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ABSTRACT 

 Botulinum neurotoxins (BoNT) are divided into 7 toxinotypes based on their 

immunological properties and each toxinotype contains several subtypes according to their 

amino acid sequences. Here, we designed a spectrometry method able to identify BoNT/A 

subtypes in complex matrices including crude culture supernatants, food and environmental 

samples. Peptides from BoNT light chain (L) specific of the subtypes BoNT/A1 to A3 and 

BoNT/A5 to A8 were identified. The method consists of an immunocapture step with 

antibodies specific of BoNT/A L chains followed by liquid chromatography/triple quadrupole 

tandem mass spectrometry (LC-QqQ-MS). BoNT/A subtypes were correctly identified in 

culture supernatants and in tape water or orange juice samples with a limit of detection of 20 

to 150 mouse lethal doses (MLD) and to a lower extent in serum samples. 

 

INTRODUCTION 

 Botulinum neurotoxins (BoNTs) are the most potent toxins and are responsible for a 

severe paralytic disease, botulism, in man and animals. Most often, botulism occurs 

subsequently to the ingestion of food contaminated with Clostridium botulinum and 

containing preformed BoNT. The toxin is absorbed from the intestine, and reaches the 

neuromuscular junction via the blood or lymph circulation and the interstitial fluid. BoNTs act 

at the neuromuscular junction in inhibiting the evoked release of acetylcholine, thus leading to 

paralytic symptoms including blurred vision, ptosis, dry mouth, difficulty in swallowing, then 

descending flaccid paralysis of voluntary muscles and respiratory insufficiency [1-3].  

BoNTs are divided into 7 toxinotypes (A to G) based on their immunological 

properties using the mouse biological test and specific neutralizing antisera [4,5]. A new 

subtype, called H, has been reported and waits for further characterization [6]. BoNT genes 

have been sequenced from a large number of strains and sequence comparison has permitted 

to identify sequence variations in each toxinotype. Thereby, botulinum toxinotypes are 

divided into subtypes [7]. Five BoNT/A subtypes (A1 – A5) have been identified and recently 

three additional subtypes (A6 to A8) are under characterization [8,9] (GenBank ACW83608, 

JQ954969, KF667385, respectively). Signification of sequence diversity in each toxinotype is 

not yet well known, but could be important in diagnostic tests and development of therapeutic 

agents such as those based on immunotherapy. Indeed, BoNT/A1 and BoNT/A2, which 

differs by 10% at the amino acid sequence level, show large differences in monoclonal 

antibody-binding affinity. Among six monoclonal antibodies, which bind to BoNT/A1 with 

Page 2 of 24Analytical & Bioanalytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 3

high affinity, three show a marked decrease in binding affinity (500 to more than 1000 fold) 

to BoNT/A2. Only combinations of monoclonal antibodies, which tightly bind to toxin 

subtype, potently neutralize the corresponding toxin in vivo. Association of the three 

monoclonal antibodies with high affinity binding to subtypes A1 and A2, completely 

neutralizes A1 or A2 toxin, while replacement of two from three monoclonal antibodies by 

two having a low binding affinity to BoNT/A2 induces a decrease in BoNT/A2 neutralization 

(50 fold less) [10]. Sequence variation among subtypes might also impact the toxin activity 

and subsequently the course of the disease. The enzymatic site of BoNT/A3 and BoNT/A4 

light (L) chain is conserved, but non-conservative mutations are observed in domains 

involved in substrate (SNAP-25) recognition [11]. Therefore, L chains from subtypes A3 and 

A4 show different catalytic properties with the substrate SNAP25 compared to L chain from 

subtypes A1 and A2, which show the same catalytic activity, although all L chain isoforms 

bind SNAP25 with similar affinity. L chain from subtype A4 and to a lower extent from 

subtype A3, cleaves less efficiently SNAP25 than L chain subtype A1 (2 and 23 fold less, 

respectively) [12,13]. BoNT/A1 to A5 exhibit distinct in vitro catalytic activity as well as 

different biological activity in neuronal cell and mouse models [14]. BoNT/A2 enters 

neuronal cells faster than BoNT/A1 and it is more potent [15]. In addition, BoNT/A2 is a 

more potent inhibitor of neurotransmission at the neuromuscular junction [16]. However, both 

toxins have comparable duration of action [17]. 

Subtype identification is usually performed via PCR amplification of bont genes and 

subsequent DNA sequencing [7,18]. This method requires the presence of the toxigenic strain 

in the samples and optimally strain isolation and DNA extraction. However, certain samples 

might contain BoNT in the absence of the bacterium yielding impossible the use of traditional 

DNA-based methods. Mass spectrometry (MS) methods have been developed to detect active 

BoNTs through peptide identification from substrate cleavage (Endopep-MS) (review in 

[19]). Endopep-MS is a sensitive method to detect BoNT types, but it cannot identify the 

toxin subtypes, since all the subtypes of each type recognize the same cleavage site. Tryptic 

digestion of the toxin itself and analysis of tryptic peptides by MS might allow subtype 

determination. Thereby, BoNT/A1 and BoNT/A2 have been identified in spiked milk samples 

based on differential peptides between the two subtypes [20]. A similar approach has been 

described to differentiate the subtypes of BoNT/B [21]. A multiple enzyme and sequential in-

gel digestion approach (MESID) has been proposed for BoNT subtyping. The multiple 

proteolytic enzymes used in this method facilitate near-complete sequence coverage of all the 

seven BoNT toxinotypes [22]. 
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Here, we report a liquid chromatography/triple quadrupole tandem mass spectrometry 

with multiple reaction monitoring method (LC-QqQ-MS) for subtyping BoNT/A in culture 

supernatants or biological and food samples. 

 

EXPERIMENTAL 

Safety considerations 

BoNTs have been handled with strict respect to safety rules for the handling of toxic 

substances. 

 

Materials and chemicals 

C. botulinum strains used in this study are listed in Table 1. C. botulinum strains were 

grown in trypticase-glucose-yeast extract medium in anaerobic conditions for 4 days. Culture 

supernatants were stored at -80°C until use. The presence of toxin in the supernatant was first 

detected by immune-chromatographic test (BTA Gold Assay. NBC-Sys, France) and the toxin 

activity (MDL100.ml-1) was then tested by mousse bioassay as previously described [23]. All 

the peptides used were provided by Proteogenix (France) with purity greater than 95%. The 

lyophilized peptides were suspended in H2O/HPLC-grade acetonitrile (ACN) 50/50 at a 

concentration of 1 mg.ml-1 and stored at -20°C. A rabbit anti-peptides polyclonal antibody 

(anti-peptides PAb) was specifically generated by Proteogenix for the immune-magnetic 

separation. Two peptides: Q67-K84 (QVPVSYDSTYLSTYLSTDNEK) and D49-K66 

(DTFTNPEEGDLNPPPEAK) from light chain (Lc) were selected for the immunization. The 

peptide Q67-K84 is common to the subtypes A1, A2, A3, A5, A6, A7 and A8. The peptide 

D49-K66 is present in all subtypes but shows one mutation in the A7 subtype (I50 to T) and 

in the A8 subtype (K55 to E). Despite these mutations, the two peptides were recognized by 

the anti-peptides PAb. The reactivity of the anti- peptides PAb with the BoNT/A1, /A2, /A3, 

/A5, /A7 and /A8 was checked by Elisa procedure (data not shown). The absence of cross-

reactivity against BoNT/A heavy chain (Hc), BoNT/B and BoNT/E was tested by Western-

Blot (data not shown). 

 The food and environmental samples were from local source (local tape water), local 

grocery (orange juice), and French Defense Health Service (human serum). 

 

Animals and ethics statement 

Approval of Ethic Committee of DGA Maîtrise NRBC was obtained. BALB/C mice 

(female, 4 weeks old) were purchased from Charles River. The animals were fed with 
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standard diet and water ad libidum. The mice severely injured were euthanized. 

Determination of mouse lethal dose (MLD100) was performed as previously described [24]. 

Briefly, 0.5 ml of serial 10- fold and then 2-fold dilutions of samples in phosphate buffer (50 

mM, pH 6.3) containing 0.2% gelatin were injected intraperitoneally (3 mice per dilution). 

The mice were observed up to 4 days. 

 

Preparation of anti-peptides PAb coated magnetic beads 

Protein G-conjugated magnetic beads (Dynabeads Protein G, Novex) (250 µl) were 

transferred in a 2 ml Eppendorf low binding micro centrifuge tube and were washed three 

times with 500 µl of PBST (Phosphate Buffer Salt, 0.1 % Tween 20). After removing the final 

solution wash, the beads were suspended in 500 µl of PBST containing 100 µg. ml-1 anti-

peptides PAb. The mixture was incubated for 30 min with rotation at laboratory temperature. 

The beads were washed three times with 1 ml of PBS containing 0.15 M NaCl. Antibodies 

were cross-linked to the beads by incubating, for 30 min with rotation at laboratory 

temperature, in 1250 µl of PBS containing 0.15 M NaCl and 5 mM BS3 (crosslinking 

reagent). 65 µl of Tris/HCl 1 M pH 7.5 were added for quenching the cross-linking reaction. 

After incubation for 15 min at laboratory temperature with rotation, the beads were washed 

three times with 1 ml of PBST and resuspended in 250 µl of PBST. They were stored at 4°C 

for as long as 3 weeks. 

 

In-gel digestion 

Each culture supernatant of distinct C. botulinum strains from BoNT subtype was 

precipitated with 60 % of ammonium sulfate. After precipitation, the pellet was dissolved in 

50 mM sodium citrate buffer pH 5.5 and dialyzed overnight at 4°C against the same buffer. 

The dialyzed sample was fractionated via molecular size chromatography [25] using an 

AKTÄ system and an S300 column (HiPrep 26/60 Sephacryl S-300 HR - GE Healthcare Bio-

Sciences). For each subtype, the relevant fractions were pooled and considered as pre-purified 

complexes.  The amount of proteins on pre-purified complexes was determined by the Bio-

Rad protein assay with Bovine IgG as standard protein. 1 to 2 µg of each pre-purified 

complex for each BoNT subtype were run on a SDS-PAGE. After migration, gels were fixed 

and stained with Coomassie staining solution (Bio-Rad, Marnes la Coquette, France). Based 

on protein size, gel regions containing protein to identify were excised and cut into small 

pieces. Gel pieces were destained by washing cycles in water and acetonitrile for 10 min. 

After destaining, gel pieces were dried by vacuum centrifugation and reduced with DTT 
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10mM in 50 mM ammonium carbonate buffer and alkylated with iodoacetamide 55mM in 50 

mM ammonium carbonate buffer. Gel pieces were washed again with 50 mM ammonium 

carbonate buffer and dehydrated in 100% acetonitrile (ACN) before trypsin digestion (15 

µg.ml-1) at 4°C during 45 min and 2 hours at 37°C. Tryptic peptides were extracted from the 

gel in three successive steps (15 min each), using 2 cycles of 5% formic acid, and then 100% 

ACN extraction solutions. After drying by vacuum centrifugation, tryptic peptides were 

resuspended in 20 µl of 1% TFA before LC-ESI-MS/MS analysis.  

 

Immunocapture enrichment and trypsin digestion 

Culture supernatants or samples, crude or diluted in PBS, in a volume of 500 µl were 

treated with beta-mercaptoethanol (35 µl of 14 M stock solution) for 10 min at 95 °C in a dry 

heating block. After cooling at room temperature, each sample was mixed with 100 µl of 

PAb-coated magnetic beads in an Eppendorf low binding microcentrifuge tube. The mixture 

was incubated for 120 min at laboratory temperature with rotation. The beads were then 

recovered using a magnetic particle concentrator and washed three times with 1 ml of Hepes 

buffer (pH 7.6, 50 mM). The beads were then suspended in 100 µl of 100 mM ammonium 

carbonate buffer (pH 8.5) and incubated for 10 min at 95°C. 15 µl of 100 µg.ml-1 aqueous 

trypsin solution (sequencing grade modified trypsin, Promega) was added and the enzymatic 

digestion was carried out at 38°C for 120 min. After digestion, the magnetic beads were 

removed and 2 µl of analytical grade formic acid (FA) was added. The solution was vacuum-

dried and resuspended in 50 µl of H2O/ ACN/FA 93/5/2 before the LC-QqQ-MS anlysis.. 

LC-ESI-MS/MS analysis 

ESI-LC-MS/MS analysis was performed on an Esquire 6000 mass spectrometer 

(Bruker Daltonics, Bremen, Germany) connected with an Ultimate 3000 high performance 

liquid chromatograph (Dionex Corp., Sunnyvale, CA). The protein digest (10 µL) was 

injected on a 0.3 × 150 mm PepMap100 capillary column, particle size 5 µm, 100 Å pore size 

(LC Packings, Amsterdam, The Netherlands). Samples were eluted using a gradient starting 

with a linear increase from 5 to 10% acetonitrile over 4 min, followed by an increase from 10 

to 80% acetonitrile over 42 min with 0.2% acid formic throughout as additives. The data 

acquisition was performed using the data-dependent mode where the three highest-intensity 

precursors in an MS1 survey scan were selected for collision-induced dissociation. The 

resulting MS/MS data were searched for protein candidates with a database search against 

NCBInr database using MASCOT software (Matrix version 2.2.07, Sciences, London, U.K.). 
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The mass tolerance of precursor ions and fragment ions was 0.5 Da. Resulting peptides were 

filtered with a significance threshold of p < 0.05. 

 

LC-QqQ-MS analysis 

The HPLC system used for this analysis was an Ultimate 3000 RSLC equipped with a 

degasser, a binary pump, an auto-injector and a column oven (Thermo Scientific) coupled to a 

TSQ Quantiva electrospray ionization triple quadrupole mass spectrometer (Thermo 

Scientific). Chromatographic separations were performed on Zorbax SB-C18 2.1 × 150 mm, 

3.5 µm, 80Å pore size (Agilent) using 0.2% (v/v) formic acid as eluent A and acetonitrile 

with 0.2% formic acid as eluent B with a flow rate of 200 µL/min at 25°C. Samples (10 µl) 

were analyzed in a gradient mode: 5% eluent B (0–2 min) and 50% B (30 min). The mass 

spectrometer ESI source was operated in positive ionization mode. The following conditions 

were applied: spray voltage, 4000 V; sheath gas, 50 Arb; aux gas, 10 Arb; sweep gas, 5 Arb; 

ion transfer tube temp, 325°C; vaporizer temp, 275°C; CID gas, argon, 2 mTorr.  

 

Food and biological samples 

 Food and human serum samples were artificially spiked with culture supernatant of 

each C. botulinum A subtype, and 0.5 ml of each sample were treated as above described for 

the culture supernatants except that the serum samples were not heated. Serial 10 fold 

dilutions of each sample were tested by mouse bioassay and by immunocapture/ LC-QqQ-MS 

method. 

 

RESULTS 

Selection of specific peptides for botulinum toxin A subtypes detection 

MS-based analysis can distinguish proteins on the basis of amino acid sequence. 

BoNT/A1 to BoNT/A8 subtypes share 84.5 to 97.2 % identity at the amino acid level (Table 

2). We first identified the trypsic cleavage sites on the sequences of the L chain (amino acids 

1 to 449) of each BoNT/A subtype and we then analyzed all the subsequent peptides for their 

specificity versus the other BoNT/A subtypes by Blast. Thereby, 26 peptides of each BoNT/A 

subtypes were analyzed in silico. Two to 12 unique peptides for each BoNT/A subtype were 

synthesized and analyzed in MS (Table 3). For each subtype, two specific peptides yielding 

the highest MS signals were selected. One peptide was common to both BoNT/A2 and 
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BoNT/A8, and two other to BoNT/A1 and BoNT/A6. Moreover, two additional peptides 

which were conserved in all BoNT/A subtypes were also selected (Table 4).  

To validate the selection of these peptides for the identification of BoNT/A subtypes, 

BoNT preparations of each subtype (1 to 2 µg) were run on a SDS-PAGE and the bands 

containing the L chain were cut out of the gel. After in gel trypsin digestion, the peptides were 

extracted and analyzed with LC-ESI-MS/MS (data not shown). BoNT/A4 and BoNT/A6 were 

not included in this study due to the difficulty to obtain BoNT/A4 preparations containing 

sufficient amounts of toxin and to the fact that BoNT/A6 (strain CDC41370) was not 

available in our collection.  

 

Identification of BoNT/A subtype in culture supernatants 

To identify BoNT/A subtype in a complex environment like culture supernatant, we 

used an immunocapture step. For that purpose, magnetic beads were coated with antibodies 

raised against two synthetic peptides conserved in BoNT/A light chain subtypes as described 

in the Experimental part. Culture supernatant samples (500 µl) were reduced by addition of 

betamercaptoethanol to allow the separation of L and H chains and were then incubated with 

coated magnetic beads. After washing, the bound material was digested by trypsin in-situ, 

dried, and analyzed by LC-MS/MS. An example of conserved peptide detection by LC-

MS/MS in culture supernatants of representative strains of each BoNT/A subtype is shown in 

Fig. 1. Clostridium sporogenes which is closely related to C. botulinum A strains showed no 

detectable peptide corresponding to L chain fragment. Fig. 2 shows identification of 

BoNT/A2 through detection of the specific subtype peptide (DVASTLNK) detection by LC-

MS/MS in C. botulinum culture supernatants. The global results of peptide detection in C. 

botulinum culture supernatants are listed in Table 5. The selected conserved peptides were 

detected in all the C. botulinum culture supernatants tested, whereas the selected specific 

subtype peptides were only identified in the corresponding C. botulinum subtype culture 

supernatants. However, the I376-K387 peptide was detected in both C. botulinum A2 and A8 

subtype culture supernatants, in contrast to the D292-K299 peptide which was only found in 

C. botulinum A2 strains (Table 5). 

 

Sensitivity 

The limit of detection (LOD) of the LC-QqQ-MS method was estimated by using 

serial dilutions of C. botulinum culture supernatants. LOD corresponded to the highest 

dilution giving a signal with a signal-to-noise ratio of 3. The results with representative C. 
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botulinum culture supernatant subtypes and expressed in equivalent MLD100 which have 

been determined by the mouse bioassay, are shown in Table 6. The MS methodology could 

detect BoNT ranging from 20 to 140 MLD/0.5 ml according to the subtype. 

 

Identification of BoNT/A subtype in different matrices 

 In order to validate the LC-QqQ-MS methodology with biological, food or 

environmental samples, LOD was determined in various representative matrices (tape water, 

orange juice, human serum) spiked with the distinct BoNT/A subtypes. As shown in Table 7, 

the BoNT/A subtypes A1 to A8 were successfully identified in all the different samples. The 

highest LOD values were obtained with tape water and orange juice and were comparable to 

those obtained with culture supernatants (Table 6), whereas the detection was slightly lower 

(4 to 10 fold less) in human serum. 

 

DISCUSSION 

 Detection of BoNT in biological samples and food is critical for early diagnosis of 

botulism and to apply an efficient treatment of the disease. Investigation of BoNT in food or 

environmental samples is also essential for identifying the source of contamination and 

preventing outbreak extension of botulism. Typing and subtyping are important to estimate 

the severity of the disease and to adapt the appropriate treatment notably the specificity of the 

antisera. MS is a rapid and powerful method to identify proteins. Here, we show that a LC-

QqQ-MS method coupled to an immunopurification step allows identification of BoNT/A 

type and subtypes from complex samples. The method based on L chain peptides specific of 

BoNT/A subtypes A1 to A8 yielded unambiguous identification of the subtypes. A previous 

MS approach has been designed to differentiate BoNT/A1 and BoNT/A2 [20]. Identification 

of BoNT types A1 to G was achieved by using multiple enzyme digestion in gel and 

subsequent LC-QqQ-MS analysis. This method is predicted to identify the subtypes but has 

not yet been validated [22]. Our procedure efficiently discriminated the distinct BoNT/A 

subtypes. One important advantage is that complex samples can be used. Subtyping was 

efficiently performed with crude culture supernatants. An additional advantage is that this 

method of subtyping is performed in one step without the need of further techniques or 

reagents to address the subtyping. However, this method would be tested with complex and 

naturally contaminated samples like food or stools. LOD of the proposed method (20 to 140 

equivalents MLD in 0.5 ml) is in the range of the minimal toxin concentrations found in food. 

The sensitivity of the method could be increased by using a greater sample volume. Using 
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artificially spiked samples representative of food, environmental and biological samples, the 

LC-QqQ-MS method allowed the identification of all the BoNT/A subtypes tested. LOD 

varied with the matrix, with the lowest values in serum samples. Albeit the proposed method 

is not sensitive enough to detect limited BoNT amounts, it is appropriate for contaminated 

environmental or food samples which usually contain significant BoNT concentrations (100 

MLD/g and more). The advantage of the LC-QqQ-MS approach is to allow subtype 

identification in the absence of viable neurotoxin producing bacteria or available DNA in 

samples to perform a genetic subtyping. Further developments are still required for 

application with biological samples. It is noteworthy that this methodology might be updated 

to identify new subtypes that will be evidenced, by selecting additional specific peptides on 

light and/or heavy chains. 
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LEGENDS TO FIGURES 

 

Figure 1. Example of detection of a conserved peptide in culture supernatants from 

representative C. botulinum A subtypes. Ion chromatograms of SRM transition 565.8/684.4 

(LYGIAINPNR peptide) from BoNT/A1 (strain Hall), BoNT/A2 (strain 9336), BoNT/A3 

(strain Loch Maree), BoNT/A5 (strain 126.07), BoNT/A7 (strain 148.08), and BoNT/A8 

(strain 217.12) supernatants. Clostridium sporogenes (strain 261.05) supernatant was used as 

negative control. The expected retention time is 15.7 min. 

 

Figure 2. Example of detection BoNT/A2 in culture supernatants from representative C. 

botulinum A subtypes. Ion chromatograms of SRM transition 424.2/215.1 (DVASTLNK 

peptide) from BoNT/A1 (strain Hall), BoNT/A2 (strain 9336), BoNT/A3 (strain Loch Maree), 

BoNT/A5 (strain 126.07), BoNT/A7 (strain 148.08), and BoNT/A8 (strain 217.12) 

supernatants. Clostridium sporogenes (strain 261.05) supernatant was used as negative 

control. The expected retention time is 10.1 min.  
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Neurotoxin 

gene cluster 
Strain 

Lethal activity 

(MLD100/ml) 

ha-bont/A1 Hall 2.10
4
 

ha-bont/A1 Legroux 1.10
5
 

orfX-bont/A1(B) NCTC2916 1.10
5
 

orfX-bont/A1 200.04 2.10
5
 

orfX-bont/A2 

136.06 2.10
4
 

133.06 2.10
4
 

9336 2.10
5
 

181.02 2.10
5
 

1618 2.10
5
 

orfX-bont/A3 Loch Maree 2.10
3
 

ha-bont/A5 126.07 2.10
4
 

orfX-bont/A7 148.08 2.10
4
 

orfX-bont/A8 217.12 1.6.10
4
 

 

 

Table 1. List of C. botulinum strains used in this study, their neurotoxin gene cluster, and 

mouse lethal activity of culture supernatant as tested with mouse bioassay.  
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 A2 A3 A4 A5 A6 A7 A8 

A1 90.0 84.9 89.4 97.2 95.7 93.8 93.4 

A2  93.4 88.4 90.5 91.7 89.8 93.5 

A3   84.5 85.4 86.5 85.1 88.0 

A4    87.6 87.9 86.9 89.1 

A5     95.9 94.4 93.7 

A6      93.0 93.1 

A7       91.4 

 

 

 

Table 2. Amino acid sequence identity (%) of BoNT/A subtypes. Amino acid sequences from 

representative strains are: BoNT/A1 from strain Hall (YP_001386738.1); BoNT/A2 from 

strain Kyoto (CAA51824.1); BoNT/A3 from strain Loch Maree (YP_0017157303.1); 

BoNT/A4 from strain BA857 (YP_002860313.1); BoNT/A5 from strain IBCA94-0216 

(ACT33194.1); BoNT/A6 from strain CDC 41370 (ACW83608.1); BoNT/A7 from strain 

148.08 (AFV13854.1); BoNT/A8 from strain 217.12 (AHA83316.1). 
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Specificity Tryptic digest  fragment peptide sequence  

Conserved
a 

I24-K34 IPNAGQMQPVK  

Conserved
a 

Q67-K84 QVPVSYYDSTYLSTDNEK  

Conserved
a 

G114-K128 GIPFWGGSTIDTELK  

Conserved
b 

N178-R187 NGYGSTQYIR  

Conserved
a 

L232-R241 LYGIAINPNR  

Conserved
b 

N418-K427, N414-K423 for BoNT/A3 NFTGLFEFYK  

BoNT/A1 and A6
c 

S167-R177 SFGHEVLNLTR  

BoNT/A1 and A6
c 

V382-R393 VNYTIYDGFNLR  

BoNT/A2 and A8
d 

F213-R231 FATDPAVTLAHELIHAEHR   

BoNT/A2 D292-K299 DVASTLNK  

BoNT/A2 and A7
e 

S302-K314 SIIGTTASLQYMK  

BoNT/A2 M344-K359 MLTEIYTEDNFVNFFK  

BoNT/A2 and A8
c 

I376-K387 INIVPDENYTIK  

BoNT/A2 G394-R411 GANLSTNFNGQNTEINSR  

BoNT/A3 I38-R48 IHEGVWVIPER   

BoNT/A3 I98-R105 IYSTGLGR  

BoNT/A3 M106-K113 MLLSFIVK  

BoNT/A3 V129-R145 VIDTNCINVIEPGGSYR  

BoNT/A3 S146-K166 SEELNLVITGPSADIIQFECK  

BoNT/A3 S167-R177 SFGHDVFNLTR  

BoNT/A3 T247-R264 TNAYYEMSGLEVSFEELR  

BoNT/A3 T265-R280 TFGGNDTNFIDSLWQK  

BoNT/A3 D285-R295 DAYDNLQNIAR  

BoNT/A3 T302-K314 TIVGTTTPLQYMK  

BoNT/A3 Y321-K330 YFLSEDASGK   

BoNT/A3 G348-K359 GFTELEFVNPFK  

BoNT/A5 I98-R105 IYSTELGR   

BoNT/A5 T265-K272 TFGEHDAK  

BoNT/A5 I376-R393 INIVPEVNYTIYDGFNLR   

BoNT/A6 N394-K415 NTNLAANFNGQNTEINNMNFAK  

BoNT/A7 D49-K66 DIFTNPEEGDLNPPPEAK  

BoNT/A7 S146-K166 SEELNLVIIGPSADIINFECK  

BoNT/A7 F213-R231 FAIDPAVTLAHELIHAGHR  

BoNT/A7 E292-K299 EVASILNK   

BoNT/A7 M376-R393 MNIVPEVNYTIYDGFNLR   

BoNT/A8 D12-K23 DTVNGVDIAYIK   

BoNT/A8 D49-K55 DTFTNPK   

BoNT/A8 E56-K66 EGDLNPPPEAK   

BoNT/A8 T265-K272 TFGGHNAK  

BoNT/A8 N394-R411 NTNLAANFNGQNTEINSR   

 
 

Table 3. Proteolytic peptides (peptide size between 7 and 25 amino acids) of BoNT/A1 to A8 

light chains. 
a Peptides conserved in BoNT/A1-/A3 and BoNT/A5-/A8 light chains. 
b Peptides conserved in BoNT/A1 to A8 light chains 
c Peptides common to BoNT/A2 and BoNT/A6 light chains 
d Peptides common to BoNT/A2 and BoNT/A8 light chains 
e Peptides common to BoNT/A2 and BoNT/A7 light chains 
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Specificity 
Tryptic digest 

fragment 

Proteotypic peptide 

sequence 

SRM transitions 

Retention 
time (min.) 

Precursor 

 (m/z) 

Product  

(m/z) 

Conserved G114-K128 GIPFWGGSTIDTELK 810.9 

601.3 

20.5 725.9 

1020.5 

Conserved L232-R241 LYGIAINPNR 565.8 

334.2 

15.7 684.4 

854.5 

BoNT/A1 S167-R177 SFGHEVLNLTR 424.9 

389.3 

15.3 503.3 

657.3 

BoNT/A1 V382-R393 VNYTIYDGFNLR 737.9 

214.1 

19.0 884.4 

997.5 

BoNT/A2 D292-K299 DVASTLNK 424.2 

187.1 

10.1 215.1 

633.4 

BoNT/A2 and A8 I376-K387 INIVPDENYTIK 709.9 

228.1 

16.3 341.2 

979.5 

BoNT/A3 S167-R177 SFGHDVFNLTR 431.6 

276.2 

16.4 389.3 

503.3 

BoNT/A3 G348-K359 GFTELEFVNPFK 714.4 

391.2 

22.0 505.3 

880.5 

BoNTA5 I98-R105 IYSTELGR 469.8 

277.2 

12.1 662.4 

825.4 

BoNTA5 I376-R393 INIVPEVNYTIYDGFNLR 714.0 

440.3 

22.6 721.4 

884.4 

BoNTA7 E292-K299 EVASILNK 437.3 

487.3 

13.1 574.4 

645.4 

BoNTA7 M376-R393 MNIVPEVNYTIYDGFNLR 720.0 

359.17 

22.0 458.2 

884.4 

BoNTA8 E56-K66 EGDLNPPPEAK 583.8 

541.3 

10.5 638.4 

752.4 
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Table 4. MS analysis of BoNT/A light chain peptides. Results of MS analysis of synthetic 
peptides specific of each BoNT/A subtype. 3 transitions for each analysis, n=3. 
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Table 5. Results of peptide detection by LC-MS/MS in C. botulinum culture supernatants. n=3. 
 

 L232-R241 
( conserved) 

G114-K128 
(conserved) 

S167-
R177 

(BoNT/A1) 

V382-
R393 

(BoNT/A1) 

D292-
K299 

(BoNT/A2) 

 
I376-K387 
(BoNT/A2-

/A8) 

 

S167-
R177 

(BoNT/A3) 

G348-
K359 

(BoNT/A3) 

I98-R105 
(BoNT/A5) 

I376-R393 
(BoNT/A5) 

E292-K299 
(BoNT/A7) 

M376-
R393 

(BoNT/A7) 

E56-K66 
(BoNT/A8) 

Hall - BoNT/A1 + + + + - - - - - - - - - 

Legroux - BoNT/A1 + + + + - - - - - - - - - 

NCTC2916 -  BoNT/A1 + + + + - - - - - - - - - 

200.04 - BoNT/A1 + + + + - - - - - - - - - 

136.06 -  BoNT/A2 + + - - + + - - - - - - - 

133.06 - BoNT/A2 + + - - + + - - - - - - - 

9336- BoNT/A2 + + - - + + - - - - - - - 

181.02- BoNT/A2 + + - - + + - - - - - - - 

1618- BoNT/A2 + + - - + + - - - - - - - 

Loch Maree- BoNT/A3 + + - - - - + + - - - - - 

126.07- BoNT/A5 + + - - - - - - + + - - - 

148.08- BoNT/A7 + + - - - - - - - - + + - 

217.12- BoNT/A8 + + - - - + - - - - - - + 

Strain  
Peptide 
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C. botulinum A subtype Detected peptide LOD (MLD100) 

Hall (A1) S167-R177 110 ± 16 

9336 (A2) D292-K299 30 ± 4.5 

Loch Maree (A3) S167-R177 50 ± 7.5 

126.07 (A5) I98-R105 20 ± 3 

148.08 (A7) M376-R393 140 ± 21 

271.12 (A8) E56-K66 50 ± 7 
 
 
 

Table 6.  Estimated limit of detection (LOD). LOD is expressed in equivalent MLD100/0.5 ml. 

Signal to noise ratio of 3. Results are mean values ± SD. n=3. 
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Matrices Hall (A1) 9336 (A2) 
Loch Maree 

(A3) 
126.07 (A5) 148.08 (A7) 271.12 (A8) 

Tape Water 70 20 50 15 110 50 

Orange juice 110 50 70 20 150 60 

Human serum 300 200 250 100 500 300 

 

Table 7.  Estimated limit of detection (LOD expressed in equivalent MLD100/0.5 ml) in 

various samples. Signal to noise ratio of 3. n=3. 
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Example of detection of a conserved peptide in culture supernatants from representative C. botulinum A 
subtypes. Ion chromatograms of SRM transition 565.8/684.4 (LYGIAINPNR peptide) from BoNT/A1 (strain 
Hall), BoNT/A2 (strain 9336), BoNT/A3 (strain Loch Maree), BoNT/A5 (strain 126.07), BoNT/A7 (strain 

148.08), and BoNT/A8 (strain 217.12) supernatants. Clostridium sporogenes (strain 261.05) supernatant 
was used as negative control. The expected retention time is 15.7 min.  
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Example of detection BoNT/A2 in culture supernatants from representative C. botulinum A subtypes. Ion 
chromatograms of SRM transition 424.2/215.1 (DVASTLNK peptide) from BoNT/A1 (strain Hall), BoNT/A2 
(strain 9336), BoNT/A3 (strain Loch Maree), BoNT/A5 (strain 126.07), BoNT/A7 (strain 148.08), and 

BoNT/A8 (strain 217.12) supernatants. Clostridium sporogenes (strain 261.05) supernatant was used as 
negative control. The expected retention time is 10.1 min.  
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