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Summary 15 

Innate lymphoid cells (ILCs) are the innate counterpart of T cells. Upon infection or injury, 16 

ILCs react promptly to direct the developing immune response to the one most adapted to the 17 

threat facing the organism. Therefore, ILCs play an important role early in resistance to 18 

infection, but also to maintain homeostasis with the symbiotic microbiota following 19 

perturbations induced by diet and pathogens. Such roles of ILCs have been best characterized 20 

in the intestine and lung, mucosal sites that are exposed to the environment and are therefore 21 

colonized with diverse but specific types of microbes. Understanding the dialogue between 22 

pathogens, microbiota and ILCs may lead to new strategies to re-inforce immunity for 23 

prevention, vaccination and therapy.  24 

 25 

Keywords: Innate lymphoid cells, microbiota, pathogens, homeostasis, mucosal immunity 26 

 27 
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I. Introduction  29 

ILCs derive from a lymphoid cell precursor common with T cells, with whom they share 30 

phenotypes and functions [1,2]. However, T cells are antigen-specific, carry immunological 31 

memory, and are selected by their cognate antigen in lymph nodes and Peyer’s patches before 32 

expansion. Once activated, T cells recirculate through the blood to reach organs where their 33 

effector functions are required, eventually committing apoptosis or remaining in tissues as 34 

resident memory T (TRM) cells [3]. Nevertheless, the process of T cell selection, activation 35 

and recirculation requires several days, leaving the early phase of the immune response 36 

without T cell-mediated orchestration of the response best adapted to the type of threat faced 37 

by the individual. However, early orchestration is directed by ILCs, which perform similar 38 

regulatory functions and provide prompt effector responses to infection and injury. ILCs also 39 

play important roles early in life, when the adaptive immune system is not yet in place [1].  40 

 An individual faced with intracellular threats, such as tumors, viruses and particular 41 

bacteria, responds with type 1 immune responses characterized by the production of type I 42 

interferons, the inducer cytokine IL-12, the effector cytokine IFNγ, the release of cytotoxic 43 

oxygen radicals and proteins, and the elimination of the transformed or infected cells (Figure 44 

1). Extracellular microbes, such as bacteria and fungi, elicit type 3 responses that are 45 

characterized by the release of the inducer cytokine IL-23 and the production of the effector 46 

cytokines IL-17 and IL-22, which lead to the reinforcement of mucosal barriers and the 47 

recruitment of polymorphonuclear neutrophilic phagocytes that target, ingest and destroy the 48 

microbes. In contrast, when faced with large parasites, such as worms, the individual develops 49 

type 2 responses that lead to the release of fluids and the production of mucus at mucosal 50 

surfaces, and the deposition of collagen to resist parasite penetration. The type 2 inducer 51 

cytokines are IL-25, IL-33 and TSLP, which lead to the production of the effector cytokines 52 

IL-4, IL-5 and IL-13. Myeloid cells and stromal cells produce the appropriate inducer 53 

cytokines in response to a specific type of threat, activating ILCs and T cells to differentiate 54 

into ILC1s and Th1, ILC2s and Th2, or ILC3s and Th17, which produce the effector 55 

cytokines characteristic of type 1, 2 and 3 immunity [1,4].  56 

 Importantly, these immune responses are not only engaged in response to pathogens 57 

and tissue injury, but also in response to the symbiotic microbiota [5]. Microbes are present at 58 

all mucosal surfaces, as well as within tissues. An estimated 1014 bacteria reside in the 59 

intestine, together with viruses, fungi, protists and occasional worms, while smaller yet 60 

significant collections of microbes are present in the oral cavity, genitourinary system and 61 

skin [6,7]. Furthermore, the list of viruses found within our organism is expanding [8], and 62 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 4

bacteria have been identified in lymphoid tissues [9,10] and placenta [11]. As a consequence, 63 

the immune system is constantly activated by the presence of these diverse symbiotic 64 

microbes. We have therefore argued that the primary function of the immune system is to 65 

maintain homeostasis of the host with its microbiota [5], a microbiota that is necessary for 66 

digestion, production of metabolites and defense. In contrast, if microbes are associated with 67 

injury of the host’s cells and tissues, the immune reaction will lead to the elimination of the 68 

pathogens. 69 

 In this review, we discuss the role of ILCs in the control of the symbiotic or 70 

pathogenic microbiota (Figure 2 and Table 1). From recent data, it emerges that ILCs play 71 

unique roles in microbiota control, observations that may lead to a new understanding of how 72 

chronic inflammatory pathologies emerge when such control is lost, and create new 73 

opportunities for prevention and therapy of infectious diseases. We will not discuss the role of 74 

NK cells, the oldest member of the ILC family, which has been extensively studied since 40 75 

years and best reviewed elsewhere [12].  76 

 77 

II. ILCs in the control of intestinal and hepatic infections 78 

ILC3s are the oldest and best characterized ILC family member (not considering NK cells). In 79 

the late 90’s, non-B non-T lymphoid cells, termed lymphoid tissue inducer (LTi) cells, have 80 

been described that colonize developing secondary lymphoid tissues, the lymph nodes and the 81 

Peyer’s patches, and shown to be required for their development [13,14]. LTi cells form 82 

clusters in fetal lymphoid tissues and the intestinal lamina propria [15], and activate stromal 83 

cells to initiate organogenesis [16]. Ten years later, it was shown that LTi cells are part of a 84 

larger family of ILC3s that depend on the hormone receptor and transcription factor RORγt 85 

[17], and express the type 3 cytokines IL-17, IL-22 and lymphotoxin (LT) [18-21]. Non-LTi 86 

ILC3s do not cluster and are not involved in the development of lymphoid tissues. Rather, 87 

these cells resemble more freely moving lymphoid effector cells, and together with LTi cells, 88 

play a critical role early in defense against enteric pathogens.  89 

 Using mouse models that lack all lymphoid cells or only B and T cells, it was reported 90 

that ILC3s are required early in the control of intestinal infection by Proteobacteria, such as 91 

Citrobacter rodentium, the murine homologue of human enteropathogenic Escherichia coli. 92 

The production of IL-22 is paramount for this protective function, and induces the expression 93 

of anti-microbial peptides (AMPs) by epithelial cells, such as Reg3γ [18,21-23]. Also 94 

involved in increasing epithelial defense is membrane-bound LT, which bind its receptor 95 
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LTβR on epithelial cells and induces expression of the neutrophils chemoattractants CXCL1 96 

and CXCL2 [24]. Furthermore, ILC3s are involved in the response to infection by Salmonella 97 

enterica through the production of IL-17 and IL22, as well as IFNγ [25]. The production of 98 

IL-17 by ILC3s and the recruitment of neutrophils are essential in the response to infection by 99 

E.coli K1 and Klebsiella pneumoniae and to prevent sepsis [26]. The protective role of ILC3s 100 

against pathogens extends to parasites and viruses. Infection by Toxoplasma gondii leads to 101 

more severe inflammatory pathology in the absence of ILC3s, presumably because of a failure 102 

to contain the parasites early [27]. Furthermore, IL-22 production by ILC3s potentiates the 103 

activity of IFNλ in epithelial cells and thus increases resistance to rotavirus [28]. However, 104 

the pro-inflammatory activity of ILC3s may also lead to pathology through the production of 105 

IFNγ in the context of S. enterica infection [25], as well as intestinal fibrosis through the 106 

expression of IL-17 and IL-22 in the context of S. typhimurium infection [29]. 107 

 ILC2s were first reported in the context of intestinal infection with the helminth 108 

Nippostrongylus brasiliensis, which evokes a vigorous expansion of “non-B non-T cells” 109 

expressing IL-4, IL-5 an IL-13 [30,31]. ILC2 are also involved in defense against 110 

Heligmosomoides polygyrus [32], Strongyloides venezuelensis [33], Trichinella spiralis [34] 111 

and T. muris [35], and are diminished in the blood of children infected with the blood dweller 112 

Schistosoma haematobium [36]. Both inducer cytokines IL-25 and IL-33 are expressed upon 113 

helminth infection and activate ILC2s, noting that ILC2s responding to IL-33 have been 114 

suggested to be precursors of ILC2s responding to IL-25 [37]. While IL-33 is expressed by 115 

different types of stromal cells, as well as by mast cells [32], the source of IL-25 was only 116 

recently identified, in the intestine, as Tuft epithelial cells [38-40]. Interestingly, Tuft cells 117 

appear to detect helminth infection through chemosensory signaling via the G-protein coupled 118 

receptor Trpm5 [38]. The activity of ILC2s is also promoted, during helminth infection, by 119 

the neuropeptide neuromedin U that is expressed by cholinergic neurons in the intestine 120 

[41,42].   121 

 ILC1s are distinguished from NK cells by their lack of expression of, and requirement 122 

for, the transcription factor Eomesodermin [2]. ILC1s provide early protection to the liver 123 

from mouse cytomegalovirus infection, producing IFNγ before NK cells are engaged [43], but 124 

at the same time prevent the recruitment of NK cells and CD8+ T cells that optimally fight 125 

liver infection with adenovirus [44]. Mouse hepatitis virus inoculated orally is also cleared 126 

from the intestine by ILC1s, which are activated by IL-15 released from infected stromal cells 127 

[45]. Futhermore, ILC1s and their production of IFNγ are engaged in the defense against 128 
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bacteria, such as Clostridium difficile [46]. Nevertheless, ILC1s and NK cells have largely 129 

overlapping function, even though ILC1s are defined as non-cytotoxic. As both cells types 130 

react promptly to activators such as IL-12, their relative role is mostly dependent on their 131 

tissue distribution before infection.  132 

 133 

III. The ILC crosstalk with intestinal microbiota 134 

The large intestinal microbiota has been best characterized, so far, at the level of its 135 

bacteriome and of its cross-talk between symbiotic bacteria and ILC3s. In contrast, the 136 

interaction between the virome and ILCs remains largely unexplored, and ILC2s are not 137 

known to cross-talk with microbes, even though some bacteria have been reported to induce 138 

the expansion of ILC2s at the steady state [47]. Therefore, this chapter will discuss mostly our 139 

knowledge on the cross-talk between bacterial symbionts and ILC3s. 140 

 In 2008, we reported that peptidoglycan released by proliferating Gram- bacteria in the 141 

intestine induce the activation of LTi cells clustered in so-called cryptopatches [15], which are 142 

found near the base of crypts in the small intestine [48]. LTi cells in turn activate underlying 143 

stromal cells to release chemokines and recruit CCR6+ B cells to form isolated lymphoid 144 

follicles (ILFs). ILFs generate microbiota-specific IgA-producing B cells, in a T-cell 145 

independent way, and play an important role in intestinal homeostasis [15,49]. The colonizing 146 

microbiota is therefore involved in the development of the intestinal immune system. At the 147 

same time, it provides a negative feedback on the number and activity of ILC3s, which 148 

include LTi cells, by inducing epithelial cells to produce IL-25 [47]. Of note, in both these 149 

phenomena, epithelial cells translate the recognition of microbes into signals that regulate 150 

ILCs.  151 

 Myeloid cells are nevertheless the major relay between microbiota and ILC3s through 152 

the production of the type 3 inducer cytokines IL-23 and IL-1β. In the context of C. 153 

rodentium infection, CX3CR1+ macrophages produce higher amounts of these cytokines than 154 

do conventional CD103+ DCs, and thus, more efficiently induce the expression by ILC3s of 155 

IL-22 [50] and GM-CSF [51]. In addition, CD11b+ DCs, which include CX3CR1+ cells, are 156 

obligate sources of IL-23 for host survival during C. rodentium infection [52], and TNFα 157 

produced by CD11b+ DCs during Helicobacter typhlonius infection synergizes with IL-23 for 158 

the expression of IL-17 by ILC3s [53]. CD11b+ DCs are also activated by microbiota-derived 159 

ATP to produce IL-23 during the steady state [54]. Other members of the symbiotic 160 

microbiota induce the expression of IL-23 by myeloid cells and as a consequence, IL-22 by 161 

ILC3s, such as SFB [55] and Lactobacilli species [56]. ILC3s feedback positively on the 162 
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production of IL-23 by myeloid cells through their expression of membrane-bound LT and 163 

activation of LTβR on DCs [57]. Unexpectedly, intestinal glial cells sense microbiota through 164 

a Myd88-dependent pathway and produce neurotrophic factors that activate the Ret receptor 165 

on ILC3s and promote their expression of IL-22 [58].   166 

 At the steady state, ILC3s are the major source of IL-22 [47]. IL-22, as well as IL-17, 167 

induce the production of AMPs by epithelial cells [59], and therefore, are critical for the 168 

containment not only of pathogens, but also of the symbiotic microbiota. IL-22 also regulates 169 

the fucosylation of epithelial cells, a dietary carbohydrate for many symbionts, and thereby 170 

increases resistance to infection by Salmonella typhimurium [60] and C. rodentium [61]. 171 

Furthermore, membrane-bound (LTα1β2) and soluble (LTα3) LT expressed by ILC3s play an 172 

important role in the containment of the microbiota [62] through the activation of epithelial 173 

cells [24], as well as of DCs and T cells that lead to the production of anti-microbial IgA [63]. 174 

The containment of microbiota through the enhancement of epithelial defenses and adaptive 175 

immunity must nevertheless be controlled to avoid exaggerate responses to the symbiotic 176 

microbiota and consequent pathologic inflammation. To this end, ILCs express MHC class II 177 

molecules, as well as the machinery required to process proteins for presentation of peptides 178 

onto class II molecules, allowing ILCs to dampen the CD4+ T cell response to microbiota [64] 179 

and to SFB in particular [65]. Reciprocally, the presence of CD4+ T cells in the intestinal 180 

lamina propria decreases the expression of IL-22 by ILC3s [47,66], presumably through 181 

competition for survival and inducing cytokines such as IL-23.  182 

 Bacterial symbionts of the Alcaligenes genus have been identified that are present in 183 

Peyer’s patches. ILC3s and IL-22 are critical for the containment of Alcaligenes, as the 184 

depletion of ILCs using an anti-CD90 antibody leads to the presence of the bacteria in spleen 185 

and liver [9]. The depletion experiments were performed in Rag-deficient mice, as well as in 186 

mice reconstituted with mature B and T cells, indicating that adaptive immunity is not 187 

necessary for the containment of Alcaligenes. It remains nevertheless possible that, in normal 188 

mice, adaptive immunity develops over time that contributes to the containment of these 189 

symbionts through the generation of antibodies. As a matter of fact, Alcaligenes promotes the 190 

generation of IgA, which contribute to the construction of its niche [10].  191 

 192 

IV. Microbe-ILC interactions in the lungs 193 

The impact of ILCs on microbes (and parasites) at mucosal sites other than the intestine has 194 

been best studied in the lungs. ILC2s are the dominant ILC subset in the lungs at the steady 195 

state, as a consequence of the production of IL-33 and TSLP by the alveolar epithelium [67]. 196 
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The production of IL-5 and IL-13 by ILC2s promotes the recruitment of eosinophils, the 197 

differentiation of monocyte into M2 (or alternatively activated) macrophages, and the 198 

differentiation of T cells into Th2 cells [68-70]. ILC2s contribute to the resistance to lung 199 

parasites, such as Strongyloides venezuelensis [71], Nippostrongylus brasiliensis [72,73], 200 

Litomosoides sigmodontis [74], as well as to tissue repair [75]. However, type 2 immunity 201 

induced by ILC2s also leads to increased susceptibility to fungal [76,77] and bacterial 202 

infection [78], by mechanisms of immunological cross-regulation [4].   203 

 Type 2 immunity promoted by ILC2s plays an important role in the repair phase of 204 

immune responses, which occurs, for example, after influenza A virus infection through the 205 

production of the EGFR ligand amphiregulin [79]. This repair response is nevertheless 206 

inhibited by IFNγ that is induced by the virus infection [80]. Furthermore, the ILC2-initiated 207 

repair responses, induced by virus-induced tissue damage, can lead to exacerbated type 2 208 

responses and, as a consequence, asthma. Such an association, and the mechanisms driving 209 

this association, have been reported in the context of infection with rhinovirus [81-83] and 210 

respiratory syncytial virus [84,85]. Similar pathological consequences are also induced by the 211 

fungi Alternaria alternata [86] and Cryptococcus neoformans [87]. 212 

 ILC3s also play an important role in the lungs in response to bacterial and fungal 213 

infections. IL-22 produced by ILC3s is instrumental in lung immunity to Streptococcus 214 

pneumoniae [88] and Pseudomonas aeruginosa [89]. Interestingly, neonatal colonization of 215 

mice with intestinal bacteria induces the influx of IL-22-producing ILC3s into the lung, which 216 

confer life-saving resistance to early infection by Streptococcus pneumoniae [90].  217 

 218 

V. Concluding remarks 219 

We have discussed recent data showing the critical role played by ILC early in the immune 220 

responses to pathogens, as these cells can respond promptly to inducer cytokines provided by 221 

myeloid and epithelial cells upon infection and injury. Of note, TRM cells, as well as particular 222 

subsets of invariant Tαβ or Tγδ cells, can play similar roles as their activation state alleviates 223 

the requirement for antigen-specific TCR activation. The prompt activation of ILCs is also 224 

important in response to changes in the symbiotic microbiota, in order to maintain 225 

homeostasis.  226 

 The current knowledge on the role of ILCs in defense and homeostasis has been 227 

inferred form mouse models and association studies in human. It is now possible to design 228 

strategies to harness the central role of ILCs in homeostasis, defense and immunoregulation 229 

for the prevention and therapy of infectious diseases, and of pathological consequences of 230 
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microbiota dysbiosis. It is also possible that novel vaccination strategies benefit from an early 231 

manipulation of ILCs, in order to force the response to specific antigens into the type most 232 

adapted to fight the pathogen. The manipulation of ILCs may involve the administration of 233 

inducer cytokines, or other molecules, yet to be discovered, that specifically activate subsets 234 

of ILCs. Another possibility is the isolation of ILC precursors from the blood of patients, and 235 

their expansion in vitro into the desired subset before re-administration and induction of type 236 

1, 2 or 3 immune responses. We are still in the early days of ILC biology, but also at the 237 

exciting transition phase when clinical applications become possible.   238 

  239 
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Table 1 240 

ILC 
type 

Role Microbe type Microbe species Organ References 

ILC1 + Bacteria Clostridium difficile Intestine [46] 

+ Virus Adenovirus Liver [44] 

  +   Mouse hepatitis virus Liver [45] 

  +   Cytomegalovirus Liver [43] 

ILC2 – Bacteria Streptococcus pneumoniae Lung [78] 

  – Virus Rhinovirus Lung [81-83] 

  –   Respiratory syncytial virus Lung [84,85] 

  +/–   Influenza Lung [79,80] 

  +/– Fungi Cryptococcus neoformans Lung [76,77,87] 

  –   Alternaria altnernata Lung [86] 

  + Parasites Trichinella spiralis Intestine [34] 

  +   Trichuris muris Intestine [35] 

  +   Heligmosomoides polygyrus Intestine [32] 
+ Nippostrongylus brasiliensis Intestine/lung [30,31,72,73] 

  +   Strongyloides venezuelensis Intestine/lung [33,71] 

  +   Litomosoides sigmodontis Lung [74] 

  +   Schistosoma haematobium Blood [36] 

ILC3 + Bacteria Commensal microbiota Intestine [15,24,47,49,54,62-64] 

  +   Citrobacter rodentium Intestine [18,21-23,50,52,61] 

  +   Escherichia coli K1 Intestine [26] 

  +   SFB Intestine [55,65] 

  +   Lactobacilli Intestine [56] 

  +   Alcaligenes Intestine [9,10] 

  +/–    Salmonella enterica Intestine [25] 

  +/–    Salmonella typhimurium Intestine [29,60] 

  +/–   Helicobacter typhlonius Intestine [53] 

  +   Streptococcus pneumoniae Lung [88,90] 

  +   Pseudomonas aeruginosa Lung [89] 

  +   Klebsiella pneumoniae Blood [26] 

  + Virus Rotavirus Intestine [28] 

  + Fungi Candida albicans Lung [89] 

  + Parasites Toxoplasma gondii Intestine [27] 

 241 

  242 
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Legends to figures 507 

 508 

Figure 1. The activation of innate lymphoid cells. The three types of ILCs are promptly 509 

activated by distinct types of threats. Such threats are detected by myeloid and non-510 

hematopoietic cells, which express inducer cytokines (in boxes). In reaction to inducer 511 

cytokines, ILCs express effector cytokines that both activate defense mechanisms and 512 

regulate immunity.  513 

 514 

Figure 2. The control of microbiota and pathogens by ILCs. The response of ILCs to 515 

symbiotic microbes and pathogens have been extensively described in the intestine and lung, 516 

to include bacteria, viruses, fungi and parasites, as well as viruses in the liver. Given their 517 

prompt activation, ILCs play a critical role early in the effector response to perturbations in 518 

the microbiota and to pathogens, and in the regulation of adaptive immunity. In some cases, 519 

however, the reactivity of ILCs contributes to pathology.  520 

  521 

 522 
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