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ARTICLE

Gene flow contributes to diversification of the
major fungal pathogen Candida albicans
Jeanne Ropars 1,2, Corinne Maufrais 1,3, Dorothée Diogo1, Marina Marcet-Houben1,4,5, Aurélie Perin1,

Natacha Sertour1, Kevin Mosca1, Emmanuelle Permal1, Guillaume Laval3,6, Christiane Bouchier7, Laurence Ma7,

Katja Schwartz8, Kerstin Voelz 9, Robin C. May 9, Julie Poulain10,11,12, Christophe Battail10,

Patrick Wincker10,11,12, Andrew M. Borman 13, Anuradha Chowdhary14, Shangrong Fan15, Soo Hyun Kim 16,

Patrice Le Pape17, Orazio Romeo 18,19, Jong Hee Shin 16, Toni Gabaldon4,5,20, Gavin Sherlock 8,

Marie-Elisabeth Bougnoux1,21,22 & Christophe d’Enfert 1

Elucidating population structure and levels of genetic diversity and recombination is neces-

sary to understand the evolution and adaptation of species. Candida albicans is the second

most frequent agent of human fungal infections worldwide, causing high-mortality rates. Here

we present the genomic sequences of 182 C. albicans isolates collected worldwide, including

commensal isolates, as well as ones responsible for superficial and invasive infections,

constituting the largest dataset to date for this major fungal pathogen. Although, C. albicans

shows a predominantly clonal population structure, we find evidence of gene flow between

previously known and newly identified genetic clusters, supporting the occurrence of (para)

sexuality in nature. A highly clonal lineage, which experimentally shows reduced fitness, has

undergone pseudogenization in genes required for virulence and morphogenesis, which may

explain its niche restriction. Candida albicans thus takes advantage of both clonality and gene

flow to diversify.
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E lucidating population subdivision and levels of genetic
diversity and recombination are necessary steps for under-
standing the evolution and adaptation of species. It can

reveal allopatric differentiation, host adaptation or other types of
local adaptation as consequences of reduction of gene flow pro-
moting genetic drift and natural selection1. For example, the
causal agent of the white-nose syndrome in bats, the killer of
millions of bats in North America since its discovery in 2006, was
shown to be a single clone of the fungus Pseudogymnoascus
destructans2. Indeed, population genetics has revealed the
occurrence of only spontaneous mutations in this pathogen with
no indication of recombination. Thus, studying population
genetics of pathogens has a clear applied importance toward the
understanding of disease emergence through adaptation or drug
resistance.

It is estimated that 5 million fungal species exist, yet only a few
hundred are known to cause disease in humans3. Among the
latter, Candida albicans belongs to one of the four genera causing
high-mortality rates in humans and is the second most frequent
agent of fungal infection worldwide4. While C. albicans is part of
the normal human intestinal microbiota, it also causes mucosal
diseases in healthy individuals, as well as deep-seated opportu-
nistic infections in hosts with decreased defenses (e.g., immu-
nocompromised individuals, patients who have endured invasive
clinical procedures or have experienced major trauma).

Candida albicans is a predominantly diploid species, possessing
a parasexual cycle5,6 which differs from a conventional sexual
cycle by the lack of meiosis. In brief, the parasexual cycle of C.
albicans involves (i) the fusion of two diploid cells carrying
opposite mating types (syngamy), followed by (ii) nuclear fusion
(karyogamy) and (iii) concerted chromosome loss to return to the
diploid state, replacing conventional meiosis. Despite the absence
of meiosis, the parasexual cycle of C. albicans allows chromosome
shuffling and recombination events by means of gene conversion
and mitotic recombination, likely contributing to the genetic and
phenotypic diversity in this species5,6. However, the evidence of
the importance of parasexuality in nature is lacking, as genetic
analyses have identified predominantly clonal populations (or
genetic clusters, also known as clades) in C. albicans7–13.

Previous studies have reported significant genetic diversity
across C. albicans clinical isolates using either a mildy-repetitive
DNA fingerprinting probe8–10,14, several genes as probes11 or
multilocus sequence typing (MLST), the latter having been widely
used to type C. albicans isolates in the past 15 years12,13,15,16. To
date, 18 genetic clusters have been identified using MLST
(numbered 1–18). These clusters may have geographic origins
and they display some phenotypic specificities (reviewed in
ref.16). In 2015, the comparative genomic analysis of 21 clinical
isolates, which had been previously assigned to existing MLST
clades, recapitulated relationships between isolates, and the
authors reported the discovery of extensive variation between
these 21 isolates, including single nucleotide polymorphisms
(SNPs) and frequent whole or partial chromosomal aneu-
ploidies17. Strikingly, these isolates showed a high frequency of
homozygosity at the genomic region controlling fungal compat-
ibility (also called the mating-type locus in fungi, 12/21 isolates,
57%), which is in contrast with what was previously reported
(110/1294 strains, 8.5%12). This may reflect antifungal exposure
of these clinical isolates, which also likely explains their high
frequency of aneuploidies18.

In this work, we sequenced the genomes of 182 C. albicans
isolates collected worldwide, an order of magnitude more isolates
than has been considered previously in population genomic
studies of C. albicans. Our dataset contains commensal isolates, as
well as ones responsible for superficial and invasive infections,
and also includes the previously sequenced laboratory strain

SC531419 and representatives from all major clusters previously
defined by MLST12,13,15. While C. albicans shows a pre-
dominantly clonal population structure, our analyses show evi-
dence of introgressions (or admixture) in two newly identified
genetic clusters, supporting the occurrence of (para)sexuality in
nature. Importantly, a highly clonal lineage, which experimentally
showed reduced fitness, has undergone pseudogenization in genes
required for virulence and morphogenesis, which may explain its
niche restriction.

Results and Discussion
Aneuploidies are rare and loss of heterozygosity (LOH) fre-
quent. The Illumina® technology was used to deep sequence 182
C. albicans isolates, including the previously sequenced laboratory
strain SC531419 and representatives from all major clusters pre-
viously defined by MLST12,13,15 (Supplementary Data 1). Across
all strains, we identified a total of 589,255 SNPs (Supplementary
Data 2; see Methods section for details). On a broad scale, we
observed segmental aneuploidies in eight strains (Supplementary
Data 1) and whole-chromosome aneuploidies in ten (Supple-
mentary Data 1, Supplementary Fig. 1), suggesting that the high
rate of aneuploidies previously described17 is an exception rather
than the rule, likely due to antifungal treatments20. Consistent
with previous surveys12,21, only four sequenced strains (2.2%)
showed a homozygous mating-type locus.

Phenotypic diversity in C. albicans can arise rapidly through
LOH, spanning whole chromosomes or shorter contiguous
chromosome segments18,22. We detected numerous LOH events
across our 182 isolates. Some were ancient events that had arisen
before cluster expansion (Fig. 1, examples highlighted by black
dotted boxes) and others were more recent and strain specific
(Fig. 1, horizontal white stripes specific to a single strain). Long
range LOH events were predominantly the consequence of
mitotic crossovers or break-induced replication events while
events of whole chromosome loss were rare (Fig. 1). Strains
belonging to clade 13 showed a unique pattern with lower
heterozygosity (Fig. 1 and see below). Analysis of genome-wide
variation revealed that each of the 182 isolates on average contain
65,629 heterozygous SNPs (1 heterozygous SNP every 204 bp,
Supplementary Data 1) and 14,189 heterozygous insertion-
deletion events (indels), which is in agreement with previous
genomic analysis17.

A predominantly clonal population structure of C. albicans.
Maximum-likelihood phylogenetic analysis based on 264,999
highly confident SNPs (SNPs across the 182 isolates with no
missing data for all strains, Supplementary Data 3) yielded a tree
showing 17 distinct genetic clusters, including 12 previously
found using multilocus sequencing typing (MLST)12,13,15 and five
new ones (Fig. 2a). A majority of the isolates belonged to clusters
1 (n= 40), 2 (n= 15), 3 (n= 11), 4 (n= 27), 11 (n= 10), and 13
(n= 35) (Fig. 2a). Fixation indices (FST) further confirmed a
high-genetic differentiation between clusters (mean FST= 0.83;
Supplementary Table 1). Ten isolates could not be assigned to any
cluster, likely because they belong to undersampled or rarer
clusters. Comparing this tree with those obtained using indels and
transposable elements showed the same delimitations of clusters,
consistent with a predominantly clonal population structure of
C. albicans7,12 (Fig. 2a and Supplementary Figs. 2, 3). In addition,
we found an excess of heterozygous SNPs within clusters when
analyzing SNPs specific to this cluster (Meselson effect23,
Supplementary Fig. 4), further confirming the clonal expansion of
this human fungal pathogen.

We performed a neighbor-net analysis using the network
approach to visualize possible recombination events within and
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Fig. 1 Density of heterozygous SNPs in 182 C. albicans isolates, in 10 kb windows. Each row represents a strain. Strains are ordered according to their cluster
assignation. Thick vertical black lines delimit chromosomes (from 1 to 7 and R). Dotted black boxes highlight examples of ancestral LOH shared by all
isolates of a cluster. Horizontal white stripes are indicative of recent LOH events. The scale bar represents density of heterozygous SNPs per 10 kb window,
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between lineages. Although this analysis further confirmed the
predominant clonality of C. albicans (Fig. 3), it also revealed some
footprints of recombination indicated by reticulated patterns.
This was also confirmed by Pairwise Homoplasy Tests (phi tests)
conducted on ORFs using 1000 random permutations of the SNP
positions, based on the expectation that sites are exchangeable
without recombination24 (p-value= 0.00; 877/6590 features,
Supplementary Data 4).

Footprints of admixture in two C. albicans genetic clusters.
Detection of recombination (Fig. 3) led us to further investigate
possible footprints of admixture in our dataset. We inferred
individual ancestry based on genotype likelihoods from realigned
reads by assuming a known number of admixing populations
ranging from 2 to 16, using the software NgsAdmix25. At K= 2,
two well-delimitated populations were found, separating strains
from cluster 13 (in black, Fig. 2b) from all other strains. Because
cluster 13 isolates showed different SNP patterns compared to
other strains (Fig. 1 and see below), we reanalyzed the data after
removing this cluster. At several K (from 8 to 16), two genetic
clusters always appeared admixed, namely clusters A and B
(Fig. 2c). Genomic scans of statistics designed for measuring
population differentiation, i.e., FST and df (number of fixed dif-
ferences between each pair of clusters), were performed to localize
regions of introgression and to assess their origin (Fig. 4). Cluster
A showed footprints of introgression from three different clusters
(clusters 3, D and 18, Fig. 4a and Supplementary Fig. 5) while
cluster B only showed footprints of introgression from cluster 2
(Fig. 4b and Supplementary Fig. 6). Neighbor-net analyses only
including newly identified admixed genetic clusters and their
supposed ancestors (clusters A, 3, D and 18, Fig. 4c; clusters B
and 2, Fig. 4d) using isolates of clusters 1 or 4 as outgroups,
confirmed the presence of recombination as shown by reticula-
tion between these populations.

In C. albicans, a parasexual cycle has been described, differing
from the conventional sexual cycle by the absence of meiosis,
which is replaced by concerted chromosome loss after nuclear
fusion to return to the diploid state5,6,26. However, no evidence of
introgression has been described in nature. Here we report clear
evidence that new clusters can arise from introgression events in
this widespread human pathogen. This parallels recent findings in
another putatively asexual opportunistic human pathogen
Candida glabrata27, and suggests that gene flow in Candida
pathogens may be more common than previously thought.

Genetic differentiation occurs when gene flow is prevented, due
to reproductive barriers or asexuality. Genes involved in mating
were shown to be under purifying selection in C. albicans28,
suggesting that they are still functional. Accordingly, mating has
been induced between various C. albicans isolates of opposite
mating-types as well as between C. albicans and its close relative
C. dubliniensis, in the laboratory in vitro and in vivo, leading to
the formation of tetraploids29–32. Return to the diploid state has
also been observed, and involved random chromosome loss
rather than meiosis5. While these data suggest that genetic
differentiation in the C. albicans species does not impose
prezygotic barriers, these experiments did not systematically
address possible genetic incompatibilities between genetic
clusters. In particular, they did not assess the existence of
postzygotic reproductive isolation, i.e., non-viability or sterility of
hybrids. Thus, a thorough investigation of reproductive isolation
between different genetic clusters in C. albicans is still lacking.
Importantly, the two newly identified genetic clusters showing
footprints of admixture were previously unknown. We believe
that our resource of 182 genome-sequenced isolates will be
invaluable to address this key question.

A highly clonal lineage with reduced fitness and pseudogenes.
Cluster 13 showed very short branches in the phylogenetic tree
(Fig. 2) and no reticulation in the neighbor-net analysis (Fig. 3).
Furthermore, cluster 13 isolates showed different SNP patterns
compared to strains from other clusters (Fig. 1). Indeed, their
index of nucleotide diversity π was much lower than that for
other clusters (πcluster13= 0.14 versus mean πclusters1,2,3,4,11= 0.36
in the five most represented clusters, Supplementary Table 2).
Cluster 13 also showed lower polymorphism than other clusters
(12,310 polymorphic sites in cluster 13 in contrast to 30,334 on
average in the five other most represented clusters, Supplemen-
tary Table 3). Strikingly, the number of heterozygous SNPs was
much lower in this cluster (average: 39,616), as compared to
others (average: 69,740; Fig. 1, Supplementary Fig. 7). Cluster 13
has been proposed to be ranked as a new species, named C.
africana33, because the first isolated strains were from Africa, and
were morphologically and physiologically different from other
strains of C. albicans33–38 (e.g., slower growth, inability to pro-
duce chlamydospores and to assimilate trehalose or amino
sugars). All isolates of cluster 13 were collected from the genital
tract and showed lower virulence in animal models of Candida
infections35. Indeed, strains from cluster 13 studied here showed
reduced fitness, i.e., slower growth rates on different media at
different temperatures than strains from other clusters (Supple-
mentary Data 5). We measured fitness in vaginal simulative
medium (VSM), saliva simulative medium (SSM), and rich
medium (YPD), and confirmed that strains from cluster 13 are
not more fit in the genital niche than other strains of C. albicans
(Supplementary Data 5, Fig. 5), instead suggesting a niche
restriction due to a defect in fitness in other parts of the human
body rather than specific adaptation to the genital niche.

Because cluster 13 isolates showed reduced fitness and a
decrease in virulence compared to other clusters of C. albicans35,
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we hypothesized that some genes important for virulence and
growth may be missing and/or disrupted in this cluster. To test
our hypothesis, we investigated the presence of homozygous
premature stop codons due to nonsense mutations in the 6179
predicted ORFs of C. albicans. While no premature stop codons
were fixed in and specific to clusters 1, 2, and 4, two such stop
codons were detected in cluster 3 and one in cluster 11; however,
mutations in these genes have not been reported as impacting
survival or virulence in C. albicans. By contrast, 39 ORFs showed
premature stop codons that were fixed in, and specific to cluster
13 (Supplementary Data 6, five were confirmed by Sanger
sequencing). These ORFs included genes encoding transcription
factors required for fitness in systemic infection and proper
regulation of morphogenesis, such as SFL139 and ZCF2940.

High rates of clonal reproduction have been both theoretically
and empirically reported to increase the effective number of
alleles and heterozygosity in a population41–43. In C. albicans,
strain-specific recessive deleterious/lethal alleles have been

identified and shown to limit LOH44. Cluster 13 isolates however
have much lower heterozygosity compared to other strains of C.
albicans (Fig. 1). This may reflect a combination of massive
ancestral LOH events and clonal reproduction in this cluster, with
fixation of several deleterious alleles, affecting the overall fitness
of these strains and leading to its niche restriction. Notably, the
closest relative of C. albicans, namely Candida dubliniensis, also
shows lower heterozygosity45. It has been reported that C.
dubliniensis is less virulent and has lower fitness compared to C.
albicans46–49, and that its genome harbors numerous pseudo-
genes and a lower level of genetic diversity. In the CTG clade of
Saccharomycotina to which C. albicans and C. dubliniensis
belong, more distantly related diploid species show high levels
of heterozygosity similar to (or even higher than) those observed
for non-cluster 13 isolates of C. albicans. These species have been
shown to result from hybridization events50–52. Cluster 13 isolates
of C. albicans showed ancient LOH in telomere-proximal regions,
suggesting these events have occurred by break-induced
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replication (BIR) and/or mitotic recombination, as regions
around centromeres showed higher heterozygosity (Fig. 1 and
Supplementary Fig. 7). This pattern of heterozygosity is different
from what we observed in other C. albicans isolates, in which
heterozygosity was steady along chromosomes, except when
recent LOH events were observed (Fig. 1 and Supplementary
Fig. 7). The most parsimonious ancestral state is thus a high level
of heterozygosity, followed by two independent events (homo-
plasy) of massive losses of heterozygosity and accumulations of
deleterious alleles in C. dubliniensis and isolates of cluster 13 of C.
albicans.

In conclusion, our population genomic analyses shed light on
the processes of divergence—namely (para)sexuality (as evi-
denced by gene flow) and clonality—in the most widespread
opportunistic human fungal pathogen, C. albicans. We believe
that the availability of 182 genome sequences of C.albicans
isolates constitutes an invaluable genetic resource for the scientific
community, not only for specialists of this species to better
understand the biology of C. albicans, but also for evolutionary
biologists to comprehend disease emergence.

Methods
Sampling. A total of 182 isolates of Candida albicans were collected previously
from different continents and origins (Supplementary Data 1).

Production of whole-genome sequencing data. Genomic DNA was extracted
from the colonies using the phenol chloroform protocol previously described in ref.
15 or the QiaAmp DNA Mini Kit (Qiagen). The genomes were sequenced either at
the Biomics Pole—Genomic Platform of Institut Pasteur, the Department of
Genetics at Stanford University or the Sequencing facility of the University of
Exeter (see Supplementary Data 1 for details) using the Illumina sequencing
technology. Paired-end reads of 100–125 bp were obtained. Reads have been
deposited at the NCBI Sequence Read Archive under BioProject ID PRJNA432884.

Each set of paired-end reads was mapped against the C. albicans reference
genome SC5314 haplotype A or haplotype B53 downloaded from the Candida
Genome Database54 (version A22 06-m01) using the Burrows–Wheeler Alignment
tool, BWA version 0.7.755, with the BWA-MEM algorithm, specifically designed
for sequences ranging from 70 bp to 1Mb and recommended for high-quality
queries. SAMtools version 1.256 and Picard tools version 1.94 (http://
broadinstitute.github.io/picard) were then used to filter, sort and convert SAM files.

SNPs were called using Genome Analysis Toolkit version 3.1–157–59, according
to the GATK Best Practices. SNPs and indels were filtered using these following
parameters: VariantFiltration, QD < 2.0, LowQD, ReadPosRankSum <−8.0,
LowRankSum, FS > 60.0, HightFS, MQRankSum <−12.5, MQRankSum, MQ <
40.0, LowMQ, HaplotypeScore > 13.0, HaploScore. Coverages were also calculated
using the Genome Analysis Toolkit.

We created two tables encompassing all 182 isolates from VCF files using
custom scripts. One encompassed 264,999 confident SNPs across the 182 isolates
containing no missing data. Besides passing GATK’s filters, we also checked for
read depth (it had to be between 0.5 and 1.5 of the mean genome coverage),
heterozygous positions should have an allelic ratio of number of alternative allele
reads/total number of reads comprised between 15 and 85% and homozygous
positions should have an allelic ratio of number of alternative allele reads/total
number of reads >98% (Supplementary Data 2). The second table encompassed
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589,255 SNPs where some of the new filters described above could be not respected
and we created a code to have information of which filter did not pass:—for wrong
allelic ratio of reference/alternative allele for heterozygous positions,++ for wrong
allelic ratio of reference/alternative allele for homozygous positions, ## for a read
depth not between 0.5 and 1.5 of the mean genome coverage; some positions could
have several filters which did not pass: a combination of—and ## gave && and +
+and ## gave ** (Supplementary Data 3).

Phylogenetic analyses and distance trees. RAxML60 was used to infer phylo-
genetic relationships between the 182 isolates using the dataset of 264,999 con-
fident SNPs using 1000 bootstraps replicates. As our dataset does not include any
outgroup, we used the midpoint rooting method to root our tree, in which the root
is set at the midpoint between the two most divergent isolates. We also created
neighbor-joining trees using insertion/deletion events by coding no indel as 0,
heterozygous indel as 1 and homozygous indel as 2, using the R package61 ape62.
The distance matrix was calculated by counting the number of differences.

Genetic structure. We used the dataset of 264,999 confident SNPs to infer the
finer population structure within C. albicans. We performed NgsAdmix from the
ANGSD package63 to look for admixture in our dataset, from K= 2 to K= 16.
After K= 13, clusters with the highest number of isolates, i.e., clusters 1 (n= 40)
and 4 (n= 27), were split into sub-clusters, which likely reflect a problem of
number of isolates within clusters rather than a biological meaning.

Statistics of population genetics. Nucleotide diversity (π) using VCFtools64 with
the—site-pi option was computed within each cluster. We also used ANGSD63 to
measure differentiation between populations (weighted FST)65. Three measures of
divergence, FST (using ANGSD) and df, the number of fixed differences between
populations were computed using custom scripts. This was done along sliding
windows of 50 kb using steps of 5000 bp. Plots were done using the R package
ggplot266.

Linkage disequilibrium (LD) was computed as r2, the coefficient of correlation
between a pair of SNPs, with PLINK version 1.0767, excluding SNPs with minor
allele frequency lower than 0.05. LD (r2) was calculated for each cluster with >10
individuals (clusters 1, 2, 3, 4, 11, and 13) for each chromosome. Mean r2-values for
each cluster for each chromosome were plotted using the R package ggplot266.

Neighbor-net analyses. We used the R package phangorn68 for performing
neighbor-net analyses.

Hierarchical clustering based on the coverage of repeats. To confirm the
predominantly clonal propagation of C. albicans, we calculated the sequencing
depth of 121 features annotated as “long_terminal_repeat”, “retrotransposon” and
“repeat_regions”54. For each feature, we normalized by the sequencing depth of the
corresponding chromosome to remove the impact of potential aneuploidies. The
clustering was generated by Cluster 3.069 using hierarchical clustering (complete
linkage clustering) and the spearman rank correlation for measuring non-
parametric distance, and visualized with java treeview70 by converting values in
log2 scale.

Sequencing depth by bins of 1 kb. To identify aneuploid chromosomes in the
182 strains, we calculated average sequencing depth on the eight chromosomes for
each strain. Sequencing depth obtained for each bin of 1 kb on each chromosome
was multiplied by the ploidy of the strain as defined from FACS analysis, divided
by the genome sequencing depth and converted to log2 values. These values were
then corrected through division by the median of all values obtained for chro-
mosomes that had an average sequencing depth that did not deviate by >20% from
the average sequencing depth of the whole genome. This allows the median of
values obtained for a diploid chromosome to be ~1; whereas, the median of values
obtained for a triploid chromosome is ~1.58 and the median of values obtained for
a tetraploid chromosome is ~2. In the absence of this correction, values of diploid
chromosomes are underestimated if the strain harbors triploid or tetraploid
chromosomes. Averages of the normalized value obtained for each of the eight
chromosomes in each strain were calculated and used to generate a heatmap.

Flow cytometry analysis. For each of the 182 strains, cells from the frozen col-
lection (temperature: −80 °C) were grown in tubes for 36 h at 30 °C under agitation
in 3 mL of YPD medium (1% yeast extract, 2% peptone, 2% dextrose). We then
collected 1 mL of culture (about 1 × 107 cells/mL) in 2 mL Eppendorf tubes; cells
were collected by centrifuging (5 min at 3500 r.p.m.) and resuspended in 300 µL of
sterile water. We slowly added 700 µL of pure ethanol, repeatedly inverted tubes
and incubated overnight at 4 °C. After centrifuging 5 min at 3500 r.p.m., cells were
washed once with 1 mL of sterile water, resuspended in 0.5 mL of RNase solution
(40 µg/mL; Thermo Fisher) and incubated for 4 h at 37 °C. Then, cells were col-
lected by centrifuging (5 min at 3500 r.p.m.) and resuspended in 0.5 mL of 50 mM
Tris-HCl (pH 8.0). 50 µL of suspension were transferred in hemolysis tubes with
0.5 mL of SYTOX Green (Invitrogen) staining solution (1 µM SYTOX Green in 50
mM Tris-HCl buffer, pH 8.0). Finally, samples (60,000 cells) were analyzed using a

MACSQuant (Miltenyi) flow cytometer, with a 488 nm laser to excite SYTOX
Green and a bandpass filter 500–550 nm to detect fluorescence.

Growth phenotypes on solid media. The 182 isolates were split into three plates
of 96, with the reference SC5314 present on each plate. Pre-cultures in deep wells
from frozen cultures at −80 °C were realized at 30 °C for 36–48 h by taking 10 µL
in a final volume of 500 µL in YPD liquid medium. Optical density was set to 1 for
each isolate. We used the ROTOR from Singer Instruments to inoculate our 96
colonies at once, on solid media. All experiments were performed in duplicate. We
inoculated strains on YPD medium and let them grow for 3 days into chambers at
18, 30, 37 and 42 °C. Pictures of plates were taken using the PhenoBooth from
Singer Instruments at high quality (4128 × 3096). We also inoculated all strains
included in this study on vaginal simulative medium (VSM), saliva simulative
medium (SSM) and YPD media (YPD: (1% yeast extraxt, 2% peptone, 2% dextrose,
2% agar and see Supplementary Table 4 for composition of VSM and SSM) at 30 °C
for 3 days. Some strains showed very poor growth on VSM, preventing mea-
surement of colony size. These strains were not included in the figure. The tool
Iris71 was used for image analysis, resulting in tables of morphology scores and
colony sizes (Supplementary Data 7; some data are missing for strain CEC5019,
one of 35 cluster 13 strains) using an R script provided with Iris. For SSM results,
Iris was unable to detect limits of colonies and we thus used ImageJ72 to capture
two perpendicular measures of diameter per colony. Analyses of variance
(ANOVA) were performed using R, as well as post-ANOVA comparisons, Tukey’s
HSD (honest significant difference) tests73. Graphic representations (boxplots)
were also performed using R.

Check of premature stop codons by Sanger sequencing. To confirm the pre-
sence of premature stop codons detected in silico in some ORFs, we Sanger
sequenced ~400 bp regions within the AFG1, BMT6, SFL1, VTA1, and ZCF29
ORFs, using DNA from 14 strains (two strains from cluster 1: SC5314 and
CEC4496, two strains from cluster 2: CEC4493 and CEC4482, two strains from
cluster 3: CEC3597 and CEC3681, two strains from cluster 4: CEC3536 and
CEC3716, two strains from cluster 11: CEC3704 and CEC4525, four strains from
cluster 13: CEC4103, CEC4104, CEC4878, CEC5030). Primer pairs were designed
to amplify small regions of 400 bp using Primer3Plus74 online (Supplementary
Table 5). DNA was extracted using the extraction protocol in 96 deep-wells of the
MasterPureTM Yeast DNA purification kit of epicenter. PCRs were performed in
50 µl reactions, using 0.5 µL Taq polymerase 5U (Thermofisher), 5 µL 10× buffer
with KCl and without MgCl2, 5 µL of dNTP 2mM, 1 µl of each primer pair (10 µM)
and 2 µL template DNA (concentration around 150 ng µL−1 for all isolates).
Amplifications were performed in a Mastercycler pro S from Eppendorf with a first
denaturation step at 95 °C for 4 min, followed by 30 cycles of 40 s at 94 °C, 40 s at
55 °C and 40 s at 72 °C. The PCR program was followed by a final 10 min extension
step at 72 °C. PCR products were purified and sequenced by the Eurofins Cochin
Sequencing Platform in Paris, in one direction as sequences were short. Sanger
sequences were verified by visual inspection.

Code availability. All code is available upon request to the authors.

Data availability. Raw reads have been deposited at the NCBI Sequence Read
Archive under BioProject ID PRJNA432884 [https://www.ncbi.nlm.nih.gov/
bioproject/432884]. Supplementary Data 2 and 3 are SNP datasets (see Methods
section for filters). Supplementary Data 7 reports morphology sizes for colony
growth on vaginal-simulative medium (VSM), saliva-simulative medium (SSM),
and YPD at different temperatures (18 °C, 30 °C, 37 °C and 42 °C). All other
relevant data are available from the corresponding author upon request.
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