for ura4 -and ura5 -loss-of-function mutants [START_REF] Grimm | Genetic engineering of Schizosaccharomyces pombe: a system for gene disruption and replacement using the ura4 gene as a selectable marker[END_REF].

The ura -mutants remain fully viable for two weeks of quiescence, which indicates that colonies resistant to 5-FOA (FOA R ) arising early are not counter-selected and that the phenotypic accumulation assay is unbiased during the course of the experiment. It is thus possible to extract their DNA and identify the causal mutations and define their spectrum by Sanger sequencing.

After one day in quiescence, the mutation frequency and the spectrum is similar to previously published results in cycling cells for URA3 in budding yeast [START_REF] Lang | Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae[END_REF]) and for ura4 + and ura5 + in fission yeast [START_REF] Fraser | Fission yeast Uve1 and Apn2 function in distinct oxidative damage repair pathways in vivo[END_REF]. Interestingly, the number of mutations resulting in FOA R colonies increases linearly as a function of time, and several quantitative and qualitative mutational differences were found in the mutational landscape of dividing and quiescent cells. First, elevated levels of indels are detected (>50% indels after two weeks as compared to 15 to 20% in cycling cells), almost exclusively small deletions and duplications (micro-indels). Second, two recent MA studies (Behringer and Hall 2015;[START_REF] Farlow | The Spontaneous Mutation Rate in the Fission Yeast Schizosaccharomyces pombe[END_REF] with fission yeast have shown that in dividing cells insertions outnumber deletions, whereas the reverse is observed in quiescence (manuscript submitted). This suggests that, in addition to the previously hypothesized gene conversion, nucleotide modifications or transposition, the equilibrium of size and composition of the S. pombe genome depends as well on the relative strength of the opposing forces applied during growth and quiescence, and that growth and quiescence explore different landscapes of protein variation and genome organization.

Using the capacity of fission yeast cells to survive in quiescence for several months, a phenotypic survey in conditions that affect a broad range of cellular functions was conducted.

Although no phenotypes were found upon examination of 384 colonies after 1 day or 1 month of quiescence, increasing numbers of colonies displaying phenotypes were observed at 2 months (1.1%) and 3 months of quiescence (1.8%). Genetic crosses confirm that the phenotype observed in all the detected colonies derives from a single mutated locus (manuscript submitted).

CONCLUSIONS AND PERSPECTIVES

Here we reviewed the current knowledge on the genetics of quiescence compared to growth and focused on two single cell model organisms. During growth, a preference for insertions at the expense of deletions has been reported in numerous studies along with a universal substitution bias toward AT (E. coli, S. cerevisiae, S. pombe, C. elegans and humans). The fact that the replication-driven mutational bias has not yet reached an equilibrium strongly suggests the existence of forces capable of counterbalancing it. DNA replication-dependent mutations, DNA repair errors, nucleotide modifications, recombination or transposition have been hypothesized to impact on genome size and composition.

During its life cycle, S. pombe sequentially experiences two modes of mutational processes that alternatively work on genes required for proliferation and/or quiescence. Since the mutations in gametes are central for evolution, it is tempting to propose that in higher eukaryotes the germ cells are sequentially selecting for high genetics qualities of quiescence in females and for high genetics qualities of proliferation in males. These qualities will eventually merge in the diploid zygote prior to the initiation of a new life cycle, suggesting that the fundamental difference in the lifestyle of the two gametes contributes to the genetic performance of the dividing and quiescent somatic cells and the homeostasis of adult tissues with aging. Conversely, it may explain the size dimorphism of the two complementary gametes found in many multicellular organisms.

The genetics of quiescence underscores the importance of a replication-independent but timedependent process [START_REF] Kumar | Mutation rates in mammalian genomes[END_REF][START_REF] Ségurel | Determinants of mutation rate variation in the human germline[END_REF][START_REF] Goldmann | Parent-of-origin-specific signatures of de novo mutations[END_REF][START_REF] Hazen | The Complete Genome Sequences, Unique Mutational Spectra, and Developmental Potency of Adult Neurons Revealed by Cloning[END_REF] to the overall mutation spectrum. This timedependent process should help to fine-tune the accuracy of the "molecular clock" that scales absolute time of divergence to evolutionary distance of two related species (Reis, Donoghue and Yang 2016). Such hypotheses are accessible to experimental and modeling approaches and are of great interest for evolutionary, developmental and human-health perspectives. Quiescent cells in quiescence can be monitored by multiple methods. Viability of a population can be assessed by measuring free ATP. Individual cells can be reseeded on solid medium to determine their viability. This technique allows to determine how the cells that do not form colonies have died. GFP-fusion proteins can be used to observe foci under normal and stressinduced conditions, either during quiescence or immediately following the exit from quiescence. FACS analysis allows to detect the fraction of anucleated cells in a quiescent population (apoptosis). DNA sequencing of a reporter gene or entire genomes of cells that have survived prolonged periods of quiescence can be used to determine the frequency and the spectrum of mutations in quiescent populations. Days in quiescence
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