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Abstract: Botulinum neurotoxins are diverse proteins. They are currently represented by at least seven
serotypes and more than 40 subtypes. New clostridial strains that produce novel neurotoxin variants
are being identified with increasing frequency, which presents challenges when organizing the
nomenclature surrounding these neurotoxins. Worldwide, researchers are faced with the possibility
that toxins having identical sequences may be given different designations or novel toxins having
unique sequences may be given the same designations on publication. In order to minimize these
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problems, an ad hoc committee consisting of over 20 researchers in the field of botulinum neurotoxin
research was convened to discuss the clarification of the issues involved in botulinum neurotoxin
nomenclature. This publication presents a historical overview of the issues and provides guidelines
for botulinum neurotoxin subtype nomenclature in the future.

Keywords: botulinum; botulism; neurotoxins; subtypes; Clostridium botulinum; guidelines; nomenclature

1. Historical Perspective of Botulinum Neurotoxin Serotypes

Botulinum neurotoxins (BoNTs) are the most potent naturally-occurring substances, with as little
as 50 ng of neurotoxin sufficient to cause human botulism. This minimal lethal dose is estimated
from data on the amount of neurotoxin consumed in cases of foodborne botulism and from animal
experiments [1–3]. Botulinum neurotoxins are 150-kDa proteins that are comprised of a heavy chain
(HC-100 kDa) and a light chain (LC-50 kDa). The heavy chains have two functional domains, with
the C-terminal domain (HC) involved in neurotoxin binding to specific receptors in peripheral nerve
terminals (Table 1) and the N-terminal domain (HN) involved in translocation of the light chain into
the nerve cell cytoplasm [4–6]. The light chains are zinc metalloproteases that block the release of
the neurotransmitter, acetylcholine, in cholinergic nerves by specific cleavage of SNARE (soluble
N-ethylmaleimide-sensitive factor (NSF) attachment receptor) proteins (Table 2), leading to flaccid
paralysis and botulism [7–9].

Table 1. Synaptic vesicle proteins that act as receptors for botulinum neurotoxins. BoNT, botulinum neurotoxin.

Serotype Protein Receptor Binding Site References

BoNT/A N-glycosylated SV2A, B, C HCN-HCC [10–12]
BoNT/B Synaptotagmin I and II HCC [13,14]
BoNT/C —– * [15]
BoNT/D N-glycosylated SV2A, B, C [16]

BoNT/DC Synaptotagmin I and II HCC [17]
BoNT/E N-glycosylated SV2A, B HCN-HCC [18,19]
BoNT/F N-glycosylated SV2A, B, C [20,21]
BoNT/G Synaptotagmin I and II HCC [14,22]

* BoNT/C interacts with ganglioside only; there is no protein receptor identified so far.

Table 2. The enzymatic targets and cleavage sites of various botulinum neurotoxins. The table is a
modification of [7] with additional data from [23].
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Serological methods were first used to distinguish botulinum neurotoxins more than a century
ago. Leuchs [24] showed that botulinum neurotoxins formed by strains of Clostridium botulinum
isolated following outbreaks of foodborne botulism in Ellezelles (Belgium) and Darmstadt (Germany)
were antigenically distinct, with antitoxin raised against one neurotoxin not cross-neutralizing
neurotoxin formed by the other strain. Using a similar approach, Burke [25] also recognized two
antigenically-distinct botulinum neurotoxins and designated these as serotypes A and B. Strains that
formed type A neurotoxin were reported to dominate in the western USA, and strains that formed
type B neurotoxin dominated in the eastern USA [26,27]. These pioneering studies established the
use of serological methods based on type-specific antitoxins to define and distinguish botulinum
neurotoxin serotypes using small animal models. In the decades since Leuchs’ and Burke’s work, the
application of the neurotoxin neutralization assay using serotype-specific antisera led to the recognition
of seven confirmed botulinum neurotoxin serotypes (types A–G). A potential eighth type (“type H”)
was described in 2013. Recent reports have variously described this novel neurotoxin as BoNT/H,
BoNT/FA or BoNT/HA [10,28–33].

Historically, the use of serological methods to identify and characterize botulinum neurotoxins has
not been without problems. In 1924 (only a few years after the work of Leuchs and Burke), problems
were encountered when serotyping neurotoxin formed by newly-identified BoNT/C strains that were
tested using specific antisera. It was found that antisera produced from type C strains that were
isolated from fly larvae and chickens were able to neutralize type C neurotoxin from several strains
isolated in the USA, as well as the “Seddon” type C strain that was isolated from cattle with botulism
in Australia, but that antisera produced from the “Seddon” strain neutralized only its homologous
toxin [34]. It is now known that these “type C” toxins are BoNT/CD chimeras composed of the 2/3
type C and 1/3 type D sequence, whereas true type C1 toxins are produced by Seddon-like strains [35].

Similar issues arose in the serotyping of toxins from multiple type A and type F strains in
Argentina [36]. Significant differences in the efficiency of neutralization were noted, particularly
among the BoNT/F toxins. These observations led the researchers to conclude, “there is a general
tendency to accept the antigenic homogeneity of the botulinum toxins within each type, and from the
year 1924 in which the serological relations among the type C strains were described, later denominated
type Cα and Cβ (currently CD and C1), up to this date it was never known with precision what to do
with these strains, from the point of view of their classification. But the biologic reality is that there
are serologic variations of differing magnitude in strains within each type, evidenced by significant
differences in antitoxin consumption in cross neutralization, being the most obvious cases those
observed in the strains of type C and F” [37].

These observations pointed to a level of intratypic serological diversity that underlies the
“serotype” designations. It was recognized that these differences may have an impact on the
effectiveness of botulism treatment, as antitoxins have been raised against a single toxin subtype
per serotype. For example, all currently-produced commercial botulinum antitoxins were produced
following vaccination with BoNT/A1, BoNT/B1 and either BoNT/E1 or BoNT/E3 toxoids. The few
research studies that have been published evaluating the effectiveness of such antisera have shown
differential protection against the spectrum of toxins within a single serotype [38,39]. In addition, the
impact of intratypic serological diversity on the effectiveness of current antitoxin treatments remains
largely unknown.

2. Historical Perspective of Botulinum Neurotoxin Subtypes

Early work had suggested that each strain of C. botulinum formed a single type of botulinum
neurotoxin. However, using mouse tests and specific antisera, Giménez and Ciccarelli described a strain
that formed two distinct types of neurotoxin, with a major amount of type A toxin activity and a minor
amount of type F toxin activity [40]. This strain was designated type A, subtype Af [40]. A number of
strains are now described that form more than one type of botulinum neurotoxin [37,41,42]. For more
than a decade now, however, the term subtype has been used in a different way, that is to describe
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intratypic neurotoxin variation based on the amino acid sequence of the neurotoxin (derived following
sequencing of the neurotoxin gene). A numerical notation has also been introduced, so that the
subtypes are designated BoNT/A1, BoNT/A2, BoNT/A3, etc. [43–49] (Table 3).

Table 3. Representative strains of BoNT subtypes. Note that these prototype strains were used to
produce the comparisons in Tables 4–9.

Serotype Subtype Representative
Strain Source/Date Sequence

Accession #

BoNT/A A1 ATCC 3502 peas/California, 1922 CAL82360
A2 Kyoto-F infant botulism/Japan, 1978 CAA51824
A3 Loch Maree duck paste/Scotland, 1922 ACA57525
A4 Ba657 infant botulism/Texas, 1976 ACQ51417
A5 H04402 065 wound botulism/U.K., 2004 ACG50065
A6 CDC 41370 food/Mexico, 1996 ACW83608
A7 2008-148 enchiladas/France, 2008 AFV13854
A8 Chemnitz green bean salad/Germany, 2007 AJA05787

BoNT/B B1 okra okra/Tennessee, 1939 ACA46990
B2 111 infant botulism/Japan, 1995 BAC22064
B3 CDC 795 Unknown ABM73977
B4 Eklund 17B marine sediments/Pacific coast, 1965 ABM73987
B5 Ba657 infant botulism/Texas, 1976 ACQ51206
B6 Osaka05 infant botulism/Japan, 2005 BAF91946
B7 Bac-04-07755 infant botulism/New York, 2004 AFD33678
B8 Maehongson foodborne botulism/Thailand, 2010 AFN61309

BoNT/C C1 Stockholm mink/Sweden BAA14235
CD 6813 soil/Maryland BAA08418

BoNT/D D 1873 ham/Chad, 1958 EES90380
DC VPI 5995 South Africa ABP48747

BoNT/E E1 Beluga whale/Alaska, 1952 CAA43999
E2 CDC 5247 Unknown EF028404
E3 Alaska E43 Alaska ABM73980
E4 BL5262 infant botulism/Italy, 1984 BAC05434
E5 LCL155 soybean-wax gourd paste/China AB037704
E6 K35 fish/Finland, Baltic Sea CAM91125
E7 IBCA97-0192 whitefish/California, 1997 AER11391
E8 Bac-02-06430 round goby/Lake Erie, 2002 AER11392
E9 CDC 66177 environmental/Argentina, 1995 AFV91339

E10 FWKR11E1 freshwater/Canada, 2004 KF861920
E11 SW280E seawater/Canada, 2001 KF861879
E12 84-10 ham/France, 2009 KF929215

BoNT/F F1 Langeland duck paste/Denmark, 1958 ABS41202
F2 CDC 3281 infant botulism/Texas, 1982 CAA73972
F3 VPI4257 (F160) soil/Argentina, ~1968 ADA79575
F4 CDC54089 anchovies/Argentina, 1984 GU213221
F5 CDC54075 soil/Argentina, 1978 GU213212
F6 Eklund 202F marine sediments/Pacific coast, 1965 AAA23263
F7 Sullivan adult botulism/New York, 2007 ADK48765
F8 I357 asparagus/Italy, 2005 AUCZ00000000

BoNT/G CDC 2741 autopsy specimen/Switzerland, 1978 KIE44899

BoNT/FA (H) * CFSAN024410
(IBCA 10-7060) infant botulism, 2010 KGO15617

* This neurotoxin is variously described as BoNT/FA, BoNT/H and BoNT/HA (see the text).

The development of techniques to enable the sequencing of individual genes has substantially
increased our understanding of botulinum neurotoxin diversity. Within a three-year time span
(1990–1993), sequences representing one member from each of the seven neurotoxin serotypes became
available [50–57]. Five years after initial sequences for each serotype were made public, sequences
for eight alternative neurotoxin subtypes had been published [35,58–63]. Five of these subtypes were
known to differ in some way from the “reference” toxins for each serotype prior to sequencing.



Toxins 2017, 9, 38 5 of 21

This included a strain that produced a type A1 toxin and contained a nonfunctional BoNT/B gene
(an A1(B) strain) [64].

The first C. botulinum whole genome sequence was published in 2007 [47], and many full genomes
in addition to individual neurotoxin-encoding genes have now been sequenced. Sequencing has
confirmed the distinctiveness of the seven botulinum neurotoxin serotypes (types A–G), with amino
acid differences between the seven neurotoxin serotypes ranging from 37.2%–69.6% [65] (Table 4).
Furthermore, studies of the functionality of the botulinum neurotoxins also support the classification
of seven serotypes. Botulinum neurotoxin light chains possess endopeptidase activity and selectively
cleave proteins of the neurotransmitter vesicle docking/fusion complex, preventing the formation of a
stable complex [8,9]. BoNT/A, C and E cleave SNAP-25 at distinct sites; BoNT/B, D, F and G cleave
VAMP-1/2/3 at distinct sites; BoNT/C can also cleave syntaxin 1A/C (Table 2). Each neurotoxin
subtype within a serotype cleaves its target substrate at the same single conserved peptide bond,
except for BoNT/F5 [23] (Table 2).

Table 4. Amino acid differences among BoNT serotypes *.

Serotype A B C D E F G

A —– 62.5% 69.6% 68.8% 62.3% 61.3% 62.0%
B —– 69.2% 67.4% 64.1% 62.6% 42.9%
C —– 48.6% 69.1% 69.1% 67.5%
D —– 68.4% 67.3% 66.0%
E —– 37.2% 63.6%
F —– 63.2%
G —–

* Data for subtypes A1, B1, C1, D, E3, F1 and G; differences of <50% are in bold font.

The technology resulting in the production of monoclonal antibodies provided a new way
of evaluating these toxins serologically. Monoclonal antibodies developed against BoNT/A [66],
BoNT/B [67], BoNT/C1 [68] and BoNT/E [69] were used to develop new toxin detection assays and
also to discover new aspects of toxin structure and activity. However, these antibodies have been
of limited use as predictors of subtype-level differences, since monoclonal antibody epitopes are, at
most, limited to 5–7 continuous or discontinuous amino acids. Many toxin subtypes are very closely
related, so that most monoclonal antibodies will bind multiple toxin subtypes, severely limiting their
discriminating power and making them unsuitable for toxin subtype determinations.

Initial studies using monoclonal antibodies, however, often reported that the antibodies would
neutralize some, but not all, subtypes of a specific serotype, suggesting variability within each
neurotoxin serotype [45,69,70]. The extent of this variability is now being revealed through sequencing
of whole genomes and individual neurotoxin-encoding genes. A landmark article on sequence variation
among botulinum neurotoxin serotypes published in 2005 described within-serotype variations among
neurotoxin sequences as being of two types: those that were virtually identical and those that were
more variable and differed by at least 2.6% in amino acid sequence. This observation was based on
a study of 49 neurotoxin sequences (each serotype, with the exception of type G, was represented
by 4–17 sequences) [45]. Subsequent studies sorted these and additional toxin gene sequences into
differing phylogenetic clades, which were then identified as new subtypes [71,72]. The identification
of novel subtypes has thereby been based primarily on the sequence of the botulinum neurotoxin
gene and/or derived amino acid sequence. There are more than forty neurotoxin subtypes presently
described in the literature (Table 3; Figure 1).
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Figure 1. Dendrogram showing the relationship of all published/publicly-posted BoNT subtypes.
The dendrograms were generated from protein sequence data using ClustalW with the representatives
listed in Table 3. BoNT/FA is also known as BoNT/H and BoNT/HA (see the text for further details).

It has been suggested that a C. botulinum neurotoxin could be defined as a distinct subtype if it
encoded a protein sequence that differed from the prototype neurotoxin by at least 2.6% [46,72–83].
A comparison of neurotoxin sequences from 127 BoNT/A-, 91 BoNT/B-, 23 BoNT/C- and BoNT/D-,
235 BoNT/E- and 50 BoNT/F-producing strains obtained from various sources has been conducted;
the results are reported in Tables 3–9. This includes published and unpublished neurotoxin sequences,
many of which were identical. While no particular efforts to publicly post the redundant sequences
were made, examples of each subtype, including strain name, source and GenBank accession number,
are listed in Table 3. Figures 1–6 illustrate the range of neurotoxin sequence diversity among these
strains. While most presently-described neurotoxin subtypes differ from each other by more than
2.6% at the amino acid level, some BoNT/B subtypes and BoNT/E subtypes do not meet this criterion
(Tables 6 and 8). Additionally, it is more common for strains of C. botulinum Group III to form a
chimeric or hybrid protein that combines domains of BoNT/C and BoNT/D neurotoxin, rather than a
distinct BoNT/C or BoNT/D neurotoxin (Table 7; Figure 4).
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Table 5. Amino acid differences among BoNT/A subtypes.

Subtype
Maximum Between-Subtype Differences (%) Maximum Within-Subtype

Difference (%)A1 A2 A3 A4 A5 A6 A7 A8

A1 n = 80 —– 10.1 15.4 10.6 2.9 4.3 6.2 6.7 0.5
A2 n = 34 —– 7.0 11.7 9.7 8.3 10.3 6.6 2.5 *
A3 n = 4 —– 15.6 15.0 13.8 15.2 12.3 0.2
A4 n = 1 —– 12.6 12.2 13.3 10.9 —–
A5 n = 3 —– 4.2 5.6 6.6 0.2
A6 n = 2 —– 7.0 7.0 0.1
A7 n = 1 —– 8.7 —–
A8 n = 2 —– 0.1

* Within-subtype differences decrease to 0.8% after removal of toxin formed by CDC 2171.

Table 6. Amino acid differences among BoNT/B subtypes.

Subtype
Maximum Between-Subtype Differences (%) Maximum Within-Subtype

Difference (%)B1 B2 B3 B4 B5 B6 B7 B8

B1 n = 18 —– 4.4 4.0 6.8 3.9 3.9 5.3 4.6 1.1
B2 n = 38 —– 1.6 6.1 4.7 1.6 4.2 4.2 2.9 *
B3 n = 1 —– 6.3 4.3 1.9 4.3 2.5 —–
B4 n = 16 —– 7.1 6.9 6.4 7.1 1.9
B5 n = 9 —– 4.6 5.7 5.4 0.8
B6 n = 6 —– 4.9 4.4 0.2
B7 n = 2 —– 5.6 0.1
B8 n = 1 —– —–

* When 5 outliers are removed, the within-subtype difference decreases to 0.9%. Where differences are <2.6%,
the percentage difference is shown in bold.

Table 7. Amino acid differences among BoNT/C and BoNT/D subtypes.

Subtype
Maximum Between-Subtype Differences (%) Maximum Within-Subtype

Difference (%)C1 CD D DC

C1 n = 11 —– 24.2 48.8 35.3 0.1
CD n = 8 —– 30.7 48.2 2.0 *
D n = 2 —– 23.5 1.8

DC n = 2 —– 0.1

* When 2 outliers are removed, the within-subtype difference decreases to 0.3%.

Table 8. Amino acid differences among BoNT/E subtypes.

Subtype Maximum Between-Subtype Differences (%) Maximum
Within-Subtype
Difference (%)E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

E1 n = 23 —- 0.9 1.8 2.7 3.1 3.0 2.1 3.8 10.9 4.6 6.6 7.1 0.2
E2 n = 2 —- 2.6 3.0 3.7 3.6 2.9 3.0 10.7 4.2 6.2 6.9 0.0
E3 n = 143 —- 4.4 4.9 4.1 2.6 4.3 11.3 5.3 7.4 7.5 0.6
E4 n = 3 —- 5.1 3.1 3.8 3.9 10.1 5.2 7.3 7.5 0.0
E5 n = 11 —- 5.2 5.2 5.9 10.6 6.6 8.1 6.5 0.0
E6 n = 3 —- 3.6 3.2 11.8 4.4 6.9 9.0 0.1
E7 n = 2 —- 1.7 10.9 3.2 6.5 7.6 0.0
E8 n = 1 —- 10.6 2.1 5.6 8.1 —-
E9 n = 1 —- 10.6 11.0 8.6 —-

E10 n = 36 —- 4.3 8.1 0.8
E11 n = 9 —- 9.0 0.0
E12 n = 1 —- —-

Where differences are <2.6%, the percentage difference is shown in bold.
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Table 9. Amino acid differences among BoNT/F subtypes.

Subtype Maximum Between-Subtype Differences (%) Maximum
Within-Subtype
Difference (%)F1 F2 F3 F4 F5 F6 F7 F8

F1 n = 10 —- 16.6 16.1 7.8 30.2 12.6 26.3 3.7 0.1
F2 n = 4 —- 3.0 16.5 26.0 10.2 31.4 16.9 0.3
F3 n = 2 —- 16.2 26.0 10.2 31.1 16.5 0.1
F4 n = 11 —- 30.6 13.1 28.1 7.4 0.6
F5 n = 7 —- 26.4 36.2 30.9 0.1
F6 n = 7 —- 30.2 13.1 0.2
F7 n = 9 —- 28.0 1.7*
F8 n = 1 —- —-

* Within-subtype differences decrease to 0.8% after removal of BoNT/F7 formed by ATCC43756.
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in amino acid sequence (23.5%–48.8%).
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Figure 6. Dendrogram showing the relationships of BoNT/F subtypes. A total of 52 amino acid
sequences were analyzed. The scale for this dendrogram is significantly smaller than with the others
due to the wider range of identity differences (7.8%–36.2%) within this serotype.

Discussions as to the relationship between sequence differences and potential immunological or
functional differences have led to studies comparing toxin characteristics versus sequence. The majority
of these studies involved differential binding to antibodies. As expected, binding differences were
more noticeable when monoclonal antibodies were used, but quantitative differences were also noted
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with assays involving polyclonal antibodies [38,45]. However, as noted above, these immunological
differences cannot reliably identify distinctive toxin subtypes.

Biological and functional activities are presumed to be largely conserved within individual
neurotoxin serotypes. Currently, the only naturally-occurring amino acid sequence changes that have
led to functional differences were reported with subtype BoNT/F5, whose enzymatic domain differs
from all other BoNT/F enzymatic domains by greater than 50% in amino acid sequence (Table 2),
leading to differences in the enzymatic target site [23]. All other subtypes within a serotype utilize the
same enzymatic cleavage target substrates and sites.

Even though studies of toxin:receptor interactions of subtypes are limited, current information
indicates that all toxin subtypes within a serotype also interact with the same receptor targets (Table 1),
with one exception. BoNT/DC interacts with synaptotagmin 1 and 2; the putative receptor for BoNT/D
is N-glycosylated SV2A and B; and BoNT/C appears to interact solely with gangliosides [15–17].
This difference may not be too surprising, as BoNT/DC is a hybrid toxin with a BoNT/C-like
receptor-binding domain that differs in amino acid sequence from BoNT/D by 60.2% and from
BoNT/C by 22.2%. These differences have directed different receptor interactions for each of the toxins.
It should also be noted that subtype quantitative binding differences to receptors were seen with two
BoNT/B subtypes. BoNT/B1 and BoNT/B2 both interact with synaptotagmin, but BoNT/B1 binds
both synaptotagmin 1 and 2, with binding affinities of 3.4 and 0.52 nM, respectively, while BoNT/B2
binds only synaptotagmin 2, with an intermediate binding affinity of 2.4 nM [44]. There is a significant
amino acid sequence difference (8.1%) in the receptor binding domains of BoNT/B1 and BoNT/B2.
BoNT/A8 has also been reported to have a reduced affinity to ganglioside receptors compared to
BoNT/A1 [81]. Additional differences in catalytic activity have also been described among BoNT/A
subtypes [84–88].

It is presently not feasible to use biological, structural, immunological or functional characteristics
to subtype botulinum neurotoxins, as knowledge is limited. However, a sequencing-based approach
can be used to rapidly categorize botulinum neurotoxin subtypes, to avoid confusion in the literature
and to facilitate future research endeavors. One important benefit of this approach is that it allows for
comparison of neurotoxins formed by strains located in different laboratories.

When analyzing presently-published toxin subtypes, in which subtype categorization has been
based on amino acid sequence differences, it is important to recognize that each serotype shows a
unique pattern of between-subtype and within-subtype differences (Tables 5–9). In the case of BoNT/A,
inter-subtype differences range from 2.9%–15.6% (Table 5; Figure 2). Intra-subtype differences are
much smaller (≤0.8%, with one exception), thereby providing a sufficient margin of discrimination
in sequences that are within subtypes versus those between subtypes. The exception is strain CDC
2171, which differs from other BoNT/A2 by ~2.5%. Due to an apparent recombination event, this
toxin shares 100% identity with BoNT/A2 Kyoto-F for approximately 2/3 of the sequence, but differs
by 5.6% in the terminal HC region of the molecule. The margin of discrimination among BoNT/A
subtypes is similar to the scenario with most BoNT/F subtypes, where inter-subtype differences range
from 3.0%–36.2%. Intra-subtype differences are ≤0.6% with the exception of BoNT/F7, which shows
an intra-subtype difference of 1.7% among the eight sequences that were analyzed (Table 9). Removal
of a single BoNT/F7 sequence, from strain ATCC 43756, results in a reduction in variability within this
subtype from 1.7% to 0.8%.

BoNT/E subtype sequences, with the exception of BoNT/E9 and BoNT/E12, are closely related
(Figure 5). Amino acid differences among BoNT/E1-BoNT/E8 range from 0.9%–5.9%, but intra-subtype
differences of 0.1%–0.2% are seen within BoNT/E1, BoNT/E2, BoNT/E4-6 and BoNT/E11 subtypes
(Table 8). The lone BoNT/E9 strain sequence differs from BoNT/E1-8, BoNT/E10 and BoNT/E11 by
10.1%–11.8% in amino acid residues, making it distinctive among the BoNT/E subtypes [78]. One issue
that has arisen when distinguishing different subtypes having limited differences has been the use of
phylogenetic clade analysis of neurotoxin nucleotide sequences, instead of comparisons of their amino
acid differences, as the basis for discrimination [72,89]. While BoNT/E1, BoNT/E2 and BoNT/E3
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clearly sort into distinct, but closely-related, phylogenetic clades [89,90], amino acid analysis of their
sequences shows their differences range from 0.9%–1.8% when BoNT/E2 and BoNT/E3 are compared
to BoNT/E1 (Table 8). If the 2.6% amino acid difference guideline had been applied, this would be
considered a single larger subtype. While it has been decided that historical subtype designations will
continue to be used (see below), it is useful to understand that BoNT/E1, BoNT/E2 and BoNT/E3
could be considered as a single subtype entity. The effect of analyzing large numbers of sequences
is seen with BoNT/E3 (toxin sequences from 143 strains) and BoNT/E10 (toxins sequences from 36
strains), where intra-subtype sequence differences were 0.6% and 0.8%, respectively. It is possible that
as additional toxin sequences become available, intra-subtype differences may increase.

BoNT/B shows the greatest degree of intra-subtype variability of any serotype (Figure 3).
Inter-subtype differences range from 1.6%–7.1%, and intra-subtype differences range from 0.8%–2.1%.
A clear relationship can be seen among BoNT/B2, BoNT/B3 and BoNT/B6 (within-subtype amino acid
differences of 1.6%–1.9%), which is similar to the situation with BoNT/E1, BoNT/E2 and BoNT/E3.
BoNT/B2, BoNT/B3 and BoNT/B6 were also initially differentiated using phylogenetic clade analysis,
not amino acid differences [72,73], with the result that BoNT/B2, BoNT/B3 and BoNT/B6, like the
BoNT/E1/E2/E3 grouping, could be considered a single subtype. In addition, with BoNT/B, the
within-subtype variability is higher overall than with other toxin types, ranging from 0.8%–1.9%.
The BoNT/B2 and BoNT/B4 subtypes are particularly variable (Table 6). This unique ranging of
BoNT/B2 and related subtypes may indicate that horizontal genetic interactions between certain
BoNT/B-producing strains show a higher level of activity than that seen among other serotypes.

These recombination events may be the major factor responsible for the proliferation of subtypes
seen within this toxin. It is important to note these events as part of toxin characterizations; however,
attempts to define the toxin subtypes on the basis of these events could become challenging. A prime
example is the current dispute over the nomenclature for the newly-described novel toxin known as
BoNT/H, BoNT/HA or BoNT/FA, depending on how it is characterized [10,28–33].

An interesting finding is the identification of a novel homolog of BoNT in the genome of a
non-Clostridium species [91]. The homolog, named BoNT/Wo to correspond with its bacterial host
(Weissella oryzae), was verified by the Montecucco laboratory to have BoNT-like enzymatic activity [92].
However, at the classification level, more work is required to determine whether BoNT/Wo should be
considered a new family altogether or a highly divergent member of the BoNT family.

3. Historical Perspective of Botulinum Neurotoxin Forming Clostridia

Historically, the production of a botulinum neurotoxin was the only criterion for the species
nomenclature for these strains, so that all botulinum neurotoxin-producing clostridia were known as
Clostridium botulinum. Today, at least six physiologically- and genetically-distinct bacteria are known to
form botulinum neurotoxins [47,65,93–97]. Currently-recognized species include C. botulinum Groups
I–IV, some strains of C. baratii, C. butyricum [98] and possibly also neurotoxin-producing C. sporogenes.
C. botulinum comprises four discrete groups of bacteria. C. botulinum Group I (proteolytic C. botulinum)
strains are mesophilic and form spores of high heat resistance [94]. C. botulinum Group I strains
produce BoNT/A, BoNT/B, many of which were identical, and/or BoNT/F. The number of neurotoxin
genes located in the Group I genomes and the number of neurotoxins produced is variable, with strains
possessing up to three neurotoxin genes, and producing one or, more rarely, two or three distinct
neurotoxins [93]. Nontoxic representatives have also been isolated. C. botulinum Group I strains are
primarily responsible for human botulism. C. botulinum Group II (non-proteolytic C. botulinum) strains
are psychrotrophic and form spores of moderate heat resistance [94]. C. botulinum Group II strains
produce either BoNT/B4, BoNT/E or BoNT/F6. Group II strains are not known to produce multiple
toxins, however sequencing of the genomes of C. botulinum Group II BoNT/F6 strains revealed that
they also contain fragments of a type B and a type E neurotoxin gene [99]. Non-toxic strains have
been described [100]. C. botulinum Group II causes human botulism. Neurotoxin encoding genes of
C. botulinum Groups I and II are located on the chromosome or on a plasmid [3,42,49,65,75,94,95,101–104].
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C. botulinum Group III strains, also included in C. novyi sensu lato [96], are mesophiles and cause
botulism in various animal species. Strains form BoNT/C or BoNT/D, although more frequently a
hybrid BoNT/CD or BoNT/DC neurotoxin is produced [35,105]. C. botulinum Group IV (also known
as C. argentinense) strains form BoNT/G, which has not been definitively associated with human
or animal botulism [106]. Some strains of C. baratii form type F7 neurotoxin, and some strains of
C. butyricum form type E4 or E5 neurotoxin; both bacteria are associated with human botulism [98].
It has also recently been noted that some BoNT/B-producing strains formerly thought to be within
C. botulinum Group I may be neurotoxigenic strains of C. sporogenes [49,107,108].

The earliest botulinum neurotoxins described were a type B neurotoxin formed by a strain of
C. botulinum Group II and a type A neurotoxin formed by a C. botulinum Group I strain [109,110].
However, one important difference between these neurotoxins was not due to characteristics of the
neurotoxins, but rather to characteristics imparted by the bacteria themselves. The neurotoxin is
formed as a progenitor toxin, a single 150-kDa polypeptide. Strains of C. botulinum Group I produce
proteolytic enzymes that are responsible for post-expression processing of the neurotoxin, leading
to a more active di-chain structure with a 50-kDa light chain attached to a 100-kDa heavy chain by a
disulfide bond [111]. Strains of C. botulinum Group II lack these enzymes, and the neurotoxin remains
as a single polypeptide chain to be fully activated by host proteases [112].

4. Developing a Way Forward with Regard to a Nomenclature for Botulinum
Neurotoxin Subtypes

While the identification of neurotoxin serotypes and subtypes has aided in understanding the
epidemiology of neurotoxin-producing clostridia and in the development and screening of effective
diagnostics and treatments for botulism, the increasing numbers of toxin subtypes that are being
identified has posed a challenge for researchers. New toxin variants are constantly being discovered,
and there is confusion as to the range of variation within each subtype. It is not always apparent
whether a “new toxin” should be described as a new “subtype” or not and what is the correct
designation for this neurotoxin. For example, multiple laboratories may be publishing the same
neurotoxin subtypes as different designations without the knowledge that they are related, or identical
neurotoxin subtypes may be identified as a particular neurotoxin subtype in one publication and as
another neurotoxin subtype in a different publication. The nomenclature picture is confusing, and a
systematic approach to neurotoxin subtype nomenclature is urgently needed.

To address this issue, a committee was formed to consider the problem and propose solutions.
Initial efforts involved a survey of researchers working on various aspects of botulinum neurotoxin
research. Seventy-eight responses were received.

• The majority felt that nomenclature standardization was somewhat or very important
• The majority preferred the term “toxin subtype” to best describe within-serotype toxin differences
• The highest importance was given to nucleotide or amino acid differences; however, half of the

responders felt that the nomenclature should be also be based on functional differences.

A group of more than twenty researchers from North and South America and Europe then
volunteered to participate in the drafting of guidelines designed to aid researchers with neurotoxin
subtype nomenclature. In addition, the feasibility that a database could be set up to analyze submitted
toxin sequences and determine for the researcher if their neurotoxin is a new or existing subtype
was investigated. A second questionnaire was sent to each volunteer to further clarify the consensus
opinions for nomenclature guidelines. There was agreement on several issues:

(1) The best term to describe within-serotype differences was “subtype”.
(2) Subtype discrimination should be based on protein sequences derived from sequencing of

the encoding gene, which can be obtained quickly and shared among the botulinum research
community as a whole.
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(3) Previously-published subtypes should be maintained as identified, with adjustments being made
only to avoid confusion.

(4) There was a need for a specialized screening system to aid in organizing subtype nomenclature,
and new sequences should be submitted to public databases as soon as practically possible.

5. The Proposed Way Forward with Regard to a Nomenclature for Botulinum
Neurotoxin Subtypes

The unique characteristics of the different subtypes within each serotype and their relationships
with each other make the selection of a single standard problematic. However, the objective here is
to provide a level of organization in nomenclature, not to provide detailed, exacting categorization
of each new toxin that is discovered. The majority of the approximately forty botulinum neurotoxin
subtypes presently described in the literature was based on the amino acid sequence of the proteins,
derived from the encoding gene. A study of 49 neurotoxin sequences, published in 2005, reported that
subtypes differed by at least 2.6% in amino acid sequence [45]. Although this is a relatively arbitrary
cut-off, it has provided the basis for most genetic subtype designations for the past decade. More than
500 neurotoxin sequences were recently compared, and 41 distinct subtypes have been identified
(Tables 5–9). Although most of the described subtypes differed by more than 2.6% at the amino acid
level, some BoNT/B and BoNT/E subtypes did not [113].

This raises the question as to whether: (i) the present subtypes should be accepted; or (ii) a cut-off
of a 2.6% difference should be rigidly applied and some neurotoxin subtypes re-designated. There is
also the issue of how subtypes should be identified in the future. The committee proposes that:

(1) Subtypes should be determined from the amino acid sequence derived by gene sequencing.
(2) Current subtypes named in the literature will be retained (except where either two distinct

neurotoxins are given the same subtype or one neurotoxin is known as two subtypes) (Table 3).
This would include retention of subtypes BoNT/B2, BoNT/B3 and BoNT/B6, which differ by
1.6%–1.9%; BoNT/E1 with BoNT/E2 or BoNT/E3, which differ by 1.0%–1.8%; and BoNT/E1
with BoNT/E7 or BoNT/E8, which differ by 1.8%–2.2%.

(3) All future designated subtypes must differ from all known subtypes by more than 2.6% at the
amino acid level, and to avoid future confusion, a centralized procedure will be used to aid in
assigning appropriate subtype designations to these toxins.

(4) As this nomenclature is based on the protein sequence derived following sequencing of the
encoding gene, it is proposed that the term “subtype” or “genetic subtype” be used to distinguish
from nomenclature based on serotyping alone (as in “subserotype”).

(5) All publications on BoNTs should disclose not only the serotype and subtype designations of
the toxin, but also the strain it is derived from, and the source of the strain. The toxin sequences
should also be publically posted (e.g., GenBank) and the accession number given.

It is recognized that this scheme considers all amino acid changes as equivalent and that some
changes will be more significant than others. Furthermore this scheme should not be construed to
predict biological function, structure or reflect neurotoxin evolution, but is rather a way of broadly
categorizing related neurotoxin sequences and perhaps allowing investigators to target specific
sequences for further study.

Additionally, it is apparent that some of the present neurotoxin subtypes are a hybrid of other
subtypes. For example, BoNT/A2 is a hybrid of BoNT/A1 and BoNT/A3 [72], and BoNT/F6 is
a hybrid of BoNT/F1 and BoNT/F2 [95]. The designation of these hybrids as distinct subtypes is
supported, but it should be noted in manuscripts that these are hybrids. It is recognized that a majority
of BoNT/C and BoNT/D are hybrids, which are not given numeric appellations, but are reported as
BoNT/CD or BoNT/DC chimeric toxins [35]. Two exotoxins expressed simultaneously with BoNT/C
and/or BoNT/D, which are not neurotoxins, have been designated as type C2 and C3 toxins [113].
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In order to avoid confusion with the hybrid botulinum neurotoxins and the C2 and C3 toxins, the
terms BoNT/CD and BoNT/DC will continue to be used to designate hybrid BoNT/C and D subtypes.

6. Development of a Screening System for Preliminary Identification of Novel Botulinum
Neurotoxin Subtypes

The system for clarification of toxin subtype would function as follows:

(1) Prior to publication, a researcher would determine the neurotoxin amino acid sequence following
sequencing of the encoding gene and compare it to known subtype sequences.

(2) If the new sequence differs from all known subtypes by more than 2.6% at the amino acid level, a
new subtype designator would be needed.

(3) To request a subtype designator, the researcher would submit a table showing amino acid percent
differences of the new subtype with representative sequences of known subtypes to the Centers
for Disease Control and Prevention, Atlanta, Georgia, USA (CDC) (bontsubtype@cdc.gov). It is
not necessary to submit the actual nucleotide or amino acid sequence.

(4) A new subtype designator would be relayed to the researcher for publication and reserved for a
defined period of time.

(5) It is possible that two or more laboratories request new subtype designations for the same
neurotoxin serotype at around the same time, previous to publication. To avoid these laboratories
publishing the same neurotoxin subtype with different designations or different neurotoxin
subtypes with the same designator, the CDC would make both labs aware of the potential conflict.
The laboratories would be responsible for communicating to each other to compare sequences
and ensure that the subtyping nomenclature is correct.

The actual toxin sequence would remain with the researcher throughout the procedure until it is
published. This ensures control of the data while clarifying its classification. It is stressed, however,
that the toxin sequences should be publically posted (e.g., GenBank) and published as soon as possible
and that publications should clearly state the strain and its source, its subtype and the deposited
sequence accession number.

7. Summary

For several decades, the standard method for identifying and characterizing botulinum
neurotoxins has involved animal tests using serotype-specific antisera, with the range of variation in
response to these toxins occasionally providing challenges as to the assignment of specific serotypes.
In addition, the reagents necessary for these procedures are becoming scarce, and there is a strong
desire to minimize the use of experimental animals. The ability to sequence neurotoxin genes and
derive the associated neurotoxin protein sequence has become widespread over the past 25 years
and has revealed not only details concerning serotype and subtypes, but also underlying variation
that might not be noticed when using serotyping antisera. The proliferation of inexpensive, rapid
sequencing methods has enabled laboratories worldwide to characterize neurotoxins in this consistent
way. We note for future consideration that there is a developing interest in the potential of classifying
botulinum neurotoxins based on their enzymatic activity (including substrate cleavage patterns).

We propose to take advantage of sequencing methods to categorize botulinum neurotoxin
subtypes and to clarify subtype nomenclature through a screening system of new neurotoxin sequences
that will eliminate uncertainties as to the nomenclature of these toxins. A database will be used to
compare neurotoxin sequence differences with known toxin subtypes and provide guidelines as to
whether the newly-submitted sequences are related to known toxin subtypes or whether they represent
novel subtypes that can be published as such with confidence.
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