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Abstract
Objective R ecently approved direct acting antivirals 
provide transformative therapies for chronic hepatitis 
C virus (HCV) infection. The major clinical challenge 
remains to identify the undiagnosed patients worldwide, 
many of whom live in low-income and middle-income 
countries, where access to nucleic acid testing remains 
limited. The aim of this study was to develop and validate 
a point-of-care (PoC) assay for the qualitative detection 
of HCV RNA.
Design  We developed a PoC assay for the qualitative 
detection of HCV RNA on the PCR Genedrive instrument. 
We validated the Genedrive HCV assay through a case–
control study comparing results with those obtained with 
the Abbott RealTime HCV test.
Results T he PoC assay identified all major HCV 
genotypes, with a limit of detection of 2362 IU/mL 
(95% CI 1966 to 2788). Using 422 patients chronically 
infected with HCV and 503 controls negative for anti-
HCV and HCV RNA, the Genedrive HCV assay showed 
98.6% sensitivity (95% CI 96.9% to 99.5%) and 100% 
specificity (95% CI 99.3% to 100%) to detect HCV. In 
addition, melting peak ratiometric analysis demonstrated 
proof-of-principle for semiquantification of HCV. The 
test was further validated in a real clinical setting in a 
resource-limited country.
Conclusion  We report a rapid, simple, portable and 
accurate PoC molecular test for HCV, with sensitivity 
and specificity that fulfils the recent FIND/WHO Target 
Product Profile for HCV decentralised testing in low-
income and middle-income countries. This Genedrive 
HCV assay may positively impact the continuum of HCV 
care from screening to cure by supporting real-time 
treatment decisions.
Trial registration number NCT 02992184 .

Introduction
Chronic infection with hepatitis C virus (HCV) 
is a major public health problem, estimated to 
infect 1.0% of the world’s population (71 million 
people)1 and to be responsible for 400 000 annual 
deaths as a result of cirrhosis and liver cancer.2 
With the advent of highly potent direct-acting 

antiviral (DAA) therapy, cure is now possible 
in  >95% of treated individuals achieving a 
sustained virological response,3–7 thus changing 
the landscape of clinical HCV management in 
recent years. Consequently, the WHO published 
in 2016 a global strategy to eliminate HCV as a 
public health threat by 2030.8 

Significance of this study

What is already known on this subject?
►► Recent direct-acting antiviral therapies have 
provided transformative therapeutic options 
for chronic hepatitis C virus (HCV) infection, yet 
the challenge remains to identify the 1% of the 
world’s population that is chronically infected 
with HCV.

►► Current WHO guidelines highlight the lack of 
field-based platforms for point-of-care (PoC) 
HCV RNA testing.

►► The Cepheid Xpert HCV Viral Load assay 
(Cepheid) is currently the only CE-In Vitro 
Diagnostic (IVD)-certified assay for decentralised 
HCV viral load determination, yet according to 
the WHO, it presents many limitations.

What are the new findings?
►► We developed a PoC assay for the qualitative 
detection of HCV RNA on the Genedrive 
PCR instrument. The PoC assay identified all six 
major HCV genotypes, with a limit of detection 
of 2362 IU/mL, 98.6% sensitivity (95% CI 
96.9% to 99.5%) and 100% specificity (95% CI 
99.3% to 100%) to detect HCV viraemia.

►► The test was also validated in a real-life clinical 
setting in a resource-limited country.

►► The Genedrive instrument is a 600 g portable 
device that can be battery operated, thus making 
it highly suitable for decentralised testing in field 
settings, and requires only 30 µL of sample.

►► We demonstrated a proof of concept for 
semiquantification of HCV viral load using 
melting peak ratiometric analysis.
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To achieve this ambitious goal, it is essential to scale up diag-
nosis and treatment capacities in low-income and middle-in-
come countries, particularly in Africa and Central Asia where 
HCV is highly endemic.9 However, in these regions, access to 
HCV diagnostic tools is severely limited.10 The current diag-
nostic algorithm is based on serological screening of HCV-spe-
cific antibodies (two different positive serological tests may 
be mandatory in some countries), followed by nucleic acid 
testing to detect presence of HCV RNA.10–12 Although rapid 
serological diagnostic tests exist for anti-HCV antibodies,10 13 
nucleic acid testing for HCV RNA often involves dedicated 
facilities and highly qualified personnel, even if platforms 
such as Cepheid, Panther or VERIS/MDx are changing such 
requirements. In low-income and middle-income countries, 
HCV RNA tests are currently only available in centralised 
laboratories, resulting in less than 1% of infected people in 
these regions being aware of their infection.14 In certain at-risk 
patient subgroups (eg, migrants  and prisoners) with current 
testing practices, it requires multiple visits to make a diagnosis, 
and as a result, many positives cases are missed. Therefore, to 
improve the ‘suboptimal’ cascade from screening to linkage 
to care and efficient therapy, there is an urgent unmet clin-
ical need for decentralised HCV RNA testing.14 Point-of-care 
(PoC) molecular technologies have emerged as a viable strategy 
for improving clinical management of HCV, as they facilitate 
diagnosis and treatment programmes with the possibility to 
work in rural, resource-limited settings. In addition to decen-
tralised nucleic acid amplification testing (NAAT), serological 
rapid diagnostic tests are also contributing to the improvement 
of diagnosis strategies.

We developed the Genedrive HCV assay for the detection 
of HCV RNA and conducted analytical and clinical validation 
studies to assess its diagnostic accuracy. We used plasma and 
serum samples from a large cohort of treatment-naïve patients 
with chronic HCV and HCV-negative controls at two centres 
(Institut Pasteur, Paris, France, and National Health Service 
(NHS), Nottingham, UK). Samples were assayed using the 
newly developed PoC assay, and results were compared with the 
commercial Abbott RealTime HCV Assay. We further validated 

this new PoC test in a resource-limited setting (Lancet Laborato-
ries, Johannesburg, South Africa).

Methods
Genedrive HCV assay development
The Genedrive HCV assay is a two-step procedure requiring a 
plasma or serum preparation step, followed by a reverse tran-
scription  (RT) reaction to generate the complementary DNA 
(cDNA) from the target HCV RNA. This cDNA undergoes asym-
metric PCR to generate linear amplification of single stranded 
products, followed by detection using a secondary hybridisation 
probe and dissociation curve analysis. The Genedrive HCV assay 
amplifies and detects a 91 base-pair from the 5′ untranslated 
region of the HCV genome.15 The pan-genotypic HCV target 
selection was performed through an iterative process comprising 
339 sequences from the Los Alamos National Security Database, 
representing all major HCV genotypes (1a and 1b, 2, 3, 4, 5 and 
6) (online supplementary table S1 A). Diagnostic accuracy was 
shown for all six majors genotypes (online supplementary table 
S1 B).

To enable PoC testing, the Plasma Preparation Cartridge 
contains lyophilised reagents for plasma processing (protease 
and reagents to prevent thermal-induced coagulation of plasma 
proteins), as well as the internal positive control (IPC) oligo-
nucleotides and template (pUCV57 plasmid). The IPC reaction 
targets a DNA sequence located in the backbone of the pUCV57, 
which shows non-cross reactivity for all HCV genotypes.

Genedrive HCV assay workflow
Following dilution with nuclease free water (1:2 ratio) of the 
plasma, 15 µL was added to each of the three channels of the 
plasma preparation cartridge. The protease incubation step was 
then performed within the Genedrive instrument, consisting of 
a 5 min incubation at 37°C followed by 5 min at 95°C, thus 
rendering the sample non-infectious. During this incubation 
time, 100 µL of nuclease free water was added to resuspend 
the RT-PCR reagents. After removal of the cartridge from the 
device, 30 µL of the RT-PCR suspension was dispensed into each 
channel, which was resealed with a new lid. The cartridge was 
placed back in the Genedrive instrument, and the programme 
resumed. The target RNA was converted to DNA (via RT) and 
subsequently amplified by asymmetric PCR. Following ampli-
fication, a fluorescent probe was used to detect target-specific 
sequences by monitoring changes in fluorescent signal inten-
sity that occurred during dissociation of the fluorescent probe 
from its hybridised target sequence (if present) as temperature 
increased. The Genedrive instrument detects this fluorescence 
at defined melt temperature positions (Tm) for both the HCV 
target and for the IPC. A schematic workflow of the Genedrive 
HCV assay and a representative outcome for a positive and a 
negative sample are illustrated in online supplementary figures 
S1 and S2. The melting temperatures (Tm) and peak height 
values for both the IPC and the HCV peak are also illustrated 
(online supplementary figure S2). Each of the three channels can 
result in either one or two separate melt peaks: the IPC peak and 
the HCV peak (if positive). The calling logic for determining 
a result and the four possible outcomes from the sample test 
replicates and IPC are depicted in online supplementary figures 
S3 and S4. In all cases, a positive/negative outcome on the first 
test run was taken as a result. Control fail-retest and indetermi-
nate-retest outcomes were retested, and the second outcome was 
taken as the final result. If that second run returned an inde-
terminate/control fail, no further retests were performed, and 

Significance of this study

How might it impact on clinical practice in the foreseeable 
future?

►► The Genedrive instrument provides a rapid, simple, portable 
and accurate PoC molecular test for HCV and demonstrated 
sensitivity and specificity fulfilling the requirements published 
by FIND, the Foundation for Innovation in New Diagnostics, 
and WHO for decentralised testing in low- and middle-income 
countries. Thus, the Genedrive HCV assay could support 
decentralisation of HCV testing diagnosis, resulting in improved 
patient outcome and public health. In particular its portability, 
rapid results, and ease of use make it ideal for confirming 
infection cases in population-based screening approaches. This 
is crucial for ensuring that diagnosis translates into treatment 
and that patients in low- and middle-income settings undergo 
screening and treatment initiation during a single medical 
intervention. This highly sensitive and specific test has recently 
obtained CE-IVD certification and is therefore positioned to 
impact the continuum of HCV care from screening to cure 
through real-time treatment decisions.
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no result was obtained. The instrument runs for 88 min (from 
1 hour 40 min to 2 hours including experimental manipulation). 
The runs were monitored, and the data were  saved using the 
Genedrive Engineering software.

Analytical validation
Analytical specificity was assessed using a group of HCV RNA 
negative plasma samples, some of which were positive for hepa-
titis B virus (HBV), HIV-1 or flaviviral samples (dengue, yellow 
fever, Zika and GBV-C) as determined by serology, PCR or both. 
These specimens were obtained at either NHS, Nottingham or 
Instituto de Salud Carlos III & Hospital la Paz, Madrid, as part 
of routine diagnostic procedures, with clearance for samples 
surplus to diagnostic use being permitted for assay development 
and validation.

Analytical sensitivity was assessed for each of six major HCV 
genotypes using 16 commercial standard plasma panels (Sera-
care (USA) and Tissue Solutions (UK)). Each sample was diluted 
to 5000, 3000 and 1000 IU/mL, and at each concentration, 24 
replicates were tested to obtain the limit of detection (LoD) using 
probit analysis. To examine the effect of anticoagulant on the 
LoD, analytical sensitivity was further assessed using synthetic, 
stable, homogenous and non-infectious armoured RNA in EDTA 
and Na-heparin plasma (Assuragen, Quant HCV GT 2b).16

Case–control study
We defined cases as treatment-naïve patients with chronic HCV 
infection (anti-HCV positive and HCV RNA positive). At the 
Institut Pasteur (Paris, France), pretreatment heparinised plasma 
samples were obtained from three approved cohort studies 
in which consent was obtained for secondary use of samples: 
Inserm C10-08, Inserm C10-54 and ANRS Cupic CO20. The 
negative control group consisted of samples from healthy 
donors, negative for both anti-HCV antibody and HCV RNA. 
Control heparinised plasma samples were obtained from the 
CoSImmGEn cohort of the Investigation Clinique et Accès aux 
Ressources Biologiques platform (Centre de Recherche Transla-
tionnelle, Institut Pasteur, Paris) and the Etablissement francais 
du sang. Nottingham samples were derived from those sent to 
the diagnostic laboratory for routine investigation of HCV or 
other blood-borne virus infection that were surplus to require-
ment and could be used for assessment of an in vitro assay. The 
daily positive controls were obtained from Seracare (USA) and 
used at a viral load (VL) of 10 000 IU/mL. The negative controls 
were from a healthy donor plasma (K2EDTA) internally sourced 
by genedrive plc. Samples were stored at −80°C, thawed, 
aliquoted (operators were blinded to infection status) and kept 
frozen at −80°C prior to use for both Genedrive and Abbott 
RealTime HCV Assay testing. Additionally, to test a potential 
freeze cycle effect, matched fresh and frozen plasma from HCV 
RNA positive and negative individuals were assessed. The study 
was sponsored and approved by the ANRS (France Recherche 
Nord&Sud Sida-HIV Hépatites) and registered with ​clinical-
trials.​gov (NCT02992184: PoC-HCV Genedrive Viral Detec-
tion Assay Validation Study).

Reference standard test for HCV RNA
VLs were measured by RT real-time PCR using the Abbott 
RealTime HCV assay, according to manufacturer’s instructions. 
The Abbott m2000sp and m2000rt instruments were used for 
automated sample preparation and real-time amplification and 
detection, respectively. The lower limit of quantification of the 
assay is 12 IU/mL. HCV genotyping was performed based on 

NS5b region sequence phylogenetic analysis using the Abbott 
RealTime HCV Genotype II on the Abbott m2000, following 
manufacturer’s instructions.

Robustness, repeatability and stability
Daily controls (positive and negative samples) were performed 
at both sites, and results were as expected (online  supplemen-
tary table S2). Nine hundred and twenty-five case and control 
samples were tested across 12 Genedrive instruments, five oper-
ators and three different assay batches. Although our study was 
not specifically designed and powered for this analysis, no effect 
of the Genedrive instruments, the operator and the assay batch 
were observed on assay performance. To determine the effect 
of interfering substances on assay performance, 37 different 
substances including a wide range of antiviral drugs and several 
endogenous substances such as bilirubin or haemoglobin were 
tested using HCV positive plasma at 3× LoD (online  supple-
mentary table S3).

Real-life clinical setting validation
A total of 130 plasma and serum samples were tested across three 
Genedrive instruments and four operators. They were collected 
as part of a routine HCV RNA diagnostic testing using Abbott 
RealTime HCV Genotype II on the Abbott m2000, in different 
African countries: Ghana (9 cases, 3 controls), Kenya (37 cases, 
1 control), Mauritius (18 cases), Mozambique (1 case), Nigeria 
(3 cases), South Africa (33 cases, 6 controls), Tanzania (10 cases, 
2 controls), Uganda (1 case), Zambia (1 case) and Zimbabwe (5 
cases). Samples were stored at −70°C prior to testing.

Data analysis
The accuracy of the Genedrive HCV assay to detect HCV 
viraemia was assessed by diagnostic sensitivity and specificity, 
and positive and negative likelihood ratios. Factors associated 
with the lack of result or false-negative results were identified 
using Wilcoxon rank-sum test for continuous and Fisher’s exact 
test for categorical variables. All the variables found to be signifi-
cantly associated with the lack of result in the crude analysis 
(P<0.05) were further assessed in the multivariable logistic 
regression. The sample size of the case–control study was deter-
mined based on the Foundation for Innovative New Diagnostics 
(FIND)/WHO Target Product Profile indicating the minimally 
acceptable sensitivity and specificity as 95% and 98%, respec-
tively.17 18 Four hundred and nine cases were required to demon-
strate that sensitivity is at least higher than 95% at a two-sided 
significance level of 5% with a power of 90% when the true 
sensitivity was 98%. Similarly, 495 controls were needed to 
show that the specificity is at least higher than 98% with a power 
of 80%, when the true specificity was 99.5%.

To assess the performance of the Genedrive HCV assay to 
quantify/semiquantify HCV RNA levels, we split the HCV 
RNA-positive cases into a derivation (Paris site) and valida-
tion set (Nottingham site). The correlation between HCV/IPC 
peak ratio (calculated as the mean value of ratios of HCV peak 
and IPC peak at each channel) and VL  was evaluated using 
Pearson’s correlation coefficient. To predict VL, a conversion 
factor from the HCV/IPC peak ratio to HCV RNA levels (log10 
IU/mL) was developed by fitting a linear regression model 
in the Paris cohort. The conversion factor was then applied 
to the HCV/IPC peak ratio of the Nottingham cohort, and 
the agreement between the observed HCV RNA levels using 
RT-PCR and the estimated HCV RNA levels from the Gene-
drive was assessed using Bland and Altman plots. All analyses 
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were performed using STATA, V.13.0. The study was reported 
in accordance with the standards for reporting of diagnostic 
accuracy checklists.19

Results
Analytical sensitivity
The Genedrive HCV assay detected all major HCV genotypes, 
with a LoD ranging from 1406 IU/mL (genotype 6) to 3203 IU/
mL (genotype 5) (online supplementary table S4). The LoD of 
the 16 standard plasma samples was 2362 IU/mL (95% CI 1966 
to 2758). Using synthetic armoured RNA, the LoD in plasma 
derived from K2 EDTA collected blood (1918 IU/mL, 95% CI 
1789 to 2205) was significantly lower (P<0.0001) than the LoD 
in Na-heparin derived plasma (2359 IU/mL, 95% CI 2147 to 
2826).

Analytical specificity
Analytical specificity was examined for 17 different patho-
gens including samples infected with HIV-1, HBV and various 
Flaviviridae (including: dengue, Zika, yellow fever and GBV-C) 
(online supplementary table S5). The Genedrive HCV assay was 
shown to be non-cross-reactive for any of the aforementioned 
samples with the sole exception of one positive out of two repli-
cate runs on a GBV-C sample.

Clinical validation study (case–control study)
A summary of all samples tested in all study sites is illustrated in 
table 1. The characteristics of case and control subjects including 
age, sex, median HCV RNA values and HCV genotype are 
summarised in table 2. For the first part of the study performed 
in Western laboratories (Institut Pasteur, Paris, and Queen’s 

Table 1  Study sample characteristics

Study site Institut Pasteur (Paris, France) Queen’s Medical Centre (Nottingham, UK) Lancet Laboratories (Johannesburg, South Africa)

Gold standard assay Abbott RealTime Abbott RealTime Abbott RealTime

HCV-positive cases (n) 221 201 118

Controls (n) 190 313 12

Condition of sample storage Frozen Frozen (201 cases and 313 controls)
Fresh (51 cases and 49 controls)

Frozen

Type of sample Plasma Plasma (124 cases and 234 controls)
Serum (77 cases and 79 controls)

Plasma/serum

Anticoagulant Na-heparin EDTA and SST tubes Information not recorded

Genotype distribution g1a and g1b (88%) and g4 (12%) g1a and g1b (62%), g3 (33%), g2 (2.2%), g4 
(2.2%), g5 (1.1%)

Data available for 98% of the cases: g1a (40.5%), g4 
(27.5%), g1b (15.5%), g3 (6%), g2 (5%), g5 (5%).

No of daily controls 1 positive and 3 negative 4 positive and 4 negative None

No of operators 2 3 4

No of Genedrive units 4 8 3

HCV, hepatitis C virus; SST, serum-separating tube.

Table 2  Characteristics of cases and control samples

European study African study

Cases (n=422) Control (n=503) P values Cases (n=118) Control (n=12) P values

Mean age (SD) 50.4 (14.3) 47.9 (15.7) 0.02 ND ND N/A

Male sex (%) 254/380 (66.8) 272/433 (62.8) 0.2 ND ND N/A

Study site

 �  Paris 221 (52.4) 190 (37.8) <0.001 N/A N/A N/A

 �  Nottingham 201 (47.6) 313 (62.2) N/A N/A N/A

Positive anti-HCV at baseline (%) 422/422 (100) 0/503 (0) 1.0 ND ND N/A

Mean HCV RNA (log10 IU/mL) (SD) 5.7 (1.0) N/A N/A 5.3 (0.8) N/A N/A

HCV RNA (log10 IU/mL) (%)

 � <3.0 13 (3.1) N/A N/A 0 N/A N/A

 �  3.0–6.0 227 (53.8) N/A 99 (83.9) N/A

 � ≥6.0 182 (43.1) N/A 19 (16.1) N/A

HCV genotype (%)

 �  1 301 (71.3) N/A N/A 65 (55.1) N/A N/A

 �  2 4 (1.0) N/A 6 (5.1) N/A

 �  3 59 (14.0) N/A 7 (5.9) N/A

 �  4 31 (7.3) N/A 32 (27.1) N/A

 �  5 2 (0.5) N/A 6 (5.1) N/A

 �  Not determined 25 (5.9) N/A 2 (1.7) N/A

HIV infection 0/422 29/503 ND ND N/A

HBV infection 0/422 25/503 ND ND N/A

HCV, hepatitis C virus; N/A, not applicable; ND, no data.
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Medical Centre, Nottingham), a total of 422 cases and 503 
negative controls were included, and the flow chart of the study 
samples is illustrated in figure 1. Results were obtained at the 
first attempt for 97.2% of the samples (899/925). Consequently, 
26 samples were retested, of which 61.5% (16/26) returned a 
result with the second test. The 10 samples (4 cases/6 controls) 
that failed such retesting were excluded from subsequent analysis 
for sensitivity and specificity. Multivariable analysis identified 
low HCV RNA levels as the sole independent factor significantly 
associated (P<0.001) with the lack of a result at the first attempt 
in the HCV RNA positive case samples (online supplementary 
table S6). The median HCV RNA level (IQR) was 5.9 log10 IU/

mL (5.4–6.3) in cases with results and 2.9 log10 IU/mL (2.6–3.5) 
in cases without results. No factor was identified as associated 
with a lack of result in the control samples.

Diagnostic performance of the HCV Genedrive assay
The diagnostic sensitivity and specificity of the Genedrive HCV 
assay to detect HCV RNA in Western laboratories was 98.6% 
(412/418; 95% CI 96.9% to 99.5%) and 100% (497/497; 
95% CI 99.3% to 100%), respectively (table  3). Apart from 
one sample with a VL of 2508 IU/mL, all of the false-negative 
samples were below 1000 IU/mL. Low HCV RNA level was the 

Figure 1  Flow chart of the study participants.

Table 3  Diagnostic performance of Genedrive using frozen and fresh samples

Frozen samples from Europe (n=915)* Fresh samples from Europe (n=96)† Frozen samples from Africa (n=126)‡

Point estimate 95% CI Point estimate 95% CI Point estimate 95% CI

Sensitivity 98.6% (412/418) 96.9% to 99.5% 98.0% (48/49) 89.1% to 99.9% 100% (114/114) 96.8% to 100%

Specificity 100% (497/497) 99.3% to 100% 100% (47/47) 92.5% to 100% 100% (12/12) 73.5% to 100%

Positive likelihood ratio N/A N/A N/A N/A N/A N/A

Negative likelihood ratio 0.014 0.007 to 0.032 0.020 0.003 to 0.142 0.000 N/A

*Excluding four cases and six controls who did not give any result after two attempts.
†Excluding two cases and two controls who did not give any result after two attempts.
‡Excluding four cases who did not give any result after two attempts.
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only factor significantly associated (P<0.0001) with false-neg-
ative results; age, sex, study site, sample type or viral genotype 
were not found to influence the accuracy of Genedrive HCV 
assay (online supplementary table S7). No differences in sensi-
tivity were observed between the two sites, which tested samples 
with difference anticoagulants. To examine for potential effects 
of a freeze/thaw cycle on the assay, the diagnostic performance 
was further assessed on 100 freshly collected (non-frozen) 
plasma samples. After excluding four samples (two cases/two 
controls) that did not give a result, the sensitivity and specificity 
was 98.0% (48/49; 95% CI 89.1% to 99.9%) and 100% (47/47; 
95% CI 92.5% to 100%), respectively (table 3), with one false 
negative sample that had a VL of 230 IU/mL. This demonstrates 
that the accuracy of the assay was not affected by a freezing step.

HCV VL semiquantification
In the derivation data set (Paris cohort), the mean of the HCV/
IPC peak ratio was closely correlated with VL  as measured by 
the Abbott platform (Pearson’s correlation coefficient: r=0.76, 
P<0.0001) (figure 2A). By fitting a linear regression, we obtained a 
conversion factor from the mean of the HCV/IPC peak ratio to the 
HCV RNA levels. The estimated log10 VL was equal to 3.5+0.4* 
HCV/IPC peak ratio. This conversion factor was then applied to 
the mean HCV/IPC peak ratio in the validation set, for which 
historical VL measurements were used. There was a linear correla-
tion between the VL measured by the Abbott RealTime platform 
and the value estimated using the Genedrive results (Pearson’s 

correlation coefficient: r=0.72, P<0.0001) (figure 2B). The agree-
ment between the observed and estimated VL was assessed using 
Bland and Altman plots; mean difference was −0.06 log10 IU/mL 
(SD: ±0.72; 95% limits of agreement: −1.47, 1.33) (figure 2C). 
Low HCV VL was associated with non-agreement (supplementary 
table S8). These results support the potential use of the Genedrive 
HCV assay to semiquantify VL.

Real-life clinical setting validation
In order to further assess the diagnostic accuracy of the Genedrive 
HCV assay outside Western laboratories, we extended our study to 
a real-life clinical setting. Samples tested in Johannesburg (South 
Africa) are summarised in tables 1 and 2. A total of 118 cases and 
12 negative controls were included, and the flow chart of the study 
samples is illustrated in figure 1. Results were obtained at the first 
attempt for 95.4% of the samples (124/130). Consequently, six 
samples were retested, of which 33.3% (2/6) returned a result 
with the second test. The four samples (four cases) that failed such 
retesting were excluded from subsequent analysis for sensitivity 
and specificity. All the samples that required retesting were positive 
for HCV RNA. As summarised in table  3, the Genedrive HCV 
assay demonstrated 100% sensitivity and 100% specificity when 
compared with the Abbot m2000 in real-life conditions.

Discussion
We developed and validated the Genedrive HCV assay for the 
qualitative detection of HCV RNA. The Genedrive instrument is 

Figure 2  Comparison between the HCV/IPC peak ratio (Genedrive) and HCV RNA levels (Abbott RealTime). (A) Correlation between the HCV/IPC 
peak ratio and the viral load measured by Abbott RealTime in the Paris cohort (derivation set). (B) Correlation between the viral load estimated by 
Genedrive and viral load measured by Abbott RealTime in Nottingham cohort (validation set). (C) Agreement between the viral loads estimated by 
Genedrive and viral loads observed by Abbott RealTime in Nottingham cohort (validation set).
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a handheld rapid thermocycler that permits NAAT on plasma or 
serum samples, which fulfils the target product profile for HCV 
diagnosis drafted by FIND/WHO (diagnostic specificity >98% and 
sensitivity >95%).17 18 Diagnostic accuracy was shown for all six 
majors genotypes, although genotypes 2, 5 and 6 had a limited 
presence in the samples tested (online supplementary table S1 B).

Although DAAs for HCV cure are now available, the chal-
lenge for HCV infection, and especially for HCV elimination 
programmes, is the screening of undiagnosed HCV-infected 
subjects and the linkage to care, namely the availability of DAA at 
reasonable costs. The majority of infected individuals are unaware 
of their infection and as such do not benefit from this unprece-
dented medical advance. HCV infection is often first identified by 
serological testing, followed by diagnostic confirmation of HCV 
nucleic acid in circulation.20–22 At present, HCV RNA testing is 
only available in centralised medical settings resulting in less than 
1% of infected people in low-income and middle-income coun-
tries being aware of their infection.14 Therefore, there is an urgent 
unmet clinical need for decentralised HCV testing that can provide 
rapid diagnosis that may result in improved patient outcome and 
public health as shown for other diseases.23

Initial assay validation was conducted to establish speci-
ficity for HCV with clinical validation performed in a two-site 
retrospective clinical study to determine sensitivity and speci-
ficity. In our treatment-naïve case subjects, the lack of a result 
and false-negative results were only observed in samples with 
RNA viral levels below the LoD of the Genedrive HCV assay. 
It is unlikely that this analytical sensitivity would impact diag-
nostic sensitivity, as the vast majority of people with pretreat-
ment chronic HCV infection have high VL (>5 log IU/mL). This 
is supported by a study of 2400 treatment-naïve patients with 
chronic HCV, where it was shown that  <2% of patients had 
viraemia below 4 log10 IU/mL.24 Furthermore, recent WHO 
guidelines explicitly acknowledged that ‘a limit of detection of 
3000 IU/mL or lower would be acceptable and would identify 
95% of those with viremic infection’.10

Linking diagnosis to treatment decisions is now the major clin-
ical challenge: in Europe, the percentage of cured individuals from 
initial viraemic infections is only 4.1%.25 In the best cases, the 
treatment rate is around 5% (eg, France and Germany) and does 
not exceed 1% in resource-limited countries.26 27 Furthermore, it 
has been well described how HCV prevalence negatively correlates 
with treatment rate,28 29 as illustrated by countries such as Egypt 
and Mongolia, which have very high HCV prevalence and treat-
ment rates between 0.1% and 1.2%. These data show how both 
initial screening and linkage to care after diagnosis are still major 
challenges, one of the main consequences being the low number 
of individuals that are prescribed and adhere to treatment.30 This 
is partially due to a lack of PoC  diagnostic tests, as well as the 
requirement for multiple clinical visits (eg, diagnosis by serology 
followed by NAAT). Devices like Genedrive could have a major 
impact in improving the chronic HCV care continuum, as diagnosis 
through HCV RNA detection could be performed in a wide range 
of field settings and no intermediate visits would be required. Thus, 
screening in resource-limited settings could be easy, effective and 
rapid and, consequently, treatment could be started as soon as a 
positive result has been obtained.

While several NAAT PoC assays are in development, such as 
Alere q (Alere), EOSCAPE (Wave 80 Biosciences), PanNAT plat-
form (Micronics), Truelab PCR (Molbio Diagnostics) and RT CPA 
(Ustar Biotechnologies), the Cepheid Xpert HCV Viral Load assay 
(Cepheid) is currently the only CE-IVD certified assay for decen-
tralised HCV VL  determination. The Xpert HCV test has been 
reported to have good performance but also presents important 

limitations.31–33 The conventional Xpert HCV assay requires a large 
volume of sample (1 mL plasma) and an electrical power supply, 
meaning that basic laboratory infrastructure is needed,34 35 although 
a recent study carried out by Grebeley and colleagues validated the 
use of 100 µL of capillary blood.33 Furthermore, the Cepheid Xpert 
cartridge contains guanidinium thiocyanate as the lysis reagent, 
which is highly toxic and therefore needs special precautions when 
handling and should be disposed of by incineration.36 In contrast, 
the Genedrive assay does not contain any highly toxic chemicals 
and only requires 30 µL of sample providing the potential for blood 
pin prick testing, although a requirement for serum/plasma remains 
an important limitation. Genedrive is a 600 g portable device that 
can be battery operated, thus making it highly suitable for decen-
tralised testing and use in field settings. While the Genedrive HCV 
assay is not fully automated, it is a user-friendly device and requires 
less than a day’s training to operate. While the Xpert HCV assay 
is quantitative, the Genedrive HCV assay has potential semiquanti-
tative properties as demonstrated herein. Nevertheless, the clinical 
significance of quantifying HCV VL is less important in the era of 
highly potent DAAs at least for diagnosing active HCV infection. 
The aim of this study was to develop and assess the diagnostic accu-
racy of the Genedrive HCV assay for the qualitative detection of 
HCV RNA. Thus, we compared Genedrive directly to the Abbott 
RealTime HCV test, a well-established PCR test that offers HCV 
VL and genotype testing and is considered the current gold stan-
dard. However, it would also be of interest to perform a direct 
comparison with Cepheid Xpert, to test for equivalence or superi-
ority between the two platforms.

Finally, a crucial factor when assessing the feasibility of PoC 
technologies is their cost, both for platform and assays. However, 
direct comparisons of costs to other platforms are challenging as 
there are geographic differences and unknowns such as subsidised 
or negotiated pricing, distributor margins and import duty. Further-
more, additional costs related to the platform should be consid-
ered, including installation, maintenance, training and lifespan of 
the equipment and tests. While the final Genedrive costs remain 
to be defined, the instrument is approximately $5000, which is 
considerably lower than other molecular systems, and each Gene-
drive HCV test will be available for $30–$40, depending on the 
country or region in question, which is equivalent to other prod-
ucts on the market.

The results obtained in Western laboratory-based settings are 
highly encouraging; however, the accuracy of PoC tests can be 
often reduced when used in real clinical settings.34 35 To address 
this point, we performed a validation study in South Africa with 
samples obtained from various African countries. In this real-life 
clinical setting, where there is often a large time between sample 
collection and testing—as illustrated by the high levels of hemol-
yses (27/130 samples)—the performance of the Genedrive HCV 
assay was equally specific and sensitive. Although we demonstrated 
the efficacy of the Genedrive test in real-life clinical conditions, 
including different temperatures, different time delays from sample 
withdrawal and processing and different operators, further valida-
tion of the whole system for infield use in decentralised settings is 
necessary to achieve its full potential of supporting wide spread 
screening campaigns.

Here, we provide proof of concept in a real-life clinical 
setting that the Genedrive HCV assay has great potential to 
provide an affordable and robust instrument for decentralised 
HCV NAAT testing. This highly sensitive and specific test 
has recently obtained CE-IVD certification and is positioned 
to enable real-time treatment management of patients with 
chronic HCV in any clinical setting. Therefore, the next step 
with the Genedrive HCV assay requires prospective validation 
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in real-life decentralised settings in low-income and middle-in-
come countries.
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