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Highlights
gambiense-HAT is targeted for elimi-
nation with zero transmission in
humans.

Innovative tools may contribute to the
achievement of elimination; these tools
include rapid diagnostic tests,
improved tsetse-control tools, and an
oral drug to treat both stages of
disease.

Research is revealing associations
between infection outcome, including
self-cure, and mutations within genes
involved in immune responses.

Patient-derived T. b. gambiense
strains can cycle in animals and tsetse
flies without losing infectivity to
humans. Molecular and serological
techniques facilitate new studies on
naturally infected animals as putative
reservoir hosts.

Mathematical modelling supports the
hypothesis that human or animal reser-
voirs drive transmission, and they, or
the tsetse vectors, could be targeted
to swiftly impact transmission.
Ongoing modelling will assess possi-
ble recrudescence via reservoirs.
Trypanosoma brucei gambiense causes human African trypanosomiasis (HAT).
Between 1990 and 2015, almost 440 000 cases were reported. Large-scale
screening of populations at risk, drug donations, and efforts by national and
international stakeholders have brought the epidemic under control with <2200
cases in 2016. The World Health Organization (WHO) has set the goals of
gambiense-HAT elimination as a public health problem for 2020, and of inter-
ruption of transmission to humans for 2030. Latent human infections and
possible animal reservoirs may challenge these goals. It remains largely
unknown whether, and to what extend, they have an impact on gambiense-
HAT transmission. We argue that a better understanding of the contribution of
human and putative animal reservoirs to gambiense-HAT epidemiology is
mandatory to inform elimination strategies.

Can Cryptic Reservoirs in Humans and Animals Compromise the
Sustainable Elimination of gambiense-HAT?
HAT is caused by two closely related parasites that are transmitted by tsetse flies. Trypano-
soma brucei gambiense is responsible for the Western and Central African form of the disease
and Trypanosoma brucei rhodesiense occurs in Eastern and Southern Africa – both forms of
the disease are usually fatal if untreated [1]. Between 1990 and 2016, a total of 437 971 cases
of gambiense-HAT were reported, with a peak of 37 385 cases in 1998i. Thanks to large-scale
deployment of a serological screening test (CATT/T. b. gambiense) (see Glossary), drug
donations, and intense efforts by national and international stakeholders, this epidemic has
been brought under control, with fewer than 2200 cases reported in 2016. This represents a
marked reduction in human suffering caused by the disease. Inspired by this progress, the
WHO has set elimination of gambiense-HAT as a target for the near future: elimination as a
public health problem by 2020 and the interruption of transmission to humans by 2030ii.

The rationale to shift from HAT control to elimination is based on several arguments, such as the
epidemiological vulnerability of gambiense-HAT as a presumed anthroponotic infection,
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historic examples of elimination in several West African foci, the availability of new medicines
and diagnostics, the political will of endemic countries, and the commitment of national control
programs [2]. Furthermore, a drug donation agreement between pharmaceutical companies
and WHO has made treatment freely available to endemic countries.

gambiense-HAT control classically relies on three pillars: vector control, case finding, and
treatment. HAT is a vector-borne disease, and the reduction of human–fly contact below a
critical threshold would lead to zero transmission. Although vector control is critical to achieve
the elimination/eradication goals, in practice, it will be hard to sustain control of all tsetse fly
populations in all endemic countries. Vector control being only part of the solution, gambiense-
HAT control will continue to rely to a great extent on surveillance, diagnosis, and treatment, both
for reducing transmission and for monitoring progress towards these goals.

The introduction of individual rapid diagnostic tests (RDTs) for gambiense-HAT may increase
serological screening coverage as they can be performed in remote dispensaries devoid of
technical facilities. Thus, they facilitate the integration of passive screening in the health system
and play a role in a sustainable surveillance system. However, RDTs also have limitations – like
CATT/T. b. gambiense, they only detect antibodies, and their specificity is not 100% [3]. As a
consequence, given the adverse effects and logistic constraints of current treatment, individu-
als who test positive in an RDT or in CATT must undergo microscopic examination of blood or
lymph node fluid to confirm the presence of the parasite, followed by a lumbar puncture for
stage determination, as different drugs are required to treat early- and late-stage disease [2].
In recent years, the highly toxic melarsoprol regimen, used to treat late-stage disease, has been
replaced by a safer, though still rather complex, treatment requiring parenteral administration
and hospitalisation. An oral treatment might become available in late 2018, and a single-dose
treatment is entering phase III clinical trialsiii [4].

Whereas HAT elimination by 2020, as a public health problem, seems within reach, the
sustained global elimination of HAT appears more challenging. Indeed, as long as the knowl-
edge gaps surrounding the reservoir of T. b. gambiense in interepidemic periods are not filled,
the concept of eradication of gambiense-HAT cannot be considered.

We present the current research evidence about potential human and animal T. b. gambiense
reservoirs and discuss their importance in the light of the gambiense-HAT elimination goals.

Human Reservoir
Mathematical models show that the sustained transmission of HAT can be explained if a
fraction of the HAT cases is systematically missed by the screening operations [5]. Unfortu-
nately, this is the case in many settings as a number of T. b. gambiense infections remain
undiagnosed for several reasons [6]. First, not all infected people are reached by screening
activities. Second, current diagnostic techniques do not pick up all T. b. gambiense infections
due to lack of sensitivity of serological screening tests, of molecular techniques, or of the
parasitological confirmation tests [7]. These undiagnosed, yet infected, people will act as a
human reservoir of the parasite and might sustain transmission, forming a maintenance
population [8]. Still another potential category of human reservoir may consist of latent
infections, also called ‘healthy carriers’, who do not always progress to clinical disease,
though the relative contribution of these individuals to parasite transmission still needs to be
documented (Box 1). These latently infected people may carry trypanosomes for years or even
decades, as was first described half a century ago in West Africa, and later in patients refusing
treatment in Côte d’Ivoire [9,10]. More recently, a HAT case with a latent infection of at least 29
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years was documented [11]. Whether latently infected persons transmit the parasite sexually
[12], and whether sexual and congenital transmission plays a significant role in the epidemiol-
ogy of gambiense-HAT [13], remains hypothetical. In Guinea, asymptomatic or latent infections
were found to have consistently high titres in CATT/T. b. gambiense and to be positive in the
immune trypanolysis test, although no parasites could be detected in blood or lymph node
fluid during a 2-year follow-up period [14]. This observation is in line with the fact that
trypanosomes can survive in the extravascular spaces of diverse organs such as the heart,
the central nervous system, and the skin [15–17]. Experimental infections in animals confirmed
that parasites may be undetectable in the blood but hidden in different organs and tissues [18–
21], including the skin, from where they can be ingested by tsetse flies [22,23]. It was only
recently that researchers began to investigate the underlying host–parasite interaction mech-
anisms responsible for those latent infections. Microsatellite profiles and genomic sequencing
of parasites from latent infections and from clinical HAT patients are indistinguishable, sug-
gesting that the latent infection phenotype is determined primarily by the host rather than by the
parasite [24]. Studies on host genetic polymorphism show that tumor necrosis factor-a-308 A,
HLA-G UTR-2, APOL1 N264K, and APOL1 G2 are associated with increased risk of infection or
with disease progression, while IL10-592 A, IL64339, APOL1 G1, and other polymorphisms in
HPR and APOL1 are associated with decreased risk of infection or with latent infection [25–30].
Other studies have found associations between the innate and the adaptive immune response
and infection outcome, for example, self-cure and high levels of interleukin-8 (IL-8); latent
infection and high levels of IL-6 or specific interferon-g-producing T cells; disease progression
and high levels of IL-10, TNF-a, and sHLA-G [31–33]. In view of the global elimination of HAT, it
is of the utmost importance to clarify the extent to which these human reservoirs contribute to
the transmission of the parasite and hence to gambiense-HAT persistence and potential
resurgence.

Animal Reservoir
Compared to latent infections in humans, our current knowledge of T. b. gambiense infections
in animals is very limited and fragmented. The presence of T. b. gambiense in animals has been
demonstrated in several studies (Figure 1) [34,35]. Several authors have suggested that animals
can act as a reservoir for gambiense-HAT [36–45]. In rhodesiense-HAT, sustained parasite
transmission cycles exist in both livestock and wildlife, from which the parasite can spill over to
humans [46]. For T. b. gambiense, despite early data generated on its infectivity and trans-
missibility in animals, the epidemiological significance of any animal reservoir is not well
understood and may depend on the specific ecosystem of the HAT focus. Even if the parasite
can be transmitted to and from animals, factors such as the proportion of blood-feeding on that
species by tsetse will determine the epidemiological significance of the species to act as a
maintenance population or part of a maintenance community. T. b. gambiense can infect a
variety of domestic animals and wildlife, as shown in Table 1. Following infection, most of these
animals remain asymptomatic and generally show low to very low parasitaemia. For instance, in
pigs infected with a T. b. gambiense strain isolated from a human patient, only xenodiagnosis
and blood culture succeeded in revealing an infection but conventional microscopy failed to
detect parasites [47–51]. Moreover, experimental studies have shown that human-derived T. b.
gambiense strains that were cyclically transmitted by tsetse flies between animals for more than
a year remained transmissible to humans [48].

Studying natural T. b. gambiense infections in animals is challenging. Major drawbacks are the
usually low parasitaemia and the necessity to distinguish T. b. gambiense from other trypano-
some species such as T. brucei brucei, T. congolense, T. vivax, T. suis, and T. simiae. In
particular, T. b. gambiense is morphologically identical to the nonhuman infective T. b. brucei.
Trends in Parasitology, March 2018, Vol. 34, No. 3 199
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Glossary
Anthroponotic disease: an
infectious disease typically
transmitted from human to human
(including through an insect vector).
Blood incubation infectivity test:
T. b. gambiense and T. b.
rhodesiense have developed
mechanisms to withstand lysis by
normal human serum, in contrast to
animal infective trypanosomes such
as T. b. brucei, T. congolense, T.
vivax. To confirm that an animal is
infected with T. b. gambiense or T.
b. rhodesiense, its blood, or
trypanosomes isolated from that
animal, are incubated with human
blood or serum whereafter this
mixture is injected into a susceptible
animal. Only human serum-resistant
trypanosomes will be able to initiate
an infection in the susceptible animal.
CATT/T. b.gambiense: card
agglutination test for trypanosomiasis
is an agglutination test for the
detection of gambiense-specific
antibodies in blood. It was the first
field-applicable serological test
introduced in the 1980s for large-
scale screening of populations at risk
for gambiense-HAT.
Deterministic mathematical
model: deterministic models ignore
the impact of random events, instead
capturing average disease dynamics,
so that multiple simulations with the
same parameter values and initial
conditions will lead to exactly the
same outcome.
Elimination of gambiense-HAT:
elimination is the reduction to zero of
gambiense-HAT incidence in a
defined area as a result of deliberate
efforts; measures to prevent re-
emergence are required.
Elimination of gambiense-HAT as
a public health problem: 90%
reduction in areas reporting more
than 1 case in 10 000 compared to
2000–2004, and fewer than 2000
annually reported cases globally.
Eradication of gambiense-HAT:
eradication is the permanent
reduction to zero of the worldwide
incidence of gambiense-HAT as a
result of deliberate efforts;
intervention measures are no longer
needed.
HAT focus: a geographically defined
zone where transmission of HAT
occurs or has occurred, to which a

Box 1. Diversity in Outcomes of Human Trypanosoma brucei gambiense Infections

There is growing evidence that infection with T. b. gambiense does not always follow the classical course of the disease,
that is, a first haemolymphatic stage followed by a second stage with central nervous system involvement progressing to
death if left untreated (Figure I). These symptomatic HAT patients are characterised by the detection of parasites in any
body fluid (P+), detection of specific antibodies against T. b. gambiense Variable Antigen Type LiTat 1.3 or LiTat 1.5 in
immune trypanolysis (TL+), and the presence of clinical symptoms. However, long-term follow-up studies in West Africa
have shown that a number of infected individuals do not develop the disease and can be classified as having latent
infections (i.e., they are healthy carriers) [9]. They remain asymptomatic without detectable parasites (P�) for several
years, although they are consistently positive in the immune trypanolysis test (TL+). Moreover, some of them may
become immune trypanolysis-negative (TL�) over time, suggesting that they self-cured and therefore cannot transmit
the parasite any more.

Uninfected
TL−, P−

Infec on

Infected
TL−, P+

Disease
stage 1
TL+, P+

Asymptoma c
TL+, P−

Latent infec on Self−cured

Asymptoma c
TL-, P−

Disease
stage 2
TL+, P+

HAT pa ent

Figure I. Outcomes of Human Infection with Trypanosoma brucei gambiense. get infected with T. When naïve persons
(uninfected), without specific antibodies (TL�) and without parasites (P�) become infected with T. b. gambiense, they
undergo an early phase of the disease with detectable parasitaemia (P+) but without detectable specific antibodies.
Thereafter, most of them develop the disease (HAT patient) and are characterised by specific antibodies (TL+) and
detectable parasitaemia (P+). Some remain asymptomatic (latent infection) with detectable specific antibodies but
without detectable parasites (TL+, P�). Evidence for self-cure comes from asymptomatic people who also eventually
become negative for specific antibodies (TL�, P�).
Among the molecular tests, only those targeting the single-copy TgsGP gene are gambiense-
specific, thus limiting their analytical sensitivity to >100 trypanosomes per ml of blood [52,53].
Biochemical assays, such as isoenzyme profiling, are only applicable on parasite strains that
have been isolated and adapted to laboratory rodents or to in vitro cultures [54–56], and
phenotypic assays such as the blood incubation infectivity test are only readily applicable
on isolated strains and are not fully gambiense-specific [57]. Tests that detect antibodies
against gambiense-specific antigens, such as the variant surface glycoproteins (VSGs)
LiTat 1.3 and LiTat 1.5, may be more useful in revealing T. b. gambiense infections in animals.
However, the immune trypanolysis test (TL), which is considered 100% specific in humans, still
has to be validated in different species of animals. Ancillary information on the T. b. gambiense
animal reservoir can be drawn from analysing T. b. gambiense infection in tsetse, in combina-
tion with its feeding behaviour, to assess the vectorial transmission of the parasite from the
animal reservoir to humans [58]. In summary, there is a need to further improve our tools and
increase our understanding regarding the importance of an animal reservoir in gambiense-HAT
200 Trends in Parasitology, March 2018, Vol. 34, No. 3



geographical name is given (locality,
region, and river).
Immune trypanolysis: a highly
accurate test for gambiense-specific
antibodies, based on antibody-
mediated complement lysis of
trypanosomes exposing one single
variant-specific antigen on their
surface.
Latent infection: ongoing infection
not progressing to clinical disease; it
may remain undiagnosed.
Maintenance community: one or
more populations which can transmit
the pathogen and, together, can
maintain the pathogen.
Maintenance population: individual
populations which can transmit the
pathogen and can also maintain the
pathogen in the absence of other
reservoir populations.
Rapid diagnostic test (RDT):
serological antibody- or antigen-
detection test, conditioned as
individual test, compliant with the
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Figure 1. Trypanosoma brucei gambiense in Nonhuman Mammals. The map shows gambiense-human African trypanosomiasis in endemic countries and
sites where T. b. gambiense infection in nonhuman mammals has been investigated with direct and indirect methods. Circles represent direct or indirect evidence of
presence (red) and of absence (green) of T. b. gambiense in the period 1990–2016. For this period, data are mapped at the village/site level. (Blue) stars represent
presence of detection in the years prior to 1990. For this period, data are mapped at the country level. All source references are provided in Tables S1 and S2 in the
supplemental information online.
epidemiology. If further evidence indicates that an animal reservoir may threaten gambiense-
HAT elimination, synergy with the control of animal African trypanosomiasis should be consid-
ered [59].

Filling the Knowledge Gaps
The presence of multiple reservoirs is a critical obstacle to the sustained elimination of any
infectious agent [60]. For example, when the Guinea worm eradication programme was rolled
out, the possibility of an animal reservoir was initially overlooked, but the recent finding of
Guinea worm infections in dogs led to the hypothesis that dogs could have acted as a reservoir
that caused the reappearance of human cases in Chad [61]. The existence of a human
reservoir, in the form of post-kala-azar dermal leishmaniasis, and possibly also latent infections,
is a challenge for the sustained elimination of visceral leishmaniasis (VL) from the Indian
subcontinent [62].

The importance of investigating how HAT can re-emerge in so-called silent foci is clearly
illustrated by the fact that a 9-year-old child was diagnosed with gambiense-HAT in Ghana in
2013, 10 years after the last detected case [63]. Also, the finding of a gambiense-specific PCR-
positive squirrel in Equatorial Guinea on Luba island in 2014, where the last human HAT case
was reported in 1995, is worrying [43]. Therefore, in the context of gambiense-HAT elimination,
a key question is whether human and/or animal reservoirs are capable of maintaining
Trends in Parasitology, March 2018, Vol. 34, No. 3 201



ASSURED criteria (Affordable,
Sensitive, Specific, User-friendly,
Rapid and robust, Equipment-free
and Deliverable to end-users); RDTs
for gambiense-HAT detect antibodies
against predominant gambiense-
specific antigens.
Reservoir: a host where the
pathogen can maintain itself and
from where it can be transmitted to
another host; a reservoir host is
essential to sustain infection.
Self-cure: infection that is cleared
by the host without treatment.
Specificity: the specificity of a
diagnostic test is the probability that
the test result is negative when the
test person is not infected. It is
usually expressed as a percentage
and is calculated by dividing the
number of test negatives by the
number of true negatives x 100.
Stage determination: HAT
develops from an early stage, with
parasites in the peripheral tissues,
towards a late stage, with parasite
invasion into the central nervous
system. Treatment is different for
both stages, thus requiring stage
determination before drug
administration. Determination of the
stage is achieved by examination of
the cerebrospinal fluid for the
presence of trypanosomes and the
number of white blood cells.
Stochastic mathematical model:
stochastic models include chance
events so that two simulations with
the same parameter values and initial
conditions may lead to different
outcomes. Chance events become
more important at very low
prevalences such as in pre-
elimination or re-emergent settings.
Variant surface glycoprotein
(VSG): in the vertebrate host, the cell
surface of trypanosomes is covered
with a layer of identical VSGs of one
particular variant antigen type (VAT),
that protects the trypanosomes
against innate immune defence
mechanisms of the host; VSGs are
highly immunogenic, but periodic
switches of the VAT of the VSG coat
(antigenic variation) enable the
trypanosome to escape the host
humoral immune response; during
the course of the infection, the host
blood contains antibodies against a
wide spectrum of different VATs.
Xenodiagnosis: diagnostic method
based on detection of the parasite in

Table 1. Animals Successfully Infected with T. b. gambiense Strains Isolated from Human Patients

Animal species Origin of trypano-
some straina

Infectiveness to
tsetse

Minimum observed
duration of infection

Refs

Domestic animals

Cat Senegambia and
Congo Free State

Not tested 12 days [73]

Cattle Nigeria Yes 50 days [66,74,]

Chicken Unknown Not tested 75 days [75]

Dog Senegambia and
Congo Free State,
Nigeria; Belgian
Congo

Yes 109 days [36,48,73]

Donkey Senegambia Not tested 14 days [73]

Goat Senegambia,
Nigeria, Belgian
Congo

Yes 13 months [48,73,74]

Horse Senegambia Not tested 5 months [73]

Pig Côte d’Ivoire,
Congo Belge,
Nigeria

Yes 18 months [47,51,76]

Sheep Côte d’Ivoire Not tested [77]

Primates

Agile mangabey (Cercocebus
galeritus agilis)

Belgian Congo Yes [48]

Green monkey (Cercopithecus
callitrichus, C. aethiops tantalus)

Congo Free State,
Nigeria

Yes 3 months [36,73]

Wolf's mona monkey
(Cercopithecus wolfi)

Congo Belge Yes 15 days [47]

Patas monkey (Erythrocebus
patas patas)

Nigeria Yes 3 months [36,78]

Rhesus macaque (Macacus
rhesus)

Senegambia and
Congo Free State

Not tested 1 month [73]

Chimpanzee (Pan satyrus, Pan
troglodytes verus)

Senegambia,
Nigeria

Not tested 17 months [73,78,79]

Dwarf galago (Galagoides
demidovii)

République
populaire du Congo

Not tested 28 days [80]

Ungulates

Bay duiker (Cephalopus dorsalis) Belgian Congo Yes 24 months [48]

Waterbuck (Kobus ellipsiprymnus) Uganda Not tested [50]

Reedbuck (Redunca redunca) Uganda Yes 15 months [50]

Bushbuck (Tragelaphus spekei) Uganda Yes 22 months [50]

Rodents

Gambian pouched rat
(Cricetomys gambianus)

République
populaire du Congo

Yes 154 days [37,80,81]

Thicket rat (Thamnomys rutilans),
Jackson’s praomys (Praomys
jacksoni), African marsh rat
(Dasymys incomtus), Striped
grass mouse (Lemniscomus

République
populaire du Congo

Not tested 131 days [80]

202 Trends in Parasitology, March 2018, Vol. 34, No. 3



susceptible vectors after they were
fed on an individual suspected of
being infected with the parasite; in
HAT, the vectors used are teneral
tsetse flies.

Table 1. (continued)

Animal species Origin of trypano-
some straina

Infectiveness to
tsetse

Minimum observed
duration of infection

Refs

striatus), Rusty-nosed rat
(Cenomys hypoxanthus), African
brush-tailed porcupine (Atherurus
africanus)

aFor reasons of traceability, we use the name of countries and the scientific name of animals as mentioned in the original
publication: Senegambia = Senegal and The Gambia; Belgian Congo, Congo Free State and Congo Belge = Democratic
Republic of the Congo; République populaire du Congo = Republic of the Congo.
transmission and causing a resurgence of the disease in different geographical areas and
epidemiological settings (see Outstanding Questions).

As with the mathematical modelling of other neglected tropical diseases [64], models on HAT
epidemiology may help to improve our epidemiological knowledge and inform elimination
strategies. Models can explore if, and how, animal and human reservoirs could sustain
endemicity in HAT foci [65]. However, model predictions heavily depend on the availability
of accurate information for their construction, parameterisation, and fitting. To date, a few
models have attempted to infer the contribution of reservoirs in gambiense-HAT transmission
maintenance by fitting to human epidemiological data. Funk et al. [66] suggested that animals
were necessary for persistent transmission in Bipindi focus in Cameroon. Studies of existing
gambiense-HAT models in a few foci (i.e., D. R. Congo, Guinea, and Chad) suggest that some
type of additional infection reservoir is needed to match the observed dynamics of reported
HAT cases [5,67,68]. This could arise from another human reservoir (including undiagnosed
and latent infections), an animal reservoir, and/or heterogeneities in human risk exposure and
surveillance coverage. A different modelling exercise considered the implications on transmis-
sion and control of whether animals function as reservoirs or as zooprophylaxis but did not
address which was more likely [69].

Due to the current lack of knowledge surrounding latently infected people (including their
frequency, disease progression, their relative infectivity to tsetse, and the duration of this
infectious stage) modelling latent infections in humans is challenging, and these uncertainties
will impact the models’ predictions. In particular, latent infections have only been explicitly
incorporated in one gambiense-HAT model, and the potential role of these individuals in
maintaining transmission or hindering elimination has yet to be fully analysed [70]. Arguably,
long-duration infections, which eventually progress to late-stage disease, are captured by the
stage 1 exponential distributions used in many modelling frameworks, but modifications could
better represent self-cure and nondetection of latent infections in active screening. Many recent
modelling studies have concluded that existing vector-control methods have the ability to
quickly reduce transmission to and from tsetse to all hosts, and may be critical for elimination in
regions where reservoirs exist [67–72].

New data and investigations into latent human infections and animal infections will help shape
the way in which future models are developed and parameterised by factoring in improved
biological evidence. Some critical gaps in our knowledge, which influence modelling choices,
are shown in Figure 2 (Key Figure). As well as refining formulation and parameterisation of the
existing deterministic models, it is also clear that a new generation of models is needed.
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Key Figure

Unknown Elements in Human African Trypanosomiasis Progression
and Transmission

Animals

(3) self -cure / treated? (5) dura on?

(2) self -cure ? (4) dura
ons?

Infected

Infec ve

Treated

Stage 2

Stage 1

Latent

Suscep ble

Suscep ble (3) self-cure?

(3) ?

(6) ?

(6) ?

(2) ?

(6) Feeding
preference

(1) probability ?

(1) probability ?

Humans

Figure 2. Solid lines represent progression between disease states, and dashed lines represent transmission of the
parasites to and from the tsetse vector. Red boxes denote people or animals that may be infective to tsetse, with the darker
shades denoting possible greater infectiveness. The figure highlights key unknown elements in disease progression and
transmission including: (1) the probability of an infection leading to latent or stage 1 disease in humans – if, and how
frequently; (2) self-cure of infected humans or (3) animals arises; (4) the duration of latent infection in humans, or (5) any
infections in animals; and (6) the relative probability of transmission to tsetse from different types of infections (accounting
for host feeding preferences).
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Outstanding Questions
How frequent are latent infections with
T. b. gambiense in humans and in
animals?

What is the duration of latent infection
in humans and in animals?

How infective are latent human infec-
tions and animal reservoirs to tsetse
flies?

Are latent human infections or animal
reservoirs capable of sustaining trans-
mission in interepidemic periods?

Is it possible to discriminate ongoing
latent infection from self-cure in
humans?

Do prognostic markers of latent infec-
tion outcome in humans exist?

What are the intrinsic and extrinsic fac-
tors that influence latent infection out-
come in humans?

Can, and do, animal transmission
cycles of T. b. gambiense exist in the
absence of human transmission? If so,
what is the likelihood that they could
seed a new transmission cycle in
humans?
Stochastic models are better suited to capture the chance events that determine the role of
cryptic reservoirs and their implications for elimination. In conclusion, improved mathematical
models on HAT epidemiology, combined with additional field and experimental data, are
needed to help understand the respective roles of these reservoirs.

Concluding Remarks
We believe that attaining the elimination (zero transmission) target of gambiense-HAT by 2030
is feasible but, as observed for other neglected tropical diseases, latent infections – whether
human or animal – may constitute cryptic parasite reservoirs and thus add another challenge to
sustained elimination. To inform evidence-based elimination strategies, a better understanding
of the contribution of these putative human and animal reservoirs on the epidemiology of
gambiense-HAT is required, more in particular on (i) the frequency and duration of latent human
infections and infections in animals, (ii) the infectiveness of latent human infections and animal
reservoirs to tsetse flies, (iii) the ability of latent human infections or animal reservoirs to sustain
transmission in interepidemic periods, and (iv) the possible existence of an animal transmission
cycle in the absence of human transmission and its ability to seed a new transmission cycle in
humans. To investigate these issues, we urgently need to improve our toolbox for the
identification of latent and self-cured infections, including prognostic and diagnostic markers.
Also, more accurate and preferably high-throughput tests to detect and monitor T. b. gam-
biense infections in animals should be developed, along with improved mathematical models
for exploration of epidemiological hypotheses.
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