
HAL Id: pasteur-01780625
https://pasteur.hal.science/pasteur-01780625v1

Submitted on 31 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Translocation and dissemination to target neurons of
botulinum neurotoxin type B in the mouse intestinal

wall
Chloé Connan, Carolina Varela-Chavez, Christelle Mazuet, Jordi Molgó,
Michel Haustant, Olivier Disson, Marc Lecuit, Alain Vandewalle, Michel

Popoff

To cite this version:
Chloé Connan, Carolina Varela-Chavez, Christelle Mazuet, Jordi Molgó, Michel Haustant, et al..
Translocation and dissemination to target neurons of botulinum neurotoxin type B in the mouse
intestinal wall. Cellular Microbiology, 2016, 18 (2), pp.282 - 301. �10.1111/cmi.12502�. �pasteur-
01780625�

https://pasteur.hal.science/pasteur-01780625v1
https://hal.archives-ouvertes.fr


 1 

TRANSLOCATION AND DISSEMINATION TO TARGET NEURONS 

OF BOTULINUM NEUROTOXIN TYPE B IN THE MOUSE 

INTESTINAL WALL  

 

CONNAN Chloé1, VARELA-CHAVEZ Carolina1, MAZUET Christelle1, 

MOLGÓ Jordi2, HAUSTANT Georges Michel1, DISSON Olivier3, LECUIT 

Marc3, VANDEWALLE Alain4, POPOFF Michel R.1* 

 
1 Institut Pasteur, Unité des Bactéries anaérobies et Toxines, 75724 Paris, France 
2 CEA, iBiTec-S, Service d’Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie 

Moléculaire et Biotechnologies, bâtiment 152, courrier N° 24, 91191 Gif-sur-Yvette, France 

and CNRS, Institut des Neurosciences Paris-Saclay, UMR 9197, 91190 Gif sur Yvette, 

France. 
3 Institut Pasteur, Unité de Biologie des Infections, 75724 Paris, France 
4 Centre de Recherche sur l’Inflammation (CRI), UMRS1149, Université Paris 7-Denis 

Diderot, site Bichat, 75018 Paris, France 

 

Short title : Botulinum neurotoxin translocation into mouse intestinal wall 

 

Key words : botulism, botulinum neurotoxin, intestinal barrier, neuron, cholinergic neuron, 

translocation, endocytosis. 

 

• corresponding author: Institut Pasteur, Unité des Bactéries anaérobies et Toxines, 25 

rue du Dr Roux, 75724 Paris cedex15, France 

Ph 33 1 45688307 

email: mpopoff@pasteur.fr 

 

  



 2 

ABSTRACT 

 Botulinum neurotoxins (BoNTs) are responsible for severe flaccid paralysis (botulism) 

which in most cases enter the organism via the digestive tract and then disseminate into the 

blood or lymph circulation to target autonomic and motor nerve endings. The passage way of 

BoNTs alone or in complex forms with associated non-toxic proteins through the epithelial 

barrier of the digestive tract still remains unclear. Here we show using an in vivo model of 

mouse ligated intestinal loop that BoNT/B alone or the BoNT/B C-terminal domain of the 

heavy chain (HCcB), which interacts with cell surface receptors, translocate across the 

intestinal barrier. The BoNT/B or HCcB translocation through the intestinal barrier occurred 

via an endocytosis-dependent mechanism within 10-20 min, since Dynasore, a potent 

endocytosis inhibitor, significantly prevented BoNT/B as well as HCcB translocation. We 

also show that HCcB or BoNT/B specifically target neuronal cells and neuronal extensions in 

the intestinal submucosa and musculosa expressing synaptotagmin, preferentially cholinergic 

neurons and to a lower extent other neuronal cell types, notably serotoninergic neurons. 

Interestingly, rare intestinal epithelial cells accumulated HCcB suggesting that distinct cell 

types of the intestinal epithelium, still undefined, might mediate efficient translocation of 

BoNT/B. 

 

 

INTRODUCTION 

 Clostridium botulinum produces potent neurotoxins (botulinum neurotoxins, BoNTs) 

which are responsible for severe neuroparalytic illness (botulism) in man and animals 

resulting from inhibition of spontaneous and nerve-evoked acetylcholine (ACh) release at 

cholinergic nerve endings. BoNTs are synthesized as an inactive single protein (~150 kDa) 

that is proteolytically cleaved into a ~100 kDa heavy chain (HC) and a ~50 kDa light chain 

(LC). Both chains remain linked by a disulfide bridge. The di-chain molecule constitutes the 

active neurotoxin. The half C-terminal part of HC (HCc) recognizes specific receptors on the 

surface of target neuronal cells and is involved in driving the toxin entry pathway into cells, 

whereas the N-terminal part permits the translocation of the L chain into the cytosol. LC 

catalyzes a zinc-dependent proteolysis of one or two of the three proteins of the SNARE 

complex, which play an essential role in neurotransmitter exocytosis (Meunier et al., 2002, 

Poulain et al., 2008, Bercsenyi et al., 2013, Simpson, 2013, Rossetto et al., 2014). 
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 BoNTs are divided into 7 toxinotypes (A to G) according to their immunological 

properties based on neutralization with polyclonal antibodies. Each toxinotype is specifically 

neutralized only with the corresponding antibodies (Hill et al., 2013). A new toxinotype 

called H or rather a new hybrid F/A type has been recently reported but still needs further 

characterization (Dover et al., 2014, Gonzalez-Escalona et al., 2014). C. botulinum strains 

show genetic variations and are classified into 4 groups (I to IV) based on 16s rRNA gene 

sequences and biochemical characteristics. Most of the strains produce only one BoNT type. 

Genetic diversity is also observed in bont genes, and multiple subtypes (or genetic variants) 

have been identified in each BoNT toxinotype (reviewed in (Hill et al., 2013)). 

 Three forms of botulism are recognized in humans in natural conditions: foodborne 

botulism, infant botulism or botulism by intestinal colonization, and wound botulism. 

Foodborne botulism is due to the ingestion of preformed BoNT in contaminated food and it is 

the main form of botulism in adults. In contrast, in infant botulism and some adult cases, 

ingested C. botulinum spores develop in the intestinal content and produce the toxin in situ 

(Tacket et al., 1989, Sobel, 2005). In both forms, foodborne botulism and botulism by 

intestinal colonization, BoNT escapes the gastro-intestinal tract to reach the target cholinergic 

nerve endings, possibly through the blood and lymph circulation (Maksymowych et al., 

1999). Previous observations using experimental models of animal intoxination have shown 

that following oral administration, BoNT enters the blood stream and lymph circulation 

(Maksymowych et al., 1999). The upper small intestine was found to be the primary site of 

toxin absorption (Kitamura et al., 1969, Sugii et al., 1977, Bonventre, 1979, Fujinaga et al., 

1997). However, BoNT can also be absorbed from the other parts of the digestive tract 

including the buccal cavity, stomach and colon, but to a lower extent than in the upper small 

intestine (Bonventre, 1979, Sakaguchi, 1983, Maksymowych et al., 1999). Therefore, BoNT 

translocation through the intestinal barrier and trafficking to the cholinergic nerve ending 

target represent the initial and critical steps of botulinum intoxination.  

 The mechanism of BoNT passage through the intestinal epithelial barrier remains 

partially unknown. Botulinum complexes formed by BoNT and associated non-toxic proteins 

(ANTPs) including hemagglutinin (HA) components have reported to pass across the 

epithelial barrier upon HA-mediated opening of intercellular junctions. Indeed, HA subunits 

have been shown to bind to epithelial cadherin (E-cadherin) and to disrupt the intercellular 

junctional complexes between epithelial cells (Jin et al., 2009, Sugawara et al., 2010, 

Sugawara et al., 2011, Lee et al., 2014, Lam et al., 2015). However, purified BoNT has also 

been shown to undergo transcytosis through intestinal epithelial cells without the help of HAs 
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(Fujinaga et al., 1997, Maksymowych et al., 1998, Park et al., 2003, Maksymowych et al., 

2004, Nishikawa et al., 2004, Ahsan et al., 2005, Couesnon et al., 2008). BoNT/A seems to 

preferentially use specific subsets of intestinal cells such as crypt enteroendocrine cells to 

enter the intestinal mucosa (Couesnon et al., 2012). In this study, we investigated the passage 

of BoNT/B in the mouse intestinal mucosa since it is a major cause of foodborne botulism and 

infant botulism in various countries (Fox et al., 2005, Peck, 2009, Malaska, 2014, Mazuet et 

al., 2014).  

 

RESULTS 

 
Entry of HCc/B into the mouse intestinal mucosa 

 Recombinant HCc from BoNT/B (HCc/B) labeled with Cy3 has been used to monitor 

BoNT/B entry into mouse intestinal mucosa. HCc domain of clostridial neurotoxins (BoNTs 

and tetanus neurotoxin), which specifically interacts with cell receptors, has already been 

extensively used to investigate internalization and intracellular trafficking of the neurotoxins 

in neuronal cells, as well as toxin translocation through intestinal epithelial cells (Lalli et al., 

2003, Maksymowych et al., 2004, Bohnert et al., 2005, Roux et al., 2006, Harper et al., 2011, 

Restani et al., 2012, Lam et al., 2015). Similar strategy was performed in the analysis of 

BoNT/A passage through the mouse intestinal mucosa (Couesnon et al., 2012). Therefore, 

fluorescent HCcB was injected into ligated ileum loops of anesthetized mice. The animals 

were then killed at various time intervals and the intestinal loops were washed, fixed and 

prepared for confocal microscopy observations. As shown in Fig. 1A (upper panel) limited 

HCcB fluorescence was observed in the intestinal lumen between the villi after 5 min 

incubation. Strikingly, rare epithelial cells of the villi accumulated fluorescent HCcB (Fig. 

1A, middle panel). A few filamentous structures labeled with HCcB were also detected in 

some intestinal villi and in some submucosa areas (Fig. 1A, lower panel). After 10 and 20 min 

incubation, labeled HCcB was visualized in the inter-villi spaces, the lumen of intestinal 

crypts, and on the surface of some intestinal villi, but no HCcB staining was evidenced in 

crypt epithelial cells (Fig. 1B, upper and middle panels, Fig. 1C, upper panel). Again, only 

very few cells of the villus epithelium were stained with HCcB (Fig. 1B and 1C upper 

panels). Filamentous elements stained with HCcB were observed in the bottom of intestinal 

villi surrounding intestinal crypts (Fig. 1B, middle panel and Fig. 1C, upper and middle 

panels). A dense network of filamentous structures in the musculosa was stained with 
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fluorescent HCcB (Fig. 1B lower panel, Fig. 1C, upper and lower panels). In addition, 

fluorescent filament structures were also evidenced inside the core of the villi (Fig. 1A middle 

panel, Fig. 1B upper panel). The most marked observations were the abundant filament 

labeling in the submucosa and to a larger extent in the musculosa after 10 and 20 min 

incubation of the ileal loops with fluorescent HCcB (Fig. 1B lower panel, Fig. 1C, upper and 

lower panels). Albeit the in vivo experiments at different incubation time periods did not 

allow to determine a precise kinetics of the toxin passage through the intestinal barrier, they 

permitted to evidence the progressive translocation of HCcB lasting 5 to 20 min from the 

intestinal lumen to target structures in the submucosa and musculosa. This finding was further 

supported by the quantification of the HCcB fluorescence intensity showing HCcB 

accumulation in villi overtime, and entry into the submucosa/musculosa at 10-20 min (Fig. 

1C). 

 

Dynasore impairs the translocation of HCcB into the intestinal mucosa  

 BoNT/A has been evidenced to cross the epithelial barrier through a transcytotic 

mechanism in the absence of ANTPs (Maksymowych et al., 1998, Maksymowych et al., 

2004, Ahsan et al., 2005, Couesnon et al., 2008). Previous work also suggests that BoNT/B is 

able to use a similar transport (Maksymowych et al., 1998). To investigate whether HCcB 

enters the mouse intestinal mucosa in in vivo conditions through a similar transcytotic 

mechanism, Dynasore, a specific inhibitor of endocytosis which blocks dynamin function 

(Harper et al., 2013), was injected (10 µg) into an ileal loop of anesthetized mice 20 min prior 

the injection of fluorescent HCcB. Mice were then sacrificed 10 min after the administration 

of fluorescent HCcB. As controls, we checked that administration of Dynasore and/or HCcB 

did not induced morphological alteration of the intestinal mucosa as monitored by E-cadherin 

staining of intestinal epithelial cells (Fig. 2A and B). In ileal loops, which only received 

fluorescent HCcB, an intense intracellular staining of rare intestinal epithelial cells and 

staining of filamentous elements in the mucosa and musculosa was observed (Fig. 2A). In 

contrast, in the ileal loops pretreated with Dynasore, fluorescent HCcB showed a different 

staining pattern. Thus, HCcB staining was mostly observed on the surface of intestinal villi 

and in the inter-villi spaces, whereas only a few filamentous structures were labeled in the 

submucosa and musculoasa (Fig. 2B). No morphological alteration of the basolateral 

epithelial cell membranes was evidenced as monitored by E-cadherin immunostaining (Fig. 

2A and B, middle panels). Quantification of fluorescence intensity in the submucosa and 



 6 

musculosa indicated that Dynasore impaired by almost 90% the transcytosis of fluorescent 

HCcB across the intestinal barrier (Fig. 2C). The significant Dynasore-induced inhibition of 

HCcB staining of target cells in the submucosa and musculosa strongly supports a transcytotic 

passage of HCcB through the intestinal epithelial barrier.  

 
Endocytosis-dependent entry of BoNT/B into the mouse intestinal mucosa 

 Experiments were performed with purified BoNT/B to further assess that the results 

obtained with HCcB were representative of the trafficking of the whole toxin. For this, ligated 

mouse intestinal loops were injected with purified BoNT/B (100 µg) and were then processed 

for imaging studies as described above. After 10 min administration, BoNT/B was detected 

with immunopurified polyclonal antibodies directed against the HCc domain. BoNT/B was 

visualized on the surface of some villi after 10 min toxin administration as shown in Fig. 3A 

(upper panel), and decorated filamentous structures in the villi, submucosa and musculosa. 

BoNT/B was mostly localized in the submucosa and musculosa after a 20 min incubation time 

period (Fig. 3A, lower panels). Thereby, a similar pattern of staining was observed between 

HCcB and purified BoNT/B.  

 Next, we checked whether BoNT/B like HCcB enters the intestinal mucosa through a 

transcytotic mechanism. Pretreatment of intestinal loop with Dynasore (10 µg) for 20 min 

significantly reduced the detection of BoNT/B in the submucosa and musculosa (Fig. 3C). No 

morphological alteration of the intestinal mucosa was observed in the intestinal loops treated 

with Dynasore and/or BoNT/B (not shown). Compared to intestinal loops treated with 

BoNT/B in the absence of Dynasore, only a few cells and filament structures were labeled in 

the submucosa and musculosa from Dynasore pretreated intestinal loops (Fig. 3C). Dynasore 

induced a 80% decrease in the BoNT/B staining in both submucosa and musculosa (Fig. 3D), 

further supporting that similarly to HCcB, BoNT/B uses a transcytotic pathway to pass 

through the intestinal epithelial barrier. In addition, these results support the view that HCcB 

and BoNT/B use a similar traffic pathway in the mouse intestinal mucosa. 

 

HCcB and BoNT/B target neuronal cells in mouse intestinal submucosa and musculosa 
 Imaging analyses with antibodies against neurofilaments (NF) were performed to 

identify the cells and filamentous structures recognized by fluorescent HCcB in the 

submucosa and musculosa. Fluorescent HCcB was localized on long cell extensions co-

labeled with anti-NF antibodies (Fig. 4A and B). However, not all but only certain cell 
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extensions were recognized by both HCcB and anti-NF antibodies (Fig. 4A and B). Partial 

colocalization between the two markers (Pearson coefficient 0.38 ± 0.06) suggested that 

HCcB did not bind directly to NF, but rather bound to cells and cell extensions containing NF.  

We took advantage of Thy1-yellow fluorescent protein (YFP) transgenic mouse in the 

C57BL6 genetic background, which have been widely used to analyze the morphology and 

function of neurons in the mouse brain (Feng et al., 2000, Vuksic et al., 2008), to visualize 

neurons of the enteric nervous system (ENS). Thy1-YFP is mainly expressed in the Golgi 

apparatus of certain subpopulations of neurons (Feng et al., 2000). In the intestinal submucosa 

and musculosa of Thy1-YFP mice, neuronal cells were discontinuously labeled, to some 

extent due to the accumulation of YFP around the nuclei (Fig. 5A). Some neuronal cells 

showed an intense YFP expression in the cytosol in cell bodies and extensions. Fluorescent 

HCcB injected into the intestinal lumen of Thy1-YFP mice co-stained YFP labeled cells and 

cell extensions after 10 min after injection (Fig. 5A). However, not all but only some 

subpopulations of YFP-expressing neurons were recognized by HCcB (Fig. 5A). The low 

Pearson coefficient (0.241 ± 0.11) between YFP and Cy3-HCcB, indicates that the two 

markers labelled distinct structures of the same cells.  

 Synaptotagmin (Syt) has been evidenced as the receptor protein part which in 

combination with gangliosides of the GD1b and GT1b series forms the high affinity receptor 

of BoNT/B. Indeed, BoNT/B binds to the intraluminal domain of synaptotagmin I (SytI) and 

(SytII) through the HCc domain (Nishiki et al., 1996, Dong et al., 2003, Rummel et al., 2007, 

Rummel, 2013). Antibodies against SytII labeled cells and cell extensions in mouse intestinal 

submucosa and musculosa which were co-labelled with YFP in Thy1-YFP mice (Fig. 5A). 

Similar results were obtained with anti-SytI antibodies (not shown). Fluorescent HCcB 

specifically recognized cells and cell extensions expressing both Thy1 and SytII (Fig. 5A). 

This supports that HCcB targeted specific neurons expressing SytII in mouse intestine. The 

low Pearson's coefficient (0.24 ± 0.11) between HCcB staining and YFP expression also 

indicates that HCcB did not colocalize with YFP molecules but recognized cells expressing 

YFP-Thy1. In contrast, the high level of colocalization between HCcB and SytII (Pearson's 

coefficient: 0.51 ± 0.11) supports that SytII is a specific BoNT/B receptor in intestinal 

neuronal cells. 

Glial cells are abundant in the nerve tissues as well as in the ENS where they show 

multiple extensions, mainly in the submucosal and myenteric plexus, and in close contact 

with neuronal cells (Yu et al., 2014). Glial cells from the mouse intestinal mucosa were 
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specifically visualized with antibodies against the glial fibrillary acidic protein (GFAP) (Fig. 

5B). Since glial cells, are wound around neuronal cells an apparent high Pearson's coefficient 

(0.35 ± 0.03) was observed between HCcB-Cy3 and GFAP stained cells (Fig. 5B). Indeed, 

glial cell extensions are in close contact with those of neuronal cells but they are shorter. 

HCcB labeling pattern of cell extensions correlated with that of NF staining but was distinct 

from that obtained with GFAP staining (Fig. 5B). These findings suggest that HCcB entered 

the intestinal mucosa and targeted specific neuronal cells and extensions in the submucosa 

and musculosa and did not interact with glial cells in the mouse intestine. 

 
HCcB targets cholinergic neurons in the mouse intestine 

 BoNTs are known to interact with cholinergic neurons and to block spontaneous and 

evoked quantal ACh release (Schiavo et al., 2000, Poulain et al., 2008, Rossetto et al., 2014). 

However, BoNTs are able to enter various neuronal cell types and to inhibit the release of a 

large range of other neurotransmitters such as ACh, glutamate, gamma-aminobutyric acid 

(GABA) (reviewed in (Dolly et al., 2009, Popoff et al., 2010).  

 First, imaging studies were carried out to test whether HCcB targets cholinergic 

neurons using antibodies directed again choline acetyltransferase (ChAT). Most of the ChAT 

immunoreactive neuronal cell extensions from the submucosa and musculosa were co-

labelled with HCcB (82.2 % ± 3.8) 10 min after its administration in the intestinal loop (Fig. 

6A, and Table 1). ChAT neuronal cells labeled with HCcB also contained SytII (Sup. Fig. 

1A). Similar results were obtained with whole BoNT/B injected into the intestinal lumen and 

detected with specific immunopurified antibodies (Fig. 7A). After 10 min incubation, a large 

proportion of ChAT immunoreactive neuronal cells of the submucosa and musculosa were co-

stained with anti BoNT/B antibodies (87% ± 2.5) (Fig. 7A). However, it is noteworthy that 

HCcB or BoNT/B also labelled other neuronal cell types than ChAT neuronal cells, but to a 

lower extent. 

 

Distinct neuronal cells recognized by HCcB in the mouse intestine 

Binding of BoNT/B to the diverse neuronal cell types in mouse intestine was 

investigated by colocalisation analysis of HCcB-Cy3 with specific neuronal cell markers. 

Only a low number of neuronal cells were stained with anti-serotonin (5-hydroxytryptamine, 

5-HT) antibodies in the submucosa and myenteric plexuses of the mouse intestine. After 10 

min administration of HCcB or BoNT/B into the ileum lumen, a significant proportion (25 – 
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35 %) of serotonin-immunoreactive cells was co-labeled with fluorescent HCcB or anti 

BoNT/B antibodies (Fig. 6B and 7B, and Table 1). It is noteworthy that the serotonin-

immunoreactive cells labeled with HCcB also expressed SytII (Sup. Fig. 1B). 

 The other neuronal cell types are underrepresented in ENS and were variably 

recognized by HCcB-Cy3. Indeed, a low proportion estimated to be about 10% of vasoactive 

intestinal peptide (VIP)-immunoreactive cells in the submucosa was co-stained with HCcB 

(Fig. 6C and Table 1). Furthermore, rare glutamate- and gamma-aminobutyric acid GABA-

immunoreactive cells stained with antibodies against vesicular glutamate (vGLUT) and 

GABA transporter (vGAT), respectively, were visualized in the intestinal submucosa and 

most of them were partially co-stained with fluorescent HCcB (Fig. 6D, 6E, and Table 1). 

 Interestingly, HCcB labeled filamentous structures inside the core of villi which were 

co-stained mostly with antibodies against ChAT (52.5 ± 2.9%) and to a lower extent with VIP 

antibodies (5 ± 2.5%) (Fig. 8). No serotonin-immunoreactive neuronal extensions were 

visualized in the intestinal villi. These structures recognized by HCcB are likely projections of 

intrinsic afferent neurons whose cell bodies are localized in the submucosa and which are 

mainly ChAT- and to a lower extent VIP-immunoreactive neurons (Furness et al., 2004). 

  

 

Intestinal cells involved in the passage of BoNT/B 
 Subsequently to administration of fluorescent HCcB in the intestinal lumen, certain 

cells of villous epithelium were intensely fluorescent. Albeit HCcB was observed inside the 

lumen of most intestinal crypts, no crypt cells retained HCcB fluorescence (Fig. 1). Similar 

findings were observed with BoNT/B injected into the intestinal lumen and detected with 

anti-HCcB antibodies (Fig. 2, Fig. 3C and D). The question arises as to whether the rare cells 

from the villous intestinal epithelium accumulating HCcB fluorescence reflect the 

transcellular translocation of HCcB and BoNT/B, or alternatively represent a site of toxin 

storage. Because these cells were mostly located in the upper part of intestinal villi, we first 

investigated whether they undergo apoptosis and thereby might non-specifically accumulate 

HCcB or BoNT/B. As shown in Sup. Fig. 2, no co-staining between fluorescent HCcB and 

activated Caspase3 antibodies was evidenced indicating that the fluorescent HCcB stained 

cells were not apoptotic.  

The inhibitory effect of Dynasore on the transport of HCcB or BoNT/B across the 

intestinal epithelium (Fig. 2 and 3B) suggests an apical endocytic uptake and subsequent 
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transcytotic delivery of HCcB or BoNT/B through the basolateral side. Colchicine, which is a 

tubulin filament disruption agent, impairs transcytosis in epithelial cells such as CaCo-2 cells 

(Bose et al., 2007), and has been used to inhibit the translocation of Listeria monocytogenes 

across the intestinal epithelium in an intestinal ligated loop model (Nikitas et al., 2011). 

Pretreatment of mouse intestinal loops with colchicine in the same conditions than for the L. 

monocytogenes experiments (10 µg/ml, 20 min) (Nikitas et al., 2011) prior to the injection of 

fluorescent HCcB, induced a significant increased number of villous epithelial cells 

accumulating HCcB (Fig. 9A and 9B). In addition, the HCcB fluorescence in intestinal loops 

pretreated with colchicine was mainly localized at the periphery of the epithelial cells which 

accumulated HCcB, whereas in the non-pretreated intestinal loops the epithelial cells which 

retained HCcB were uniformly stained, possibly resulting from a different traffic pathway 

than in colchicine-treated cells (Figs. 9A and 9B).  However, colchicine pretreatment did not 

significantly prevent HCcB staining of neuronal cells in the submucosa and musculosa (Fig. 

10), indicating a delayed passage of HCcB through certain villous cells, independently of the 

one inhibited by colchicine.  

The cells which accumulated fluorescent HCcB, were not stained with phalloidin, a 

marker of actin filaments (Fig. 9A). This finding strongly suggests that HCcB accumulated in 

a subset of intestinal cells devoid of apical brush border, and raises the question whether 

BoNT/B uses specific cells for its transport through the intestinal barrier? To address this 

question, we investigated whether the HCcB labeled cells belong to a specific sub-population 

of the intestinal epithelium, using various markers of already characterized cell subsets of the 

intestinal epithelium: wheat germ agglutinin (WGA) which binds specifically to sialic acid 

and N-acetylglucosaminyl carbohydrate residues in mucous of goblet cells (Jang et al., 2004), 

Lectin Urex europeus agglutinin type 1 (UEA1) which recognizes Paneth cells (Garabedian et 

al., 1997), antibodies anti-CD3 and anti-CD11C two markers of lymphocytes and dendritic 

cells, respectively, which are localized in the intestinal lamina propria (Montufar-Solis et al., 

2007, Persson et al., 2013), anti-villous M cells shown to be the principal site of gut luminal 

antigen uptake (Jang et al., 2004), chromogranin A which represents a common marker of 

enteroendocrine cells (Portela-Gomes et al., 2000), and the double cortin kinase 1 protein 

(DCLK1) specific of tuft cells, a class of secretory intestinal cells distinct from 

enteroendocrine  cells, Paneth, cells and goblet cells (Gerbe et al., 2011). Additional markers 

of goblet cells were used like antibodies specific of the intestinal trefoil factor (ITF) or 

cytokeratin18 (Poulsom et al., 1993, Hesse et al., 2007). Double immunofluorescence studies 



 11 

using the various cell-specific antibodies or markers and fluorescent HCcB clearly showed 

that none of the markers tested colocalized or co-stained with HCcB labelled cells in the 

intestinal epithelium (Sup. Fig. 3 and 4). Furthermore, the rare cells of the villous epithelium 

exhibiting ChAT immunoreactivity were not targeted by HCcB (Sup. Fig. 3).  

Transcytosis through intestinal cells indicates that HCcB or BoNT/B recognizes 

specific cell surface receptor(s). Are BoNT/B receptors on intestinal cells the same than those 

on neuronal cells (gangliosides of the GD1b/GT1b series in combination with SytII)? An 

excess of GT1b has been found to prevent BoNT/B binding to synaptosomes (Atassi et al., 

2014). A competition experiment was performed between HCcB and GT1b for binding and 

entry of toxin into the intestinal mucosa. As shown in Fig. 11, in contrast to control intestinal 

loop treated with only labeled HCcB, preincubation of HCcB with GT1b significantly 

prevented HCcB staining of intestinal villi, submucosa and musculosa. Only a faint HCcB 

staining was observed in certain villi, whereas no staining was visualized in the submucosa 

and musculosa. As control, GM1 was found to not impair HCcB entry into the intestinal 

mucosa (Sup. Fig. 5). Moreover, no labeling of intestinal epithelial cells with anti-SytII 

antibodies was evidenced, suggesting that BoNT/B uses GT1b but a distinct protein receptor 

from that of neuronal cells to enter intestinal cells. 

 

 

DISCUSSION 
 Translocation of BoNT through the intestinal barrier is a critical initial step in 

botulism resulting from the ingestion of toxin preformed in food or from intestinal 

colonization by C. botulinum. In in vitro cultures, food or intestinal content, BoNT is 

produced in complex forms by non-covalent association with ANTPs. Whether whole 

botulinum complexes or only BoNT pass through the intestinal barrier and the mode of its 

transport remain under debate. ANTPs play an essential role in the protection of BoNT 

against the stomach acidic pH and digestive proteases. The non-toxic non-hemagglutinin 

(NTNH) component of C. botulinum type A, is structurally related to BoNT/A and associates 

with BoNT/A in a pH-dependent manner to form a medium size botulinum complex highly 

resistant to acidic pH and protease degradation (Gu et al., 2012, Gu et al., 2013). It is 

noteworthy that NTNH is synthesized by all C. botulinum types and likely retains the same 

function in the various corresponding botulinum complexes. HAs, which are found in various 

BoNT complexe types, have been evidenced to mediate the absorption of botulinum complex 
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from the gut. HAs interact with oligosaccharides on the intestinal epithelial cells and possibly 

facilitate the toxin uptake into intestinal cells (reviewed in (Fujinaga et al., 2013, Gu et al., 

2013)). The HA-mediated transport of BoNT/A complex through the intestinal barrier seems 

to preferentially occur via microfold (M) cells (Matsumura et al., 2015). In addition, HAs 

bind to and disrupt E-cadherin-mediated intercellular junctions, thus allowing the passage of 

BoNT through the intestinal barrier via the paracellular route (reviewed in (Fujinaga et al., 

2013, Gu et al., 2013). However, HAs are not produced by C. botulinum E, F and certain type 

A strains which are also involved in human botulism by the oral route (Simpson, 2013, Singh 

et al., 2014). These C. botulinum strains form BoNT complexes containing OrfX proteins 

instead of HAs (Hill et al., 2013, Popoff et al., 2013). However, OrfX proteins have not been 

found to interact with intestinal cells indicating that BoNT can itself cross the intestinal 

barrier without the help of additional protein. Therefore, when administrated into the small 

intestine, BoNT free of HAs and BoNT complexes are absorbed through the intestinal barrier 

in an equally efficient manner (Maksymowych et al., 1999). Moreover, purified BoNT was 

demonstrated to bind to intestinal cells, and to undergo receptor-mediated endocytosis, 

transcytosis, and subsequent release from the baso-lateral side (Maksymowych et al., 1998, 

Maksymowych et al., 2004, Ahsan et al., 2005, Couesnon et al., 2009). Here, we investigated 

the entry of BoNT/B into the intestinal mucosa in an in vivo mouse model using purified 

BoNT/B or the recombinant HCcB fragment. The corresponding C-terminal domain of 

BoNT/A has already been used to monitor the holotoxin trafficking in cultured cells or intact 

intestinal mucosa (Maksymowych et al., 2004, Ahsan et al., 2005, Couesnon et al., 2012). 

 When administrated into a mouse jejuno-ileal ligated loop, a progressive passage of 

the fluorescent HCcB or BoNT/B from the intestinal epithelium to the submucosa and 

musculosa was visualized. Within 10-20 min, HCcB or BoNT/B targeted neuronal structures 

in the submucosa and musculosa. This rapid passage contrasts with the longer time (30-60 

min) observed for the internalization of HCcA in the mouse intestinal mucosa (Couesnon et 

al., 2012). However, the experimental conditions used for HCcA investigation were slightly 

different. Mouse intestinal loops were excised, transferred into oxygenated culture medium, 

and incubated at room temperature after intraluminally injection of HCcA (Couesnon et al., 

2012). In the present work, the vascularization of the intestinal loops and the physiological 

mouse temperature were maintained. Thereby, in the more physiological conditions, a more 

rapid trafficking was observed indicating that BoNT/B translocation into the mouse intestinal 

mucosa is a rapid process. However, the difference in the experimental procedures does not 
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fully exclude that BoNT types A and B may have a different way and kinetics of entry into 

the intestinal mucosa.  

 Interestingly, Dynasore which is an inhibitor of dynamin-dependent endocytosis 

process (Macia et al., 2006, Harper et al., 2013), significantly prevented the entry of HCcB or 

BoNT/B into the mouse intestinal mucosa (Fig. 2 and 3). The in vivo mouse model of ligated 

intestinal loop clearly supports that BoNT/B free of HAs or the receptor binding domain, 

HCcB, were able to pass through the intestinal barrier via an endocytic mechanism to target 

specific cells in the intestinal submucosa and musculosa. It should be noticed that the toxin 

amounts used in this study were higher than those expected in natural acquired botulism. 

Minimum amounts of fluorescent HCcB yielding detectable signal in intestinal tissues were 

around 10 µg per intestinal loop (Sup Fig. 6). We selected to use higher amounts (100 

µg/intestinal loop) to more efficiently visualize the cells mediating toxin trafficking. Since 

high HCcB or BoNT/B doses were efficiently inhibited by endocytosis inhibitor (Fig. 2 and 3) 

or in competition experiments with specific receptor such as GT1b (Fig. 10), and since only a 

restricted number of cell types were visualized (Fig. 1 and 3), the physiological toxin 

trafficking was likely preserved in these experimental conditions. Although lower amounts of 

HCcA (0.5 µg/ intestinal loop) (Couesnon et al., 2012) or BoNT/A (0.6 µg orally per mouse) 

(Lam et al., 2015) were used. However we were unable to reproduce the results with 0.6 µg 

BoNT/A per mouse. Moreover, it has to be taken in account that BoNT/B is less active than 

BoNT/A, about 10-fold less (Foran et al., 2003, Rasetti-Escargueil et al., 2009), and that only 

a low toxin fraction passes through the intestinal barrier based on in vivo experiments 

(reviewed in (Popoff et al., 2014)) therefore justifying the amounts used in this study. 

However, one cannot fully exclude that in the present work, HCcB or BoNT/B uses different 

entry pathways than in the in vivo situation.  

 HCcB or BoNT/B enters the mouse intestinal mucosa and specifically targets neuronal 

cell bodies and neuronal cell extensions in the submucosa and musculosa as visualized by co-

staining of the filamentous structures with anti-NF antibodies and HCcB or BoNT/B (Fig. 4). 

Glial cells which are abundant in the intestinal mucosa were not recognized by HCcB (Fig. 5). 

These observations were further supported by the use of the transgenic Thy1-YFP mouse 

which exhibits a nice labeling of the ENS, and co-staining of neuronal filaments expressing 

Thy1-YFP with HCcB (Fig. 5). It is noteworthy that HCcB or BoNT/B only recognizes 

certain neuronal cell extensions. Neuronal cell filaments identified by anti-NF antibodies or 

by Thy1-YFP expression were not all co-stained with HCcB (Fig. 5). Interestingly, HCcB and 
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BoNT/B colocalized with SytII antibodies on intestinal neuronal extensions (Fig. 5 and Sup 

Fig. 1) in agreement with previous characterization of SytII as the BoNT/B receptor (Nishiki 

et al., 1996, Dong et al., 2003, Chai et al., 2006). ChAT and serotonine neurons labeled with 

HCcB also expressed SytII (Sup. Fig. 1), and likely the other neuronal cell types targeted by 

BoNT/B. Collectively the present findings support that BoNT/B uses SytII as specific 

receptor on neuronal cell extensions of the ENS. 

 Neuronal cells of the ENS are organized in the submucosa and myenteric plexuses, 

which project on the different layers of the intestinal mucosa. ENS neurons can synthesize a 

wide variety of neurotransmitters. More than 20 types of neurotransmitters have been 

identified in ENS and most enteric neurons may produce and secrete several of them (Goyal 

et al., 1996, Grundy et al., 2006, Furness, 2012). Cholinergic neurons are the greater 

population of enteric neurons. In the submucosal plexus, cholinergic neurons (about 55% of 

the enteric neurons) regulate ion secretion and are involved in local sensory pathways in 

response to the luminal content composition. In addition, they interact with Peyer's patch 

follicles (Kulkarni-Narta et al., 1999, Furness et al., 2004, Harrington et al., 2010). 

Cholinergic neurons are preponderant in the myenteric plexus (about 80%) and have a main 

function in mediating muscle activity and controlling intestinal motility (Furness et al., 2004, 

Harrington et al., 2010). Serotonin is a major mediator of gastrointestinal function. Notably 

serotonin controls motility, secretion, and sensory responses. Serotonin is mainly produced by 

enteroendocrine cells from the mucosal epithelium of the intestine and 2 to 20% of enteric 

neurons are serotonin immunoreactive (McLean et al., 2007, Mawe et al., 2013). VIP-

immunoreactive neurons are the most preponderant non-cholinergic neurons of the ENS and 

constitute the main class of inhibitory interneurons. VIP-immunoreactive neurons are 

estimated to represent about 45% of neurons of the submucosal plexus in the ileum and 

jejunum. VIP modulates several functions including vasodilatation of intestinal vessels, 

intestinal smooth muscle relaxation, and stimulation of electrolyte secretion and water 

(Brookes, 2001, Furness et al., 2004, Hernandes et al., 2004, Igarashi et al., 2011, Furness, 

2012). Glutamate and GABA are neurotransmitters produced by a few number of ENS 

neuronal cells (Furness, 2000, Furness et al., 2004). 

 In in vivo experiments HCcB or BoNT/B targeted certain but not all neuronal cells at 

the Syt binding sites. Cholinergic neurons of ENS were the main target of HCcB or BoNT/B, 

since more than 80% of the ChAT immunoreactive neuronal cells were co-stained with HCcB 

or BoNT/B (Table 1). This is in agreement with the fact that BoNT/B like the other BoNT 

types, mainly target peripheral cholinergic motor neuron endings (Simpson, 2013, Rossetto et 
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al., 2014). HCcA was also found to preferentially localize to cholinergic neurons of the 

submucosa and musculosa of the mouse intestine (Black et al., 1987, Couesnon et al., 2012). 

HCcB also targeted cholinergic extensions in the villi and around the intestinal crypts. 

Constipation is a frequent symptom (about 70%) in food-borne botulism and is a major and 

early event in botulism resulting from intestinal colonization (Arnon et al., 2001, Sobel, 2005, 

Brook, 2007, Mitchell et al., 2008). Since cholinergic neurons are the main players of the 

control of intestinal motility and secretion (Furness, 2012), ChAT-immunoreactive targeting 

by BoNT likely account for the reduced intestinal peristalsis and secretion observed in 

botulism. During botulism by intestinal colonization, BoNT produced in the intestinal lumen 

might be absorbed in a higher local concentration able to enter the intestinal mucosa and 

inhibit the underlying cholinergic neurons compared to orally ingested toxin which 

disseminates more broadly through the digestive tract. 

 HCcB or BoNT/B targeted other neuronal cell types than cholinergic neurons in the 

mouse intestinal mucosa but to a lower extent. Serotonin-immunoreactive neuronal cells were 

significantly co-stained with HCcB or BoNT/B (25 to 35%) (Table 1), whereas a lower 

proportion (about 10%) (Table 1) of VIP-immunoreactive neurons was stained with HCcB. In 

the present work, only rare V-GLUT- and V-GAT-immunoreactive cells were visualized in 

the intestinal mucosa and most of them co-stained with HCcB. However, the low number of 

identified cells did not allow estimating precisely the proportion of these sub-cell types 

targeted by HCcB.  

The pathophysiological effects of BoNT on the non-cholinergic neurons are still a 

matter of debate. Serotonin is an important neurotransmitter in the gastrointestinal tract which 

is involved in multiple functions including intestinal motility and secretion. Although most 

part of serotonin is secreted by enteroendocrine cells, serotoninergic neurons have an essential 

role in the gastrointestinal motility (Li et al., 2011, Gershon, 2013). BoNT/B effects on 

serotoninergic neurons of the intestinal mucosa might contribute to the inhibition of intestinal 

motility in synergy with the blockade of ACh release at cholinergic nerve endings. The 

incidence of BoNT/B on the small part of VIP-immunoreactive neurons targeted by HCcB, 

remains speculative. Since one of the main roles of VIP is to control gastrointestinal secretion 

(Igarashi et al., 2011, Furness et al., 2014), BoNT/B may exert its anti-secretory effect 

partially through inhibition of VIP release. BoNT/B might use non-cholinergic neurons not 

only to contribute to the local paralytic effects, but also to disseminate to other target neurons 

locally or at distance from the intestine. Indeed, BoNT/A has been shown to use a retrograde 

transport and transcytosis to migrate from the peripheral neurons to the central nervous 



 16 

system (Antonucci et al., 2008, Restani et al., 2011, Restani et al., 2012). Since the neurons 

of ENS are highly interconnected between them and with neurons of the central nervous 

system (Goyal et al., 1996, Grundy et al., 2006, Furness et al., 2014), one can speculates that 

BoNT/B uses non-cholinergic intestinal neurons for its transport to remote target neurons. 

 The present findings also raises an intriguing question: does BoNT/B use preferential 

cells to cross the intestinal barrier? In contrast to BoNT/A, which has been found to enter the 

intestinal mucosa preferentially via crypt enteroendocrine cells (Couesnon et al., 2012), no 

HCcB or BoNT/B labeling was detected in epithelial crypt cells, or enteroendocrine cells 

using anti-chromogranin A antibodies. Accumulation of HCcB or BoNT/B was observed in a 

few villous epithelial cells lacking apical actin staining (e.g. devoid of apical brush border). 

The fact that cells accumulating HCcB were not apoptotic cells rule out the possibility of non-

specifically fluorescent protein accumulation. Using a wide panel of markers of intestinal 

epithelial and lymphocytic cells, the villous cells labeled with HCcB or BoNT/B could not be 

assigned to any already known subset of cell type. Whether these cells represent the toxin 

passage through the intestinal barrier remains questionable? A transcytotic passage supposes a 

continuous trans-cellular toxin passage over time. However, a transient accumulation in some 

intracellular compartment is not fully excluded. Time lapse monitoring the passage of 

fluorescent HCcB could be more informative. The in vivo experiments used in this study 

allowed collection of intestinal samples only at different time points. Pretreatment with 

colchicine, an inhibitor of microtubule-dependent transcytosis, evidenced an increased 

number of villous epithelial cells accumulating HCcB, but with a distinct pattern of 

fluorescent labeling than in colchicine-untreated intestinal loops (Fig. 9). HCcB was mainly 

observed on the basolateral peripheries of epithelial cells from pretreated intestinal loops with 

colchicine, whereas HCcB accumulated broadly into the intracellular space in non-pretreated 

loops. However, colchicine did not prevent significantly the HCcB passage to the underlying 

neuronal cells. Thus, it cannot be excluded that colchicine delayed, but not completely 

blocked, the transcytotic passage of HcCB in these subsets of villous cells. The absorption of 

BoNT from the digestive tract is a very low efficient process. In vivo experiments showed that 

less than 0.01 to 0.1% of intraduodenally administrated BoNT can be recovered in lymph of 

blood circulation (reviewed in (Popoff et al., 2014)). Thus, a low toxin passage through the 

enterocytes or at least some of them may support the weak intestinal absorption of toxin 

which has been observed in vivo. 

 In conclusion, the present study using an in vivo model of mouse ligated intestinal 

loop demonstrates that HCcB or BoNT/B free of HAs can pass through the intestinal barrier 
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via an endocytosis-dependent mechanism since Dynasore, a specific inhibitor of endocytosis, 

significantly prevented their translocation. After 10-20 min incubation time, HCcB or 

BoNT/B specifically targeted neuronal cells and neuronal extensions in the submucosa and 

musculosa. Binding of HCcB or BoNT/B to neurons correlated with Syt expression, in 

agreement with the identification of Syt as the specific BoNT/B receptor (Nishiki et al., 1996, 

Dong et al., 2003, Rummel et al., 2007, Rummel, 2013). Cholinergic intestinal neurons were 

the main targets of HCcB or BoNT/B together with other neuronal cell types of the intestinal 

mucosa, notably serotoninergic neurons and to a lower extent VIP, V-GLUT and V-GAT-

immunoreactive neurons. Although HCcB or BoNT/B accumulated in some intestinal cells, 

those which mediate the passage of BoNT/B remain to be identified. 

 

EXPERIMENTAL PROCEDURES 
Ethic statements 

All experiments were performed in accordance with French and European Community 

guidelines for laboratory animal handling. The protocols of experiments were approved by 

Pasteur Institute CETEA (Comité d'Ethique en Expérimentation Animale) with the agreement 

of laboratory animal use (n° 2013-0118). 

 

Animals 
Adult Swiss mice (Charles River) and Thy-1 yellow fluorescent protein protein (YFP) 

transgenic mice (C57BL6 backgroung, Jackson Research) were used.  

 

Reagents  

Tissues were stained with Hoechst (Dako, 1:1000 dilution) for the nuclei, FITC- 

phalloidin (Sigma, 0.4mg/ml), FITC-Urex europaeus agglutinin type 1 (UEA1) (Sigma, 1 

mg/ml), wheat germ agglutinin alexa fluor 488 conjugate (Invitrogen, 1:500 dilution). The 

primary antibodies used recognized E-cadherin (Invitrogen, rat, 1:250 dilution), neurofilament 

(Sigma, rabbit, 1:250 dilution), Choline Acetyltransferase (ChAT) (Millipore, goat, 1:100 

dilution), serotonin (Abcam, goat, 1:1000 dilution), chromogranin A (Abcam; rabbit, diluted 

1:250), synaptotagmin II (SytII) (Abcam, rabbit, 1:250 dilution), Glial Fibrillary Acidic 

Protein (GFAP) (Sigma; rabbit, 1:200 dilution), VIP (Abcam; rabbit, diluted 1:200), vesicular 

glutamate transporter 1, BNPI, SLC17A7 (VGLUT 1) (Synaptic System, rabbit, 1:250 

dilution), vesicular GABA transporter (VGAT) (Synaptic System, rabbit, 1:250 dilution), 
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activated caspase-3 (Cell Signaling 9661, rabbit, 1:200), DCLK1 (Abcam, rabbit, 1:200 

dilution), M cell villi (MACS Miltenyi Biotec, rat, 1:200 dilution), Anti CD11c clone HL3 

(BD Bioscience, armenian hamster, 1:250 dilution), integrin aE (CD3) (BD Pharmingen, 

syrian hamster, 1:200 dilution), cytokeratin 18 (Abcam, biotinylated mouse monoclonal 

antibody, 1:100 dilution), intestinal trefoil peptide (Santa Cruz, rat, 1:100 dilution). The 

secondary antibodies were Alexa fluor 488 or 647 donkey anti goat, alexa fluor 488 or 647 

goat anti rat, Alexa fluor 488 donkey anti rabbit, Alexa fluor 594 goat anti rabbit (Invitrogen, 

1:500 dilution), Alexa fluor 647 anti Syrian hamster (Jackson Immunoresearch, 1/500 

dilution), Alexa fluor 647 goat anti Armenian hamster (Jackson Immunoresearch, 1/500 

dilution). Endocytosis assay were perform with Dynasore Hydrate (Sigma, 10 µg/intestinal 

loop). Other reagents: Colchicine (Sigma, 10 µg/ml), trisialoganglioside GT1b (Sigma 

G3767), ganglioside GM1 (Sigma 345724).   

 

Botulinum neurotoxin and recombinant HCcB protein production 

BoNT/B was produced and purified as previously described (Shone et al., 1995). 

Recombinant His-tag HCc fragment of BoNT/B was produced and purified from pET-28a-

c(+) vector containing DNA encoding for HCcB cloned into BamHI and SalI sites, as 

previously described (Tavallaie et al., 2004). HCcB His-tag was labeled with Amersham Cy3 

Mono-Reactive Dye Pack (Ge Healthcare) according to the manufacturer’s recommendations. 

Free dye is removed from labelled protein using the de Zeba Spin Desalting Columns 

according to the manufacturer’s recommendations (Thermo Scientific).  

 

In vivo intestinal ligated loop experiment  

Swiss mice (between 20 and 22 g) or Thy-1 YFP transgenic mice were fasted for 16 h 

before surgery. Mice were deeply anesthetized with a mixture of ketamine (50 mg/kg body 

weight; Imalgene 1000; Merial) and medetomidine (0.5 mg/kg body weight; Domitor; Orion 

Corporation). A mouse laparotomy was performed and a jejuno-ileal loop (approximately 

4cm long) was isolated. Three hundred µl of labeled HCcB or purified BoNT/B containing 

100 µg protein were injected into the intestinal lumen. After incubation times (5 to 20 min) 

mice were euthanatized, the intestinal loops were harvested, opened longitudinally, washed 

repeatedly in 37°C Dulbecco’s modified Eagle’s medium (Invitrogen), and fixed flat (luminal 

side up) for 2 h in 4% paraformaldehyde (PFA) at room temperature.  
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In competition assay, Cy3-HCcB (70 µg) was preincubated with a 10-fold excess of 

ganglioside GT1b from bovine brain (Sigma G3767) for 20 min at room temperature and the 

mixture was injected into an intestinal loop. After 15 min incubation, the intestinal loops were 

processed for fluorescence microscopy. 

 

Intestinal tissue preparations and indirect immunofluorescence 

Fixed intestinal loops were embedded in 4% agarose and sections (150 µm) were cut 

with a vibratome (Polyscience – Bangs Laboratories). Sections were permeabilized with 0.4% 

triton X-100 for 1 h at room temperature, washed in PBS, and then incubated for 1 h in PBS-

BSA (3 %). Samples were then incubated or not with specific antibodies for 2 h at room 

temperature for primary antibodies and 1 h at room temperature for secondary antibodies in 

PBS-BSA (0.5 %) - Triton (0.2%). After 3 washes in PBS, sections were mounted in 

Fluoromount (FluorProbes) and samples were imaged using a Zeiss LSM700 confocal laser 

scanning microscope.  

 

Image analysis and statistics 

Image analysis was performed using ImageJ (National Institutes of Health). 

Colocalization test were performed using JacOp plugin from ImageJ. Values throughout the 

text are expressed as means ± standard deviations (SD). Differences were assessed using 

unpaired Student’s t-test. Statistical significance was assumed for P < 0.0001 (***) on at least 

3 independent experiments for integrated density measurements and a 100 counted cells for 

the percentage of co-labeled structures.  

 

Acknowledgements 
 This work was supported by Institut Pasteur funding, BioImaging (French National 

Research Agency ANR-10–INSB–04, Investments for the future), the Wellcome Trust 

(London), and a DGA fellowship awarded to CC.  



 20 

 
 
REFERENCES 
 
Ahsan, C.R., Hajnoczky, G., Maksymowych, A.B. and Simpson, L.L. (2005). Visualization of 

binding and transcytosis of botulinum toxin by human intestinal epithelial cells. J. 
Pharmacol. Exp. Ther. 315, 1028-1035. 

Antonucci, F., Rossi, C., Gianfranceschi, L., Rossetto, O. and Caleo, M. (2008). Long-
distance retrograde effects of botulinum neurotoxin A. J Neurosci 28, 3689-3696. 

Arnon, S.S., Schechter, R., Inglesby, T.V., Henderson, D.A., Bartlett, J.G., Ascher, M.S., et 
al. (2001). Botulinum toxin as a biological weapon: medical and public health 
management. JAMA 285, 1059-1070. 

Atassi, M.Z., Taruishi, M., Naqvi, M., Steward, L.E. and Aoki, K.R. (2014). Synaptotagmin II 
and gangliosides bind independently with botulinum neurotoxin B but each restrains 
the other. Protein J 33, 278-288. 

Bercsenyi, K., Giribaldi, F. and Schiavo, G. (2013). The elusive compass of clostridial 
neurotoxins: deciding when and where to go? Curr Top Microbiol Immunol 364, 91-
113. 

Black, J.D. and Dolly, J.O. (1987). Selective location of acceptors for botulinum neurotoxin A 
in the central and peripheral nervous systems. Neuroscience 23, 767-779. 

Bohnert, S. and Schiavo, G. (2005). Tetanus toxin is transported in a novel neuronal 
compartment characterized by a specialized pH regulation. J. Biol. Chem. 280, 42336-
42344. 

Bonventre, P.F. (1979). Absorption of botulinal toxin from the gastrointestinal tract. Rev. 
Infect. Dis. 1, 663-667. 

Bose, S., Kalra, S., Yammani, R.R., Ahuja, R. and Seetharam, B. (2007). Plasma membrane 
delivery, endocytosis and turnover of transcobalamin receptor in polarized human 
intestinal epithelial cells. J Physiol. 581, 457-466. Epub 2007 Mar 2008. 

Brook, I. (2007). Infant botulism. J Perinatol 27, 175-180. 
Brookes, S.H. (2001). Classes of enteric nerve cells in the guinea-pig small intestine. Anat. 

Rec. 262, 58-70. 
Chai, Q., Arndt, J.W., Dong, M., Tepp, W.H., Johnson, E.A., Chapman, E.R. and Stevens, 

R.C. (2006). Structural basis of cell surface receptor recognition by botulinum 
neurotoxin B. Nature 444, 1096-1100. 

Couesnon, A., Molgo, J., Connan, C. and Popoff, M.R. (2012). Preferential entry of 
botulinum neurotoxin A Hc domain trhough intestinal crypt cells and targeting to 
cholinergic neurons of the mouse intestine. PLoS Pathog 8, e1002583. 

Couesnon, A., Pereira, Y. and Popoff, M.R. (2008). Receptor-mediated transcytosis of 
botulinum neurotoxin A through intestinal cell monolayers. Cell. Microbiol. 10, 375-
387. 

Couesnon, A., Shimizu, T. and Popoff, M.R. (2009). Differential entry of botulinum 
neurotoxin A into neuronal and intestinal cells. Cell Microbiol 11, 289-308. 

Dolly, J.O., Lawrence, G.W., Meng, J., Wang, J. and Ovsepian, S.V. (2009). Neuro-
exocytosis: botulinum toxins as inhibitory probes and versatile therapeutics. Curr 
Opin Pharmacol 9, 326-335. 

Dong, M., Richards, D.A., Goodnough, M.C., Tepp, W.H., Johnson, E.A. and Chapman, E.R. 
(2003). Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J. 
Cell Biol. 162, 1293-1303. 



 21 

Dover, N., Barash, J.R., Hill, K.K., Xie, G. and Arnon, S.S. (2014). Molecular 
characterization of a novel botulinum neurotoxin type H gene. J Infect Dis. 209, 192-
202. doi: 110.1093/infdis/jit1450. Epub 2013 Oct 1097. 

Feng, G., Mellor, R.H., Bernstein, M., Keller-Peck, C., Nguyen, Q.T., Wallace, M., et al. 
(2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral 
variants of GFP. Neuron. 28, 41-51. 

Foran, P.G., Mohammed, N., Lisk, G.O., Nagwaney, S., Lawrence, G.W., Johnson, E., et al. 
(2003). Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E and 
F compared with the long lasting type A. J. Biol. Chem. 278, 1363-1371. 

Fox, C.K., Keet, C.A. and Strober, J.B. (2005). Recent advances in infant botulism. Pediatr 
Neurol 32, 149-154. 

Fujinaga, Y., Inoue, K., Watanabe, S., Yokota, K., Hirai, Y., Nagamachi, E. and Oguma, K. 
(1997). The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an 
essential role in binding of toxin to the epithelial cells of guinea pig intestine, leading 
to the efficient absorption of the toxin. Microbiol. 143, 3841-3847. 

Fujinaga, Y., Sugawara, Y. and Matsumura, T. (2013). Uptake of botulinum neurotoxin in the 
intestine. Curr Top Microbiol Immunol 364:45-59., 10.1007/1978-1003-1642-33570-
33579_33573. 

Furness, J.B. (2000). Types of neurons in the enteric nervous system. J Auton Nerv Syst. 81, 
87-96. 

Furness, J.B. (2012). The enteric nervous system and neurogastroenterology. Nat Rev 
Gastroenterol Hepatol. 9, 286-294. doi: 210.1038/nrgastro.2012.1032. 

Furness, J.B., Callaghan, B.P., Rivera, L.R. and Cho, H.J. (2014). The enteric nervous system 
and gastrointestinal innervation: integrated local and central control. Adv Exp Med 
Biol 817:39-71., 10.1007/1978-1001-4939-0897-1004_1003. 

Furness, J.B., Jones, C.A., Nurgali, K. and Clerc, N. (2004). Intrinsic primary afferent 
neurons and nerve circuits within the intestine. Prog. Neurobiol. 72, 143-164. 

Garabedian, E.M., Roberts, L.J.J., McNevin, M.S. and Gordon, J.I. (1997). Examining the 
role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J. 
Biol. Chem. 272, 23729-23740. 

Gerbe, F., van Es, J.H., Makrini, L., Brulin, B., Mellitzer, G., Robine, S., et al. (2011). 
Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell 
type in the intestinal epithelium. J Cell Biol. 192, 767-780. doi: 
710.1083/jcb.201010127. 

Gershon, M.D. (2013). 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr 
Opin Endocrinol Diabetes Obes. 20, 14-21. doi: 
10.1097/MED.1090b1013e32835bc32703. 

Gonzalez-Escalona, N., Thirunavukkarasu, N., Singh, A., Toro, M., Brown, E.W., Zink, D., et 
al. (2014). Draft Genome Sequence of Bivalent Clostridium botulinum Strain 
IBCA10-7060, Encoding Botulinum Neurotoxin B and a New FA Mosaic Type. 
Genome Announc. 2(6). e01275-01214. doi: 01210.01128/genomeA.01275-01214. 

Goyal, R.K. and Hirano, I. (1996). The enteric nervous system. N Engl J Med 334, 1106-
1115. 

Grundy, D. and Schermann, M. (2006). Enteric nervous system. Curr Opin Gastroenterol. 22, 
102-110. 

Gu, S. and Jin, R. (2013). Assembly and function of the botulinum neurotoxin progenitor 
complex. Curr Top Microbiol Immunol 364:21-44., 10.1007/1978-1003-1642-33570-
33579_33572. 

Gu, S., Rumpel, S., Zhou, J., Strotmeier, J., Bigalke, H., Perry, K., et al. (2012). Botulinum 
neurotoxin is shielded by NTNHA in an interlocked complex. Science 335, 977-981. 



 22 

Harper, C.B., Martin, S., Nguyen, T.H., Daniels, S.J., Lavidis, N.A., Popoff, M.R., et al. 
(2011). Dynamin inhibition blocks botulinum neurotoxin type A endocytosis in 
neurons and delays botulism. J. Biol. Chem. 286, 35966-35976. 

Harper, C.B., Popoff, M.R., McCluskey, A., Robinson, P.J. and Meunier, F.A. (2013). 
Targeting membrane trafficking in infection prophylaxis: dynamin inhibitors. Trends 
Cell Biol. 23, 90-101. doi: 110.1016/j.tcb.2012.1010.1007. Epub 2012 Nov 1017. 

Harrington, A.M., Hutson, J.M. and Southwell, B.R. (2010). Cholinergic neurotransmission 
and muscarinic receptors in the enteric nervous system. Prog Histochem Cytochem. 
44, 173-202. doi: 110.1016/j.proghi.2009.1010.1001. Epub 2009 Nov 1011. 

Hernandes, L., Gama, P. and Alvares, E.P. (2004). Ileal VIP submucous neurons: confocal 
study of the area enlargement induced by myenteric denervation in weanling rats. 
Regul. Peptides 117, 69-72. 

Hesse, M., Grund, C., Herrmann, H., Brohl, D., Franz, T., Omary, M.B. and Magin, T.M. 
(2007). A mutation of keratin 18 within the coil 1A consensus motif causes 
widespread keratin aggregation but cell type-restricted lethality in mice. Exp Cell Res. 
313, 3127-3140. Epub 2007 May 3125. 

Hill, K.K. and Smith, T.J. (2013). Genetic diversity within Clostridium botulinum serotypes, 
botulinum neurotoxin gene clusters and toxin subtypes. Curr Top Microbiol Immunol 
364, 1-20. 

Igarashi, H., Fujimori, N., Ito, T., Nakamura, T., Oono, T., Nakamura, K., et al. (2011). 
Vasoactive intestinal peptide (VIP) and VIP receptors - Elucidation of structure and 
function for therapeutic applications. Int. J. Clin. Med. 2, 500-508. 

Jang, M.H., Kweon, M.N., Iwatani, K., Yamamoto, M., Terahara, K., Sasakawa, C., et al. 
(2004). Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc 
Natl Acad Sci U S A. 101, 6110-6115. Epub 2004 Apr 6117. 

Jin, Y., Takegahara, Y., Sugawara, Y., Matsumura, T. and Fujinaga, Y. (2009). Disruption of 
the epithelial barrier by botulinum haemagglutinin (HA) proteins - differences in cell 
tropism and the mechanism of action between HA proteins of types A or B, and HA 
proteins of type C. Microbiology 155, 35-45. 

Kitamura, M., Sakaguchi, S. and Sakaguchi, G. (1969). Significance of 12S toxin of 
Clostridium botulinum type E. J Bacteriol 98, 1173-1178. 

Kulkarni-Narta, A., Beltz, A.J. and Brown, D.R. (1999). Catecholaminergic, cholinergic and 
peptidergic innervation of gut-associated lymphoid tissue in porcine jejunum and 
ileum. Cell Tissue Res. 298, 275-286. 

Lalli, G., Gschmeissner, S. and Schiavo, G. (2003). Myosin Va and microtubule-based motors 
are required for fast axonal retrograde transport of tetanus toxin in motor neurons. J 
Cell Sci 116, 4639-4650. 

Lam, T.I., Stanker, L.H., Lee, K., Jin, R. and Cheng, L.W. (2015). Translocation of botulinum 
neurotoxin serotype A and associated proteins across the intestinal epithelia. Cell 
Microbiol. 

Lee, K., Zhong, X., Gu, S., Kruel, A.M., Dorner, M.B., Perry, K., et al. (2014). Molecular 
basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex. 
Science. 344, 1405-1410. doi: 1410.1126/science.1253823. 

Li, Z., Chalazonitis, A., Huang, Y.Y., Mann, J.J., Margolis, K.G., Yang, Q.M., et al. (2011). 
Essential roles of enteric neuronal serotonin in gastrointestinal motility and the 
development/survival of enteric dopaminergic neurons. J Neurosci. 31, 8998-9009. 
doi: 8910.1523/JNEUROSCI.6684-8910.2011. 

Macia, E., Ehrlich, M., Massol, R., Boucrot, E., Brunner, C. and Kirchhausen, T. (2006). 
Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell. 10, 839-850. 



 23 

Maksymowych, A.B., Rienhard, M., Malizio, C.J., Goodnough, M.C., Johnson, E.A. and 
Simpson, L.L. (1999). Pure botulinum neurotoxin is absorbed from the stomach and 
small intestine and produces peripheral neuromuscular blockade. Infect. Immun. 67, 
4708-4712. 

Maksymowych, A.B. and Simpson, L.I. (2004). Structural features of the botulinum 
neurotoxin molecule that govern binding and transcytosis across polarized human 
intestinal epithelial cells. J. Pharmacol. Exp. Ther. 210, 633-641. 

Maksymowych, A.B. and Simpson, L.L. (1998). Binding and transcytosis of botulinum 
neurotoxin by polarized human carcinoma cells. J. Biol. Chem. 273, 21950-21957. 

Malaska, S.E. (2014) Botulism as a disease of Humans. In Molceular Aspects of Botulinum 
Neurotoxin, K.A. Foster (ed.). New York, Springer, pp. 259-289. 

Matsumura, T., Sugawara, Y., Yutani, M., Amatsu, S., Yagita, H., Kohda, T., et al. (2015). 
Botulinum toxin A complex exploits intestinal M cells to enter the host and exert 
neurotoxicity. Nat Commun 6, 6255. 

Mawe, G.M. and Hoffman, J.M. (2013). Serotonin signalling in the gut--functions, 
dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 10, 473-486. 
doi: 410.1038/nrgastro.2013.1105. Epub 2013 Jun 1025. 

Mazuet, C., King, L.A., Bouvet, P., Legeay, C., Sautereau, J. and Popoff, M.R. (2014). Le 
botulisme humain en France, 2010-2012. BEH 6, 106-114. 

McLean, P.G., Borman, R.A. and Lee, K. (2007). 5-HT in the enteric nervous system: gut 
function and neuropharmacology. Trends Neurosci. 30, 9-13. Epub 2006 Nov 2028. 

Meunier, F.A., Herreros, J., Schiavo, G., Poulain, B. and Molgó, J. (2002) Molecular 
mechanism of action of botulinal neurotoxins and the synaptic remodeling they induce 
in vivo at the skeletal neuromuscular junction. In Handbook of Neurotoxicology, J. 
Massaro (ed.). Totowa, NJ, Humana Press, pp. 305-347. 

Mitchell, W.G. and Tseng-Ong, L. (2008). Reviews of infant botulism at childrens hospital 
los angeles. J Child Neurol 23, 968. 

Montufar-Solis, D., Garza, T. and Klein, J.R. (2007). T-cell activation in the intestinal 
mucosa. Immunol Rev. 215, 189-201. 

Nikitas, G., Deschamps, C., Disson, O., Niault, T., Cossart, P. and Lecuit, M. (2011). 
Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific 
targeting of goblet cell accessible E-cadherin. J Exp Med. 208, 2263-2277. doi: 
2210.1084/jem.20110560. Epub 20112011 Oct 20110563. 

Nishikawa, A., Uotsu, N., Arimitsu, H., Lee, J.C., Miura, Y., Fujinaga, Y., et al. (2004). The 
receptor and transporter for internalization of Clostridium botulinum type C progenitor 
toxin into HT-29 cells. Biochem. Biophys. Res. Commun. 319, 327-333. 

Nishiki, T., Tokuyama, Y., Kamata, Y., Nemoto, Y., Yoshida, A., Sato, K., et al. (1996). The 
high-affinity of Clostridium botulinum type B neurotoxin to synaptotagmin II 
associated with gangliosides GT1B/GD1a. FEBS Lett. 378, 253-257. 

Park, J.B. and Simpson, L.L. (2003). Inhalation poisoning by botulinum toxin and inhalation 
vaccination with its heavy-chain component. Infect. Immun. 71, 1147-1154. 

Peck, M.W. (2009). Biology and genomic analysis of Clostridium botulinum. Adv Microb 
Physiol 55, 183-265, 320. 

Persson, E.K., Scott, C.L., Mowat, A.M. and Agace, W.W. (2013). Dendritic cell subsets in 
the intestinal lamina propria: ontogeny and function. Eur J Immunol. 43, 3098-3107. 
doi: 3010.1002/eji.201343740. Epub 201342013 Aug 201343721. 

Popoff, M.R. and Connan, C. (2014) Absorption and transport of botulinum neurotoxins. In 
Molecular Aspects of Botulinum Neurotoxin, K.A. Foster (ed.). New York, Springer, 
pp. 35-68. 



 24 

Popoff, M.R., Mazuet, C. and Poulain, B. (2013) Botulism and Tetanus. In The Prokaryotes: 
Human Microbiology,   4° edn. Berlin Heidelberg, Springer-Verlag, pp. 247-290. 

Popoff, M.R. and Poulain, B. (2010). Bacterial toxins and the nervous system: neurotoxins 
and multipotential toxins interacting with neuronal cells. Toxins (Basel). 2, 683-737. 
doi: 610.3390/toxins2040683. Epub 2042010 Apr 2040615. 

Portela-Gomes, G.M., Lukinius, A. and Grimelius, L. (2000). Synaptic vesicle protein 2, a 
new neuroendocrine cell marker. Am J Pathol 157, 1299-1309. 

Poulain, B., Popoff, M.R. and Molgo, J. (2008). How do the botulinum neurotoxins block 
neurotransmitter release: from botulism to the molecular mechanism of action. 
Botulinum J. 1, 14-87. 

Poulsom, R. and Wright, N.A. (1993). Trefoil peptides: a newly recognized family of 
epithelial mucin-associated molecules. Am J Physiol. 265, G205-213. 

Rasetti-Escargueil, C., Jones, R.G., Liu, Y. and Sesardic, D. (2009). Measurement of 
botulinum types A, B and E neurotoxicity using the phrenic nerve-hemidiaphragm: 
improved precision with in-bred mice. Toxicon 53, 503-511. 

Restani, L., Antonucci, F., Gianfranceschi, L., Rossi, C., Rossetto, O. and Caleo, M. (2011). 
Evidence for Anterograde Transport and Transcytosis of Botulinum Neurotoxin A 
(BoNT/A). J Neurosci 31, 15650-15659. 

Restani, L., Giribaldi, F., Manich, M., Bercsenyi, K., Menendez, G., Rossetto, O., et al. 
(2012). Botulinum neurotoxins A and E undergo retrograde axonal transport in 
primary motor neurons. PLoS Pathog 8, e1003087. 

Rossetto, O., Pirazzini, M. and Montecucco, C. (2014). Botulinum neurotoxins: genetic, 
structural and mechanistic insights. Nat Rev Microbiol. 12, 535-549. doi: 
510.1038/nrmicro3295. Epub 2014 Jun 1030. 

Roux, S., Saint Cloment, C., Curie, T., Girard, E., Mena, F.J., Barbier, J., et al. (2006). Brain-
derived neurotrophic factor facilitates in vivo internalization of tetanus neurotoxin C-
terminal fragment fusion proteins in mature mouse motor nerve terminals. Eur J 
Neurosci 24, 1546-1554. 

Rummel, A. (2013). Double receptor anchorage of botulinum neurotoxins accounts for their 
exquisite neurospecificity. Curr Top Microbiol Immunol 364:61-90., 10.1007/1978-
1003-1642-33570-33579_33574. 

Rummel, A., Eichner, T., Weil, T., Karnath, T., Gutcaits, A., Mahrhold, S., et al. (2007). 
Identification of the protein receptor binding site of botulinum neurotoxins B and G 
proves the double-receptor concept. Proc Natl Acad Sci U S A 104, 359-364. 

Sakaguchi, G. (1983). Clostridium botulinum  Toxins. Pharmac. Ther. 19, 165-194. 
Schiavo, G., Matteoli, M. and Montecucco, C. (2000). Neurotoxins affecting neuroexocytosis. 

Physiol. Rev. 80, 717-766. 
Shone, C.C. and Tranter, H.S. (1995) Growth of Clostridia and preparation of their 

neurotoxins. In Clostridial neurotoxins, C. Montecucco (ed.). Berlin, Springer, pp. 
143-160. 

Simpson, L. (2013). The life history of a botulinum toxin molecule. Toxicon. 68, 40-59. 
Singh, B.R., Wang, T., Kukreja, R. and Cai, S. (2014) The botulinum neurotoxin complex and 

the role of ancillary proteins. In Molecular Aspects of Botulinum Neurotoxin, K.A. 
Foster (ed.). New York, Springer, pp. 68-101. 

Sobel, J. (2005). Botulism. Clin Infect Dis 41, 1167-1173. 
Sugawara, Y. and Fujinaga, Y. (2011). The botulinum toxin complex meets E-cadherin on the 

way to its destination. Cell Adh Migr 5, 34-36. 
Sugawara, Y., Matsumura, T., Takegahara, Y., Jin, Y., Tsukasaki, Y., Takeichi, M. and 

Fujinaga, Y. (2010). Botulinum hemagglutinin disrupts the intercellular epithelial 
barrier by directly binding E-cadherin. J Cell Biol 189, 691-700. 



 25 

Sugii, S., Ohishi, I. and Sakaguchi, G. (1977). Intestinal absorption of botulinum toxins of 
different molecular sizes in rats. Infect. Immun. 17, 491-496. 

Tacket, C.O. and Rogawski, M.A. (1989) Botulism. In Botulinum neurotoxin and Tetanus 
toxin, L.L. Simpson (ed.). San Diego, Academic Press, pp. 351-378. 

Tavallaie, M., Chenal, A., Gillet, D., Pereira, Y., Manich, M., Gibert, M., et al. (2004). 
Interaction between the two subdomains of the C-terminal part of the botulinum 
neurotoxin A is essential for the generation of protective antibodies. FEBS Lett. 572, 
299-306. 

Vuksic, M., Del Turco, D., Bas Orth, C., Burbach, G.J., Feng, G., Muller, C.M., et al. (2008). 
3D-reconstruction and functional properties of GFP-positive and GFP-negative 
granule cells in the fascia dentata of the Thy1-GFP mouse. Hippocampus 18, 364-375. 
doi: 310.1002/hipo.20398. 

Yu, Y.B. and Li, Y.Q. (2014). Enteric glial cells and their role in the intestinal epithelial 
barrier. World J Gastroenterol. 20, 11273-11280. 

  



 26 

LEGENDS TO FIGURES 
 

Figure 1. Visualization of fluorescent HCcB in the mouse intestine following its injection 

into the intestinal lumen. HCcB-Cy3 (100 µg) in Dulbecco’s modified Eagle’s medium was 

injected into ligated jejuno-ileal loop of anesthetized mice. The intestinal loop was then 

introduced again into the mouse abdomen. After 5 (A), 10 (B), and 20 min (C), the intestinal 

loop was washed, fixed, sliced, and prepared for fluorescent confocal microscopy. The 

preparations were co-stained with Hoechst (blue) to visualize nuclei. (A) At 5 min incubation, 

HCcB was visualized (red labeling) on the surface and/or inside some villous epithelial cells, 

as well as in the inter-villous spaces. No or weak HCcB labeling was observed in the 

submucosa. (B) HCcB was observed inside intestinal crypts, in a few villous epithelial cells, 

and in filamentous structures in the villi and around intestinal crypts. HCcB markedly stained 

filamentous structures in the submucosa and musculosa. (C) At 20 min the HCcB staining of 

filamentous structures in the submucosa and musculosa was prominent. Scale bars = 10 µm. 

(D) Quantification of HCcB fluorescence in the villi and submucose/musculosa of intestinal 

loops. Values are mean ± SD from 3 independent experiments (3 to 5 quantifications in each 

experiment). ***P < 0.001. 

 

Figure 2. Inhibition of HCcB entry into the intestinal mucosa by Dynasore. HCcB-Cy3 

(100 µg) was injected into a control ligated jejuno-ileal loop (A) or into a ligated intestinal 

loop pretreated with Dynasore (10 µg, 20 min) (B). After 10 min HCcB incubation, the 

intestinal segments were prepared as described in Fig. 1. The HCcB staining (red) of 

filamentous structures in the submucosa and musculosa (A) was prevented by pretreatment 

with Dynasore (B). E-cadherin staining (A and B middle panels, white) showed no 

morphological alteration of the intestinal epithelium. The preparations were co-stained with 

Hoechst (blue) and ECDD2 (white). (C) Quantification of HCcB fluorescence in the 

submucosa and musculosa of intestinal loops pretreated or not with Dynasore and injected 

intraluminally with fluorescent HCcB. Fluorescence from intestinal loops treated with HCcB 

only was set to 100%. Values are mean ± SD from 3 independent experiments (3 to 5 

quantifications in each experiment).. Scale bars = 10 µm. ***P < 0.001 
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Figure 3. BoNT/B enters the mouse intestinal mucosa and its entry is prevented by 

Dynasore. BoNT/B (100 µg) was injected into ligated jejuno-ileal loop of anesthetized mice. 

After the indicated times, the intestinal segments were prepared as described in Fig. 1 and 

BoNT/B was detected with rabbit immunopurified immunoglobulins against HCcB and 

Alexa594-anti-rabbit immunoglobulins. (A) After 10 min incubation, BoNT/B was visualized 

in a few villous epithelial cells, as well as in filament structures inside the villi and to a lower 

extent in the submucosa. (B) At 20 min incubation, a marked BoNT/B staining of filamentous 

structures in the submucosa and musculaosa was evidenced. Epithelium brush border was 

visualized by actin staining with phalloidin (green) and nuclei with Hoechst (blue). (C) 

Pretreatment with Dynasore (10 µg, 20 min) followed by 10 min incubation with BoNT/B 

significantly prevented BoNT/B staining in the submucosa and musculosa. (D) Quantification 

of BoNT/B fluorescence in the submucosa and musculosa of intestinal loops pretreated or not 

with Dynasore and injected intraluminally with BoNT/B. Data are mean values ± SD, from 3 

independent experiments (3 to 5 quantifications in each experiment).. Scale bars = 10 µm. *** 

P < 0.001. 

 

Figure 4. HCcB stains neuronal cell extensions in mouse submucosa and musculosa. 

HCcB-Cy3 (100 µg) was injected into ligated jejuno-ileal loop and after 10 min incubation 

the intestinal samples were prepared as described in Fig. 1. Neuronal cell extensions were 

labeled with anti neuro-filament (NF) antibodies, and nuclei with Hoechst (blue). Scale bars = 

20 µm and 10 µm for the magnification panels. 

 

Figure 5. HCcB recognizes neuronal cell extensions expressing synaptotagmin II but not 

glial cells in mouse intestinal submucosa and musculosa. A, HCcB-Cy3 (100 µg) was 

injected into ligated jejuno-ileal loop of transgenic Thy1-YFP mice. After 10 min incubation 

the intestinal samples were prepared as described in Fig. 1. A, HCcB stained neuronal cells 

and cell extensions expressing Thy1-YFP (green) and co-stained with anti-synpatotagmin II 

antibodies (white). B, No co-staining of glial cells monitored with anti-GFAP antibodies and 

fluorescent HCcB was evidenced. Nuclei were stained with Hoechst (blue). Scale bars = 20 

µm and 10 µm for magnification panels.  

 

Figure 6. Neuronal cells specifically targeted by HCcB in mouse intestinal submucosa 

and musculosa.  HCcB-Cy3 (100 µg) was injected into ligated jejuno-ileal loop and after 10 
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min incubation the intestinal samples were prepared as described in Fig. 1. The preparations 

were co-stained with anti-ChAT (marker of cholinergic neurons), anti-serotonin, anti-VIP, 

anti V-GLUT (marker of glutamatergic neurons), anti-V-GAT (marker of GABAergic 

neurons) (green). Enlarged views of the drawn squares are shown on the right side. Hoechst 

(blue), ECCD2 (white). Scale bars = 20 µm and 10 µm for magnification panels. 

 

Figure 7. BoNT/B targeted cholinergic and serotonin neurons in the intestinal 

submucosa and musculosa. BoNT/B (100 µg) was injected into mouse ligated jejuno-ileal 

loop and after 10 min incubation the intestinal samples were prepared as described in Fig. 1. 

BoNT/B was detected with rabbit immunopurified immunoglobulins against HCcB and 

Alexa594-anti-rabbit immunoglobulins. The preparations were co-stained with anti-ChAT (A) 

and anti-serotonin (B). Enlarged views of the drawn squares are shown on the right side. 

Hoechst (blue). Scale bars = 20 µm and 10 µm for magnification panels. 

 

Figure 8. HCcB targeted cholinergic and VIP neurons in intestinal villi. HCcB-Cy3 (100 

µg) was injected into ligated jejuno-ileal loop and after 10 min incubation the intestinal 

samples were prepared as described in Fig. 1. Preparations were co-stained with antibodies 

anti-ChAT (cholinergic cells) or anti-VIP (green), and anti E cadherin (ECCD2) (white) and 

Hoechst (blue). Scale bars =20 µm and 10 µm in the magnification panels. 

 

Figure 9. HCcB accumulation in some cells of the intestinal epithelium. HCcB-Cy3 (100 

µg) was injected into ligated jejuno-ileal loop and after 10 min incubation the intestinal 

samples were prepared as described in Fig. 1. (A) HCcB accumulated in a few cells of the 

intestinal epithelium which showed no apical actin staining. (B) Colchicine pretreatment (10 

µg/ml, 30 min) increased the number of cells accumulating HCcB. HCcB is preferentially 

distributed on the apical or basolateral sides of the cells from colchicine pretreated intestinal 

loop (B), in contrast to a broad HCcB distribution through cells of untreated intestinal loops 

(A). Note that the cells accumulating HCcB in the intestinal epithelium did not show 

Phalloidin staining of their apical side. Hoechst (blue). Scale bar = 10 µm. 

 

Figure 10. Colchicine does not totally block the intestinal passage of HCcB-Cy3. HCcB-

Cy3 (100 µg) was injected into ligated jejuno-ileal loop with or without pretreatment with 

colchicine (10 µg/ml, 30 min). Albeit colchicine induced HCcB-Cy3 accumulation into 
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certain intestinal epithelial cells, it did not completely impaired HCcB-Cy3 dissemination to 

neuronal cells in the submucosa and musculosa. Hoechst (blue). Scale bar = 10 µm. 

 

Figure 11. HCcB uses ganglioside GT1b as receptor on intestinal cells. HCcB-Cy3 (70 

µg) was injected into ligated jejuno-ileal loop (A) or incubated with a 10-fold excess of GT1b 

for 20 min at room temperature prior to injection into intestinal loop (B). After 15 min 

incubation the intestinal samples were prepared as described in Fig. 1. Prior incubation with 

GT1b significantly prevented HCcB staining of intestinal villi, submucosa, and musculosa. 

(C) Quantification of HCcB staining of the intestinal wall. Scale bars = 20 µm. ***P < 0.001. 

(3 to 5 quantifications in each experiment). 

 

Supplementary Figure 1.  HCcB recognizes neuronal cell extensions expressing 

synaptotagmin II in mouse intestinal submucosa and musculosa. HCcB-Cy3 (100 µg) was 

injected into mouse ligated jejuno-ileal loop. After 10 min incubation the intestinal samples 

were prepared as described in Fig. 1. HCcB stained neuronal cells and cell extensions 

expressing serotonin (A) (green) or ChAT (B) (green) and co-stained with anti-

synpatotagmin1 (SytII) antibodies (white), and Hoechst (blue). Scale bars = 20 µm and 10 µm 

for magnification panels.  

 

Supplementary Figure 2. Cells of the intestinal epithelium which accumulated HCcB, were 

not immunoreactive with antibodies against caspase 3. HCcB-Cy3 (100 µg) was injected into 

ligated jejuno-ileal loop and after 10 min incubation the intestinal samples were prepared as 

described in Fig. 1. The preparations were co-stained with antibodies against cleaved caspase 

3. Scale bars = 10 µm.  

 

Supplementary Figure 3. Investigation of HCcB accumulating cells of the intestinal 

epithelium. HCcB-Cy3 (100 µg) was injected into ligated jejuno-ileal loop and after 10 min 

incubation the intestinal samples were prepared as described in Fig. 1. The preparations were 

co-stained with antibodies anti-ChAT (cholinergic cells), anti-chromogranin A 

(enteroendocrine cells), anti-M villous cell, anti-serotonin, anti-DCLK1 (tuft cells), anti-

WGA (goblet cells), anti-CD3 (T lymphocytes), anti-CD11C (dendritic cells) (green). 

Hoechst (blue). Scale bars = 20 µm. 
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Supplementary Figure 4.  Cells of the intestinal epithelium which accumulated HCcB, were 

not immunoreactive with antibodies ITF and cytokeratin18 specific of goblet cells. HCcB-

Cy3 (100 µg) was injected into mouse ligated jejuno-ileal loop. After 10 min incubation the 

intestinal samples were prepared as described in Fig. 1. The preparations were co-stained with 

antibodies anti-ITF (green) or anti-cytokeratin18 (green), as well as anti E cadherin (ECCD2) 

(white) and Hoechst (blue). Scale bars = 10 µm. 

 

Supplementary Figure 5. The ganglioside GM1 does not impair HCcB entrys into the 

intestinal mucosa. HCcB-Cy3 (70 µg) was injected into ligated jejuno-ileal loop (A) or 

incubated with a 10-fold excess of GM1 for 20 min at room temperature prior to injection into 

intestinal loop (B). After 15 min incubation the intestinal samples were prepared as described 

in Fig. 1. 

 

Supplementary Figure 6. Visualization of fluorescent HCcB (10 µg) in the mouse 

intestine following its injection into the intestinal lumen. HCcB-Cy3 (10 µg) in Dulbecco’s 

modified Eagle’s medium was injected into ligated jejuno-ileal loop of anesthetized mice. 

After 20 min incubation the intestinal samples were prepared as described in Fig. 1. 

Preparations were co-stained with antibodies anti E-cadherin (ECCD2) and Hoechst (blue). 

Scale bars = 10 µm. 

 

 

 

  



 31 

 

 

 

Protein injected 

intraluminally 

 

Neuronal marker Colocalization 

(Pearson's 

coefficient) 

Co-stained neuronal 

structures with HCcB 

or BoNT/B (%) 

Cy3-HCcB ChAT 0.310 ± 0.07 82.2 ± 3.8 

BoNT/B ChAT 0.314 ± 0.08 87 ± 2.5 

Cy3-HCcB serotonin 0.25 ± 0.09 25.8 ± 5.4 

BoNT/B serotonin 0.34 ± 0.08 34.7 ± 6.9 

Cy3-HCcB VIP 0.294 ± 0.13 10.0 ± 1.6 

Cy3-HCcB V-GLUT 0.58 ± 0.09 56.2 ± 7.4* 

Cy3-NCcB V-GAT 0.24 ± 0.07 100 ± 14* 

 

 

Table 1. Quantification of colocalization between Cy3-HCcB or BoNT/B and neuronal 
markers in mouse submucosa and musculosa. Colocalization index was determined as 

Pearson's coefficient. The distribution of neuronal cells recognized by HCcB or BoNT/B was 

expressed as the ratio of the number of neuronal structures co-stained with HCcB or BoNT/B 

and with one neuronal marker to the total number of neuronal structures labeled with the 

corresponding neuronal marker. Results represent means ± SD accounting for at least 100 

cells from five different experiments except for V-GLUT and V-GAT (*) the results of which 

represent only a few cells (< 10).  

 

 




