
HAL Id: pasteur-01768943
https://pasteur.hal.science/pasteur-01768943

Submitted on 13 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Natural variation in the parameters of innate immune
cells is preferentially driven by genetic factors

Etienne Patin, Milena Hasan, Jacob Bergstedt, Vincent Rouilly, Valentina
Libri, Alejandra Urrutia, Cécile Alanio, Petar Scepanovic, Christian Hammer,

Friederike Jönsson, et al.

To cite this version:
Etienne Patin, Milena Hasan, Jacob Bergstedt, Vincent Rouilly, Valentina Libri, et al.. Natural
variation in the parameters of innate immune cells is preferentially driven by genetic factors. Nature
Immunology, 2018, 19 (3), pp.302 - 314. �10.1038/s41590-018-0049-7�. �pasteur-01768943�

https://pasteur.hal.science/pasteur-01768943
https://hal.archives-ouvertes.fr


Page 1 of 44 

Natural variation in innate immune cell parameters 

 is preferentially driven by genetic factors 

Etienne Patin1-3,26,*, Milena Hasan4,26, Jacob Bergstedt5,6,26, Vincent Rouilly3,4, Valentina Libri4, 

Alejandra Urrutia4,7-9, Cécile Alanio4,7,8, Petar Scepanovic10,11, Christian Hammer10,11, Friederike 

Jönsson12,13, Benoît Beitz4, Hélène Quach1-3, Yoong Wearn Lim9, Julie Hunkapiller14, Magge 

Zepeda15, Cherie Green16, Barbara Piasecka1-4, Claire Leloup14, Lars Rogge4,17, François Huetz18,19, 

Isabelle Peguillet20-22, Olivier Lantz20-23, Magnus Fontes6,24, James P. Di Santo4,8,25, Stéphanie 

Thomas4,7,8, Jacques Fellay9,10, Darragh Duffy4,7,8, Lluís Quintana-Murci1-3,27, Matthew L. Albert4,7-

9,27,*, for The Milieu Intérieur Consortium 

1Unit of Human Evolutionary Genetics, Department of Genomes & Genetics, Institut Pasteur, Paris 

75015, France. 2CNRS URA3012, Paris 75015, France. 3Center of Bioinformatics, Biostatistics and 

Integrative Biology, Institut Pasteur, Paris 75015, France. 4Center for Translational Science, Institut 

Pasteur, Paris 75015, France. 5Department of Automatic Control, Lund University, Lund SE-221, 

Sweden. 6International Group for Data Analysis, Institut Pasteur, Paris 75015, France. 7Laboratory of 

Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris 75015, France. 

8INSERM U1223, France. 9Department of Cancer Immunology, Genentech, South San Francisco, 

California 94080, USA. 10School of Life Sciences, École Polytechnique Fédérale de Lausanne, 

Lausanne 1015, Switzerland. 11Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland. 

12Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris 75015, 

France. 13INSERM U1222, France. 14Department of Human Genetics, Genentech, South San 

Francisco, California 94080, USA. 15Employee Donation Program, Genentech, South San Francisco, 

California 94080, USA. 16Department of Development Sciences, Genentech, South San Francisco, 

California 94080, USA. 17Immunoregulation Unit, Department of Immunology, Institut Pasteur, Paris 

75015, France. 18INSERM U783, Faculté de Médecine, Site Necker-Enfants Malades, Université Paris 

Descartes, Paris 75015, France. 19Lymphocyte Population Biology, CNRS URA 1961, Institut 

Pasteur, Paris 75015, France. 20Center of Clinical Investigations CIC-BT1428 IGR/Curie, Paris 75005, 



Page 2 of 44 

France. 21Equipe Labellisée de la Ligue de Lutte Contre le Cancer, Institut Curie, Paris 75005, France. 

22Department of Biopathology, Institut Curie, Paris 75005, France. 23INSERM/Institut Curie U932, 

France. 24Centre for Mathematical Sciences, Lund University, Lund SE-221, Sweden. 25Innate 

Immunity Unit, Institut Pasteur, Paris 75015. 26These authors contributed equally to this work. 27These 

authors jointly directed this work. 

 

*Correspondence should be addressed to: M.L.A. (albertm7@gene.com), E.P. (epatin@pasteur.fr) 

  



Page 3 of 44 

Abstract 1 

The enumeration and characterization of circulating immune cells provide key indicators of human 2 

health and disease. To identify the relative impact that environmental and genetic factors have on 3 

variation of innate and adaptive immune cell parameters in homeostatic conditions, we combined 4 

standardized flow cytometric analysis of blood leukocytes and genome-wide DNA genotyping in 5 

1,000 healthy, unrelated individuals of western European ancestry. We show that smoking, together 6 

with age, sex and latent cytomegalovirus infection, are the main non-genetic factors affecting human 7 

variation in immune cell parameters. Genome-wide association studies of 166 immunophenotypes 8 

identified 15 loci that are enriched in disease-associated variants. Finally, we demonstrate that innate 9 

cell parameters are more strongly controlled by genetic variation than adaptive cell parameters, which 10 

are primarily driven by environmental exposures. Our data establish a resource that generates new 11 

hypotheses in immunology and highlight the role of innate immunity in the susceptibility to common 12 

autoimmune diseases. 13 

  14 
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Introduction 15 

The immune system plays an essential role in maintaining homeostasis in individuals challenged by 16 

microbial infections, a physiological mechanism conceptualized by the French physician Claude 17 

Bernard in 1865, when he defined the notion of “milieu intérieur”1. Host-pathogen interactions trigger 18 

immune responses through the activation of specialized immune cell populations, which may 19 

eventually result in pathogen clearance. The study of immune cell populations circulating in the blood 20 

provides a view into innate cells that are transiting between the bone marrow and tissues, and adaptive 21 

cells that are recirculating through lymphoid organs. Clinical studies of patients with past or chronic 22 

latent infections have reported profound perturbations of subsets of circulating immune cells due to 23 

altered trafficking, selective expansion or attrition2,3. However, several studies have suggested that 24 

extensive differences in white blood cell composition also exist among healthy individuals4,5. The 25 

evaluation of the naturally occurring variation of immune cell parameters, together with its 26 

environmental and genetic determinants, could accelerate hypothesis generation in basic immunology, 27 

and ultimately improve the characterization of pathological states. 28 

Population immunology approaches, which compare the immune status across a large number of 29 

healthy individuals, have highlighted the predominant effect of intrinsic factors such as age and sex 30 

on human blood cell composition6. Several activated and memory T cell subpopulations increase with 31 

age7, which may partially result from diminished thymic activity8 and explain reduced vaccination 32 

efficacy in the elderly9. Seasonal fluctuations in B cells, regulatory T (Treg) cells and monocytes10 and 33 

a strong effect of cohabitation on human immune profiles11 have been observed, suggesting that 34 

environmental exposures also drive immune variation. For instance, latent cytomegalovirus (CMV) 35 

infection, detected in 40% to >90% of the general population12, has been associated with an increased 36 

number of effector memory T cells13, which could in turn alter immune responses to heterologous 37 

infection14. However, the respective impact of age, sex and CMV infection on both innate and 38 

adaptive cells, as well as the precise nature of the environmental factors affecting immune variation, 39 

are largely unknown.  40 

Recent technological advances in flow cytometry, combined with genome-wide DNA genotyping, 41 

now allow the dissection of the genetic basis of interindividual variation in immune cell parameters. A 42 
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seminal genome-wide association study identified 13 genetic loci strongly associated with the 43 

proportion of different leukocyte subpopulations, in a cohort of 249 Sardinian families15. Another 44 

study reported the deep immunophenotyping of ~1,800 independent traits in 245 healthy twin pairs, 45 

identifying 11 independent genetic loci that accounted for up to 36% of the variation of 19 different 46 

traits16. A third study estimated the genetic heritability of 95 different immune cell frequencies in 105 47 

healthy twin pairs, and suggested that variation in immune cells is largely explained by non-heritable 48 

factors17. Finally, four novel loci were associated to B and T cell traits in a cohort of 442 healthy 49 

donors, in a study that dissected both non-genetic and genetic factors affecting immune cell traits 50 

mediating adaptive immunity10. Together, these studies provided valuable insights into the 51 

contribution of genetic factors to inter-individual differences in adaptive immune cell populations, but 52 

largely neglected several major innate cell types in circulation. An integrated evaluation of the nature 53 

and respective impact of intrinsic, environmental and genetic factors driving human variation in both 54 

innate and adaptive immunity is thus lacking.  55 

Here, we report the use of standardized flow cytometry to comprehensively establish the white 56 

blood cell composition of 1,000 healthy, unrelated individuals of western European ancestry, which 57 

compose the Milieu Intérieur cohort. We confirm with this broad resource that age, sex, CMV 58 

seropositivity and smoking have major, independent effects on innate and adaptive immune cell 59 

parameters. We identified, through a genome-wide association study, 15 loci associated with 60 

parameters of circulating leukocyte subpopulations, 12 of which are novel. Finally, we show that 61 

cellular mediators of innate and adaptive immunity are differentially affected by non-genetic and 62 

genetic factors under homeostatic conditions. 63 

  64 
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Results 65 

Variation of immune cell parameters in the general population 66 

The Milieu Intérieur cohort includes 500 men and 500 women, stratified across five decades of age 67 

from 20 to 69 years. Subjects were surveyed for a number of demographic variables, including past 68 

infections, vaccination and surgical histories and health-related habits (Supplementary Table 1). 69 

Detailed inclusion and exclusion criteria used to define "healthy" subjects recruited into the cohort 70 

have been previously reported18. 71 

To describe natural variation of both innate and adaptive immune cells in the 1,000 subjects, we 72 

used ten 8-color immunophenotyping flow cytometry panels (Supplementary Figs. 1-10 and 73 

Supplementary Table 2; Online Methods), which allowed us to report a total of 166 distinct 74 

immunophenotypes (Supplementary Table 3). Our resource includes 75 (46%) and 91 (54%) 75 

immunophenotypes obtained in innate and adaptive immune cells, respectively. Innate cells were 76 

defined as those lacking somatic recombination of the genome19, and included granulocytes 77 

(neutrophils, basophils and eosinophils), monocytes, natural killer (NK) cells, dendritic cells and 78 

innate lymphoid cells (ILCs) (Fig. 1). Adaptive cells were defined by their dependence on RAG1/2 79 

activity and included T cells (γδ T, MAIT, NKT, Treg and TH cells) and B cells. The 80 

immunophenotypes in both innate and adaptive immune cells included 76 absolute counts of 81 

circulating cells, 87 expression levels of cell-surface protein markers (quantified by the mean 82 

fluorescence intensity, or MFI), and 3 ratios of cell counts or MFI (Supplementary Fig. 11 and 83 

Supplementary Table 3). 84 

To reduce technical variation introduced by sample temperature fluctuations and pre-analytical 85 

procedures, we strictly followed a standardized protocol for tracking and processing samples20. We 86 

verified that measured immunophenotypes were highly reproducible using technical replicates 87 

(Supplementary Figs. S12 and S13 and Supplementary Table 3), demonstrating the high precision 88 

of the data. We nevertheless identified two technical batch effects that impacted flow cytometric 89 

analyses. One effect corresponded to the hour at which the blood sample was drawn from fasting 90 

subjects (Supplementary Fig. 14a), which may possibly be explained by the spike in cortisol at the 91 

time of waking21. The second effect corresponded to temporal variation of immunophenotypes over 92 
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the one-year sampling period, which did not follow the periodic distribution observed for cellular 93 

traits under seasonal fluctuations11, and primarily affected MFI measures (Supplementary Fig. 14b). 94 

We corrected for these batch effects in all subsequent analyses (Supplementary Fig. 15; Online 95 

Methods), and provide the distribution, ranges and statistics of all batch-corrected immune cell counts 96 

(Supplementary Table 3), thereby facilitating comparisons with cytometry data collected as part of 97 

routine clinical practice. This resource can be accessed through a user-friendly web application 98 

(http://104.236.137.56:3838/LabExMICytometryBrowser_ShinyApp/), which can be queried based 99 

on personal characteristics, such as age or sex.  100 

Owing to the hierarchical structure of immune cell differentiation (i.e., cellular lineages emerge 101 

from common progenitor cells), a substantial portion of the immune cell counts measured in this study 102 

were highly correlated (Supplementary Fig. 16). These correlations were not directly attributable to 103 

the influence of factors such as age or sex, which were regressed out in this analysis. We observed 104 

correlations between circulating levels of ILC and NK populations, reflecting their common 105 

developmental pathway and dependence on γc cytokines22. Likewise, MAIT cells and CCR6+ CD8+ T 106 

cells were also correlated, owing to the former being the major subset of CCR6+ T cells in 107 

circulation23. Finally, we identified a strong correlation between the number of Treg and conventional 108 

CD4+ T cells, validating previous experimental work that defined an IL-2-driven self-regulatory 109 

circuit that integrates the homeostasis of these cell populations24.  110 

 111 

Impact of age, sex and CMV infection on innate and adaptive cell parameters 112 

Prior studies have shown that two intrinsic factors, age and sex, are responsible for inter-individual 113 

variation in white blood cell composition6,7,10,14,25–27. We used linear mixed models to quantify the 114 

respective impact of each of these intrinsic factors on variation in innate and adaptive cell 115 

composition. We observed a significant effect of age on 35% of immune cell parameters (adjusted 116 

P<0.01; Fig. 2a and Supplementary Fig. 17a), among which only 29% were measured in innate 117 

cells. We detected a general decline in the number of ILC and plasmacytoid dendritic cells (pDCs) 118 

and an increase in the number of CD16hi monocytes with increasing age (Fig. 2a), which might 119 

contribute to the altered immune response to viral infections in elderly persons and age-associated 120 
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inflammation14,28,29. We found a modest increase in the number of memory T cells with age, 121 

supporting the view that the observed expansion of these cell populations in elderly subjects is not due 122 

to aging per se, but to CMV seropositivity13, which we accounted for in the model. Our analyses also 123 

revealed that naive CD8+ T cells decrease more than twice as rapidly with age as compared to naive 124 

CD4+ T cells, at a rate of 3.6 % (99% FCR-adjusted Confidence Interval (99%CI): [3.0%, 4.1%]) and 125 

1.6 % (99%CI: [1.1%, 2.1%]) per year, respectively (Fig. 2a-c), supporting the view that CD8+ T cells 126 

are more susceptible to concentrations of homeostatic cytokines and/or that the production of CD4+ T 127 

cells is preferentially enhanced in the human thymus30. 128 

Although sex differences have been previously reported for various immune responses and 129 

diseases25, studies examining circulating cellular parameters have reported inconsistent results, owing 130 

to both differences between flow cytometry procedures and relatively small, underpowered or poorly-131 

stratified study cohorts. We report a significant impact of sex on 16% of measured 132 

immunophenotypes (adjusted P<0.01, Fig. 2d and Supplementary Fig. 17b), of which 38% were 133 

measured in innate cells. We found a higher number of activated NK cells in men, as compared to 134 

women. By contrast, MAIT cells were systematically increased in women, across all age decades 135 

(Fig. 2e-f), collectively suggesting a lasting effect of early hormonal differences on immune cell 136 

development and biology. 137 

Environmental exposures are also known to drive immune variation, among which persistent 138 

CMV infection is one of the strongest candidates6,13,14,17. We observed a significant effect of latent 139 

CMV infection on 13% of immune cell parameters (Fig. 2g and Supplementary Fig. 17c), of which 140 

more than 75% were measured in adaptive cells. We confirm that CMV triggers a major change in the 141 

number of memory T cells, which is independent from age effects13,17. In particular, CMV 142 

seropositivity associated with a 12.5-fold (99%CI: [8.8, 17.6]) higher number of CD4+ effector 143 

memory RA T cells (TEMRA), and a 4.6-fold (99%CI: [3.5, 6.0]) higher number of CD8+ TEMRA cells 144 

(Fig. 2g-i). However, we did not find evidence that CMV infection impacts the number of naive or 145 

central memory (TCM) T cell compartments. Supporting this observation, the total number of CD8+ 146 

and CD4+ T cells increased in parallel with the expanded number of memory T cells, thus suggesting 147 

independent regulation of the naive and TEM and/or TEMRA cell pools. CMV seropositive donors also 148 
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presented lower numbers of circulating NKT and MAIT cells (Fig. 2g). Together, our broad resource 149 

provides a comprehensive quantification of the respective impact that age, sex and CMV infection 150 

have on immune cell parameters. In doing so, our results suggest a stronger impact of these factors on 151 

adaptive cells, relative to innate cells. 152 

 153 

Tobacco smoking extensively alters innate and adaptive cell numbers 154 

Capitalizing on the detailed lifestyle and demographic data obtained for the Milieu Intérieur cohort, 155 

we evaluated the influence of additional environmental factors on immune cell parameters, controlling 156 

for the defined effects of age, sex and CMV serological status. A total of 39 variables were chosen for 157 

analysis and tested for association with each immunophenotype. These include socio-economic 158 

characteristics, past infections, health-related habits and surgery and vaccination history 159 

(Supplementary Fig. 18 and Supplementary Table 1). We identified a unique environmental factor 160 

that significantly alters circulating numbers of immune cells: active tobacco cigarette smoking, which 161 

affects 36% of measured immunophenotypes (Fig. 3a and Supplementary Fig. 19), of which 36% 162 

were measured in innate cells.  163 

We observed a 23% (99%CI: [11%, 37%]) increase in the number of circulating CD45+ cells, and 164 

a 26% (99%CI: [10%, 45%]) increase in the number of conventional lymphocytes in smokers as 165 

compared to non-smokers (Fig. 3b). Previous studies suggested that smokers have alterations in 166 

circulating cell populations due to diminished adherence of leukocytes to blood vessel walls, possibly 167 

as a result of lower antioxidant concentrations31. Furthermore, we found in active smokers a 168 

significant increase of 43% (99%CI: [17%, 76%]) and 41% (99%CI: [15%, 71%]) of activated and 169 

memory Treg cells, respectively, a pattern that was also observed to a lesser extent in past smokers 170 

(Fig. 3b-d). Active smokers also showed decreased numbers of NK cells, ILCs, γδ T cells and 171 

different subsets of MAIT cells (Fig. 3b). These findings are consistent with a study showing that 172 

smoking triggers local release of IL-33 by the lung epithelium32, in turn engaging the IL-33 receptor, 173 

ST2, on both innate and non-classical lymphocytes33. Collectively, these findings reveal that active 174 

smoking has a profound impact on immune cell parameters, which is similar in magnitude to that of 175 

age, and affects both innate and adaptive cells.  176 
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Genome-wide association study of 166 immune cell parameters 177 

To identify common genetic variants affecting inter-individual variation in immune cell parameters, 178 

the Milieu Intérieur cohort was genotyped at 945,213 SNPs, enriched in exonic SNPs (Online 179 

Methods). After quality control (Supplementary Fig. 20), genotype imputation was performed and 180 

yielded a total of 5,699,237 highly accurate SNPs, which were tested for association with the 166 181 

immunophenotypes using linear mixed models. The models were adjusted for the genetic relatedness 182 

among subjects and any non-genetic variable identified as predictive of each specific 183 

immunophenotype by stability selection based on elastic net regression (Supplementary Table 3; 184 

Online Methods). We confirmed our power to identify medium-effect genotype-phenotype 185 

associations by simulations, and by empirically replicating well-known genetic associations with non-186 

immune traits, such as eye and hair color or uric acid and cholesterol levels (Online Methods).  187 

With respect to immune traits, we found 14 independent genetic loci associated with 42 out of 188 

166 immunophenotypes (25%), at a conservative genome-wide significant threshold of P<1.0x10-10 189 

(Fig. 4a, Table 1, Supplementary Fig. 21, Supplementary Tables 4 and 5). We then conducted 190 

conditional GWAS, by adjusting these 42 immunophenotypes on the 14 leading associated variants 191 

(Table 1), and found an additional independent locus reaching genome-wide significance 192 

(Supplementary Fig. 22 and Supplementary Table 6). Genome-wide significant associations were 193 

replicated in an independent cohort of 75 European-descent donors, for all immune traits measured in 194 

this replication cohort (P<0.05; Table 1; Online Methods). Also, we confirmed that our immune cell 195 

measurements were stable, as all genome-wide significant associations were confirmed for 196 

immunophenotypes measured in a new blood draw taken in 500 of the 1,000 subjects of the Milieu 197 

Intérieur cohort, sampled 7 to 44 days after the initial visit (P<10-3; Table 1). We also provide a list of 198 

26 suggestive association signals (P<5.0x10-8), including a number of biologically relevant candidate 199 

genes (Supplementary Table 6). The associated genetic loci were enriched in SNPs associated by 200 

GWAS with diseases (31% observed vs. 5% expected, resampling P=0.0032), most of which were 201 

autoimmune diseases, including rheumatoid arthritis, Vogt-Koyanagi-Harada syndrome and atopic 202 
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dermatitis (Supplementary Table 4). These findings highlight the importance of loci altering 203 

immune cell populations in the context of ultimate organismal traits affecting human health.  204 

 

Genetic associations primarily identify immune cell-specific protein QTLs 205 

Of the 42 immunophenotypes for which a significant genetic association was detected, 36 (86%) were 206 

MFI, which measures the cell-specific expression of protein markers conventionally used to determine 207 

the differentiation or activation state of leukocytes. For 28 of these 36 MFI measurements (78%), the 208 

genetic association was observed between the protein MFI and SNPs located in the vicinity of the 209 

gene encoding the corresponding protein (Table 1 and Supplementary Fig. 21), i.e., local protein 210 

QTLs (local-pQTLs). For instance, genetic variation close to the ENPP3 gene was associated with 211 

CD203c MFI in basophils (rs2270089, P=2.1x10-28), CD24 with CD24 MFI in marginal zone B cells 212 

(rs12529793, P=3.8x10-21) and CD8A with CD8a MFI in CD69+ CD16hi NK cells (rs71411868, 213 

P=5.9x10-58). 214 

We identified two independent local-pQTLs in the FCGR gene cluster (Table 1), which encodes 215 

the most important Fc receptors for inducing phagocytosis of opsonized microbes. Genetic variation 216 

close to FCGR3A was associated here with CD16 MFI in CD16hi NK cells (rs3845548, P=3.0x10-87). 217 

The same variants were also shown to affect the number of CD62L- myeloid cDCs in a previous 218 

study15. The second signal associated FCGR2B variation with CD32 MFI in basophils (rs61804205, 219 

P=1.7x10-36), but not in eosinophils and neutrophils. Consistently, it is known that basophils express 220 

both CD32a and CD32b proteins, while eosinophils and neutrophils predominantly express CD32a34. 221 

Conversely, a local-pQTL was identified at the SELL gene, which was associated with CD62L MFI in 222 

eosinophils and neutrophils (rs2223286, P=1.6x10-35 and 8.8x10-13, respectively), but not in basophils 223 

(Fig. 4b, c).  224 

A number of other local-pQTLs were found to be cell-specific; three different association signals 225 

were found in the HLA-DR gene region, with HLA-DR MFI in pDCs and CD14hi monocytes 226 

(rs114973966, P=2.2x10-56), in cDC1 (rs2760994, P=6.1x10-38) and in cDC3 cells (rs143655145, 227 

P=2.6x10-11). To verify if these signals were independent from each other, we conducted omnibus 228 

association tests on imputed HLA alleles (Online Methods). We found that the association signals in 229 
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CD14hi monocytes, pDCs and cDC1 actually resulted from different amino acid-altering variants at 230 

the same multi-allelic position 13 of the HLA-DRβ1 protein (P=2.0x10-47, 7.0x10-90 and 5.3x10-41 in 231 

CD14hi monocytes, pDC and cDC1, respectively; Supplementary Tables 7 and 8), recently shown to 232 

explain a large part of the association signal in the HLA locus for type 1 diabetes35. A different amino-233 

acid variant, at position 67 of HLA-DRβ1, was identified in cDC3s (P=3.9x10-13). Conditional 234 

analyses also revealed independent associations of HLA-DR cell-surface expression with two residues 235 

in class I HLA-B gene (position 97 and 194; P=3.8x10-17 and 1.3x10-18; Supplementary Tables 7 and 236 

8). Collectively, these results show that the protein expression of markers of immune cell 237 

differentiation and activation can be affected by common genetic variants, of which some are known 238 

to be implicated in human pathogenesis. 239 

 240 

Immune cell local protein QTLs control mRNA levels of nearby genes 241 

Although four of the 9 local-pQTLs identified by our analyses are likely explained by amino acid-242 

altering variants in surrounding genes (Supplementary Tables 4 and 7), the remaining signals do not 243 

present obvious candidate causal variants. To dissect the functional basis of these associations, we 244 

tested if the corresponding SNPs were also associated with mRNA levels of nearby genes (i.e., 245 

expression QTL, eQTL) using gene expression data obtained from the same donors36 and results from 246 

the Genotype-Tissue Expression (GTEx) Project37. Five of the local-pQTLs were strongly associated 247 

with the transcript levels of a surrounding gene (P<1.0x10-5; Fig. 4d). The SNPs controlling the MFI 248 

of CD16 in CD16hi NK cells and CD32 in basophils, CD62L in eosinophils, CD8a in CD69+ CD16hi 249 

NK cells and CD203c in basophils were associated with mRNA levels of FCGR2B, SELL, CD8A, and 250 

ENPP3, respectively (Supplementary Table 4). These analyses indicate that genetic variants 251 

associated with immunophenotypes can directly affect gene expression of markers of immune cells in 252 

whole blood. This suggests that eQTL mapping in different immune cell compartments can greatly 253 

improve our knowledge of the genetic factors controlling human inter-individual variation in flow 254 

cytometric parameters.  255 

 256 

 257 
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Novel trans-acting genetic associations with immune cell parameters 258 

We detected six loci that do not exclusively act as local-pQTLs on immunophenotypes (Table 1 and 259 

Supplementary Fig. 21). These included variants that are associated with immune cell counts, or that 260 

are genetically independent from the genes encoding immune cell markers with which they are 261 

associated (i.e., trans-pQTLs). A variant in the vicinity of the S1PR1 gene was associated with CD69 262 

MFI in CD16hi NK cells (rs6693121, P=4.8x10-37). CD69 is known to downregulate cell-surface 263 

expression of the sphingosine-1-phosphate receptor-1 (S1P1) on lymphocytes, a mechanism that 264 

elicits egress from the thymus and secondary lymphoid organs38. Genetic variation in an intron of the 265 

ACOXL gene, close to BCL2L11, was associated with the absolute count of CD8a+ CD56hi NK cells 266 

(rs12986962, P=9.1x10-19). BCL2L11 (also known as BIM) is an important regulator of lymphocyte 267 

apoptosis39, and is associated with chronic lymphocytic leukemia and total blood cell number40. A 268 

third association involved genetic variants close to the ACTL9 gene and the ratio of CD16 MFI in 269 

CD16hi and CD56hi NK cells (rs114412914, P=4.3x10-30). The same variants have been also found to 270 

be associated with CD56++ CD16- NK cells in another study10.  271 

Although identified here for their trans effects on markers of immune cell differentiation or 272 

activation, three trans-acting genetic associations were also local-eQTLs for nearby immune-related 273 

genes37 (Supplementary Tables 4 and 6). The MFI of CCR7 in CD4+ and CD8b+ naive T cells was 274 

associated with a variant in the TMEM8A gene (rs11648403, P=3.0x10-19), which also controls 275 

TMEM8A mRNA levels (P=2.5x10-27). TMEM8A is expressed on the surface of resting T cells and is 276 

down-regulated after cell activation41, suggesting a possible functional association and/or co-277 

regulation with CCR7. Variants in the vicinity of the ALOX15 gene were associated with increased 278 

protein levels of the high-affinity IgE receptor in eosinophils (rs56170457, P=9.2x10-14) and increased 279 

ALOX15 mRNA levels (P=2.7x10-13). These results, together with the high expression of the 280 

ALOX15 protein and its pro-inflammatory effect in circulating eosinophils42, suggest that this 281 

lipoxygenase plays an important role in IgE-dependent allergic reactions. Finally, conditional GWAS 282 

identified an additional trans-acting association, between a variant close to the CD83 gene and HLA-283 

DR MFI in cDC1 (rs72836542, P=2.8x10-12, Supplementary Fig. 22), the same variant being also 284 

identified as a local-eQTL of CD83 gene expression (P=5.4x10-21). These results suggest that CD83, 285 
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an early activation marker of human DCs, upregulates HLA-DR expression in activated dendritic 286 

cells.  287 

 288 

Natural variation of innate immune cell parameters is preferentially driven by genetic factors 289 

A large proportion of both MFI and cell number immunophenotypes that presented a genome-wide 290 

association were detected in innate immune cells (35/44, 80%), including granulocytes, monocytes, 291 

NK and dendritic cells (Table 1), while 47% of all immunophenotypes were measured in innate cells 292 

(Supplementary Table 3). Furthermore, of the adaptive cell immunophenotypes showing genetic 293 

associations, 3 of the 9 measurements (33%) were related to naive T or B cells, while naive adaptive 294 

cell parameters represented <10% of all adaptive cell measurements. These observations suggest a 295 

stronger effect of genetic variants on innate and naive adaptive cell subpopulations, relative to 296 

differentiated or experienced adaptive immune cells.  297 

In support of this hypothesis, the presence of HLA-DR molecules, which was assessed at the 298 

surface of both innate and adaptive immune cells, was strongly associated with HLA-DR genetic 299 

variation in monocytes, NK and dendritic cells (Table 1), but not in memory CD4+ or CD8+ TCM, TEM 300 

and TEMRA cells (P>1.0x10-6; Supplementary Table 5). Because we observed substantial correlations 301 

among HLA-DR+ memory T cell numbers (R²≈0.3, P<0.05; Supplementary Fig. 16), we 302 

hypothesized that they were at least partly controlled by the same genetic factors, which were further 303 

examined using a multivariate GWAS (Online Methods). This refined approach detected a 304 

suggestive genetic association close the HLA-DRB1 gene with a variant (rs35743245, P=1.0x10-8) in 305 

strong linkage disequilibrium with that detected in pDCs, monocytes and NK cells (r²=0.92; 306 

Supplementary Fig. 23). This finding provides proof-of-concept that immunophenotypes in both 307 

innate and adaptive cells can be controlled by the same genetic factors, but their effects are stronger in 308 

innate cells, relative to experienced adaptive cells.  309 

We next systematically quantified the impact of genetic and non-genetic factors on innate and 310 

adaptive cells. We established, for each immunophenotype, a linear regression model that included 311 

the four most impactful non-genetic variables (Figs. 2 and 3) and all genome-wide significant and 312 

suggestive variants (Table 1 and Supplementary Table 6), and estimated their respective 313 
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contribution to the total variance (Online Methods). We found that a larger proportion of the variance 314 

of innate cell immunophenotypes was explained by genetic factors (Fig. 5b and 5d), relative to 315 

adaptive cell immunophenotypes (Fig. 5a and 5c). Inversely, the variance in adaptive cell numbers 316 

was dominated by non-genetic factors such as age and CMV serostatus (Fig. 5a). To test if these 317 

differences were significant, we used a mixed model that accounted for correlations among 318 

immunophenotypes (Online Methods). Conclusively, we estimated that the variance explained by 319 

genetics was 66% larger for innate cell measurements, relative to adaptive cells (95%CI: [13%-320 

143%]; bootstrap P=0.012; Mann-Whitney U test: P=0.032), while the variance explained by non-321 

genetic factors was 46% smaller for innate cell measurements (95%CI: [22%-63%]; bootstrap 322 

P=1.8x10-3; Mann-Whitney U test: P=8.1x10-3). When considering non-genetic factors separately, the 323 

ratio of explained variance between innate and adaptive cell measurements was the smallest for 324 

smoking (0.46, 95%CI: [0.17-1.25]), followed by age (0.63, 95%CI: [0.42-0.95]), CMV infection 325 

(0.71, 95%CI: [0.51-0.99]), and sex (0.95, 95%CI: [0.60-1.51]). Taken together, our results indicate 326 

that genetic factors account for a substantial fraction of human variation in immune cell parameters, 327 

with their influence being stronger in innate immune cells, relative to adaptive immune cell 328 

phenotypes. 329 

  330 
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Discussion 331 

Over the last two decades, research in human immunology has employed multi-parametric cytometry 332 

to enumerate and assess the activation state of immune cells in healthy and disease conditions. 333 

Although immune cell parameters do vary in the general population, the extent to which intrinsic, 334 

environmental and genetic factors explain this variability remained elusive. To tackle these questions, 335 

we generated a broad resource by combining standardized flow cytometry with genome-wide DNA 336 

genotyping in a demographically well-defined cohort of 1,000 healthy individuals. We confirm the 337 

strong and independent impacts of age and CMV infection on naive and memory T cell populations, 338 

respectively, and provide robust evidence for sex differences in innate and adaptive cell numbers. We 339 

show that immune homeostasis is altered upon chronic cigarette smoke exposure, which elicits both a 340 

decline of MAIT cells, possibly due to their increased migration to sites of inflammation, and an 341 

increase in the numbers of activated and memory Treg cells, suggesting a role for these 342 

immunosuppressive populations in the increased susceptibility of smokers to infection43. Furthermore, 343 

we found that human genetic variation substantially impacts immune cell parameters, particularly the 344 

cell-surface expression of markers conventionally used to identify leukocyte differentiation or 345 

activation. These results highlight the need to consider non-genetic and genetic features when 346 

interpreting parameters such as circulating white blood cells of patients, a critical aspect in clinical 347 

monitoring. For instance, HLA-DR expression on monocytes is routinely measured by flow cytometry 348 

to predict the clinical course of septic shock and identify patients who should benefit from 349 

immunoadjuvant therapies44. We identified a strong effect of HLA-DRβ1 coding variation on HLA-350 

DR expression in CD14hi monocytes, suggesting that prognostic tools of fatal outcome in sepsis 351 

should be tailored to patient’s genetic makeup.  352 

The most prominent result of our study is the lower number of genetic associations detected in 353 

memory T and B cells, relative to innate cells, an observation that could be explained by their strong 354 

dependence on the varying individual history of past infections. Adaptive immune cells are known to 355 

possess a much longer half-life as compared to myeloid innate cells, in mice and humans45,46. 356 

Stimulus-induced differentiation and expansion may also result in the possible masking of genetic 357 

associations for adaptive cell types. Consistently, genetic associations in adaptive immune cells were 358 
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primarily observed for immunophenotypes of naive adaptive cells. Our observations are further 359 

supported by a GWAS of 36 blood traits in 173,480 individuals, which found that the genetic 360 

heritability of monocyte and eosinophil counts was larger than that of lymphocyte counts27. This is 361 

however at odds with another recent study, which concluded that adaptive immune traits are more 362 

affected by genetics, whereas innate immune traits are more affected by environment, based on the 363 

estimated genetic heritability of 23,394 immune phenotypes in 497 adult female twins47. We suggest 364 

that such deep immunophenotyping in large-scale cohorts, combined with statistical tests for 365 

differences in heritability that account for inherent correlations among phenotypes, may reveal a more 366 

balanced contribution of genetics on the natural variation of innate and adaptive immune cell traits.  367 

Our findings that genetic factors preferentially controls variation in innate immune cells have 368 

other important consequences. A previous study of 105 healthy twin pairs concluded that variation in 369 

cell population frequencies is largely driven by non-heritable influences17. We find instead that 370 

genetic variation explains a large part of the variance of immune cell parameters, particularly MFIs 371 

(i.e., cell-surface expression of protein markers) measured in innate cells. This discrepancy may stem 372 

from the fact that this previous study considered only a fraction of innate myeloid and lymphoid 373 

populations48, and possibly because of its limited power due to a moderate sample size. Also, our 374 

results suggest that the genetic control of cell-surface expression of immune cell markers is stronger 375 

than that of cell counts, and the former were not assessed in most previous population immunology 376 

studies10,15,17. 377 

Finally, the mapping of genetic loci that control immune cell parameters identified cell-specific 378 

pQTLs that are enriched in genetic variants associated with human diseases and traits. For example, 379 

we identified the position 13 of the HLA-DRβ1 protein as a predictor of HLA-DR expression at the 380 

cell-surface of pDCs and monocytes, which in turn is strongly associated with type 1 diabetes35, 381 

suggesting the implication of innate immunity in the disease27. Furthermore, the expression of CD56 382 

and CD16 in NK cells is controlled by genetic variants close to the ACTL9 gene, which were shown to 383 

be associated with atopic dermatitis49, suggesting a possible involvement of NK cells in this 384 

pathology50. More generally, genetic variants found to modulate innate immune cell parameters, in 385 

this and previous studies10,15,16, have been directly implicated in the aetiology of several autoimmune 386 
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disorders, such as inflammatory bowel disease, ulcerative colitis and atopic dermatitis. Together, 387 

these findings illustrate the value of our approach, which mapped novel genetic associations to 388 

specific cell populations and cellular states, providing new insights into the mechanisms underlying 389 

disease pathogenesis. Further evaluations of the natural variability in cellular mediators of immunity, 390 

together with the elucidation of their environmental and genetic determinants, will facilitate a detailed 391 

dissection of the immune system in human health and disease. 392 
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Data Availability: 496 

The SNP array data that support the findings of this study have been deposited in the European 497 

Genome-Phenome Archive (EGA) with the accession code EGAS00001002460. The flow cytometric 498 

data can be downloaded as an R package (XX) and explored with the Shiny web application available 499 

in http://milieu_interieur_cytoGWAS.pasteur.fr. 500 

 501 

Code Availability: 502 

The code developed to identify non-genetic factors that impact immunophenotypes and quantify their 503 

effects has been made available in http://github.com/JacobBergstedt/mmi. 504 
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Figure legends 529 

 530 

Figure 1 Immune cell counts and cell-surface markers measured in the Milieu Intérieur cohort. Panel 531 

numbers refer to the cytometric analyses performed, grouped based on cellular lineage 532 

(Supplementary Figs. 1-10 and Supplementary Tables 2 and 3). The expression of phenotypic 533 

markers of differentiation or activation was quantified based on their mean fluorescent intensity 534 

(MFI), indicated per panel. Interconnecting lines illustrate cellular lineages or differentiation states. 535 

Red and blue squares indicate immunophenotypes significantly associated in this study with non-536 

genetic or genetic factors, respectively. 537 

 538 

Figure 2 Respective effects of age, sex and CMV infection on innate and adaptive cell counts in 539 

1,000 healthy individuals. Significant multiplicative effects (adjusted P<0.01) of (a-c) increasing age, 540 

(d-f) female sex and (g-i) CMV seropositivity on circulating levels of immune cells. (a, d, g) Effect 541 

sizes were estimated in a linear mixed model with a log-transformed immunophenotype as response, 542 

controlling for batch effects and genome-wide significant SNPs, and then transformed to the original 543 

scale. Adaptive and innate immune cells are represented in grey and black, respectively. The 99% 544 

confidence intervals (99%CIs) were false coverage-adjusted. (b, e, h) Regression lines were fitted 545 

using local polynomial regression. (b) Impact of age on naive CD8b+ (in dark green) and CD4+ (in 546 

light green) T cells. (e) Impact of age and sex on the absolute count of MAIT cells. Females are 547 

represented in pink and men in blue. (h) Impact of age and CMV serostatus on CD4+ EMRA T cells. 548 

CMV+ individuals are represented in red and CMV- in orange. (c) Flow cytometry plots of naive 549 

CD8b+ and CD4+ T cells for representative persons in their 20s and their 60s. (f) Flow cytometry plots 550 

of EMRA CD4+ T cells in representative CMV- and CMV+ subjects. (i) Flow cytometry plots of 551 

MAIT cells in representative woman and man. The significant effects of age, sex and CMV 552 

seropositivity on MFI can be found in Supplementary Fig. 17.  553 

 554 
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Figure 3 Effects of smoking on innate and adaptive immune cell counts in 1,000 healthy individuals. 555 

(a) Levels of association (i.e., –log10(q-values)) between 39 non-genetic factors and adaptive and 556 

innate cell counts, at a false discovery rate (FDR) < 1%. Except when their effects were specifically 557 

measured, immunophenotypes were regressed on age, sex, CMV status, batch effects and genome-558 

wide significant SNPs (Table 1). (b) Significant multiplicative effects (adjusted P<0.01) of active and 559 

past smoking on circulating levels of immune cells. The multiplicative effect sizes were estimated in a 560 

linear mixed model with a log-transformed immunophenotype as response, controlling for age, sex, 561 

CMV serostatus, batch effects and genome-wide significant SNPs, and then transformed to the 562 

original data scale. 99%CIs were false coverage-adjusted. Adaptive and innate immune cells are 563 

represented in grey and black, respectively. (c) Impact of age and smoking on the number of 564 

circulating Treg cells. Brown indicates active smokers, orange indicates past smokers and yellow 565 

indicates non-smokers. Regression lines were fitted using local polynomial regression. (d) Flow 566 

cytometry plots of HLA-DR expression in Treg cells of representative non-smoker and active smoker. 567 

The effect of smoking on MFI can be found in Supplementary Fig. 19.  568 

 569 

Figure 4 Genome-wide significant associations with 166 immunophenotypes measured in 1,000 570 

healthy individuals. (a) Manhattan plots of genome-wide significant associations with variants acting 571 

locally (local-pQTLs, in blue) or not (cell count QTLs or trans-pQTLs, in yellow) on 572 

immunophenotypes. The gray line indicates the genome-wide significance threshold (P<10-10). 573 

Zoomed Manhattan plots for all hits are shown in Supplementary Figure 21. (b) Differential 574 

expression of the CD62L protein marker in granulocytes of representative individuals homozygous 575 

for the major (T/T, in dark colors) and minor (C/C, in light colors) rs2223286 alleles. (c) Cell-specific 576 

CD62L expression is shown for age-matched individuals homozygous for the major (open distribution 577 

with solid line) or minor (shaded distribution with dotted line) rs2223286 alleles. (d) Zoomed 578 

Manhattan plots of genetic associations between SNP rs2223286 in the SELL gene and cell-surface 579 

expression on CD62L in eosinophils or SELL mRNA levels in whole blood. Each point is a SNP, 580 
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whose color represents its level of linkage disequilibrium (r²) with the best hit (in purple). Blue lines 581 

indicate local recombination rates. 582 

 583 

Figure 5 Proportion of variance of innate and adaptive cell parameters explained by non-genetic and 584 

genetic factors. Flow cytometric measurements were separated into (a, b) 76 absolute counts and 2 585 

count ratios of circulating immune cells and (c, d) 87 MFIs and a ratio of MFIs. The total variance R² 586 

of the 91 adaptive (a, c) and 75 innate (b, d) cell parameters was decomposed into proportions 587 

explained by intrinsic factors (age and sex; Fig. 2), environmental exposures (CMV infection and 588 

smoking; Figs. 2 and 3) and genetic factors (independent significant and suggestive GWAS hits, 589 

Table 1 and Supplementary Table 6).  590 

 591 
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Locus 
FACS 
panel 

Immunophenotype 
Other 

immunophenotypesa P-value 
Replication 

P-valueb 

P-value for 
biological 
replicatesc

Identified 
by a 

previous 
study 

Effect 
size (SE) 

Chr Position 
Candidate 

variant 
Effect 
alleled

Other 
allele

EAFd Candidate 
gene 

Distance 
to TSS 

(kb) 

1 4 
CD69 in CD16hi NK 

cells 

CD69+ CD16hi NK 
cells; CD69 in CD8a+

and CD69+ CD16+ 
NK cells 

4.8 x 10-37 6.3 x 10-4 2.0 x 10-16 - 
0.14 

(0.01) 
1 101744633 rs6693121 A C 0.40 S1PR1 41.0 

2 4 
CD16 in CD16hi NK 

cells 

CD16 in CD56hi NK 
cells; HLA-DR in 

CD16hi, CD8a+ 
CD16+ and CD69+ 
CD16+ NK cells 

3.0 x 10-87 7.1 x 10-7 2.6 x 10-41 Orrù et al., 
Cell 2013

22.77 
(1.04) 

1 161507448 rs3845548 C T 0.87 FCGR3A 12.4 

3 7 CD32 in basophils - 1.7 x 10-36 3.6 x 10-7 1.6 x 10-18 - 
11.23 
(0.86) 

1 161653737 rs61804205 C T 0.10 FCGR2B 20.8 

4 7 
CD62L in 

eosinophils 
CD62L in neutrophils 1.6 x 10-35 3.7 x 10-2 1.4 x 10-8 - 

542.78 
(42.08) 

1 169665632 rs2223286 C T 0.33 SELL 0.0 

5 4 
CD8a in CD69+ 
CD16hi NK cells 

CD8a in CD16hi, 
CD56hi, CD69+ 

CD56hi, CD8+ CD56hi, 
CD8a+ CD16hi and 

HLA-DR+ CD16hi NK 
cells 

5.9 x 10-58 5.9 x 10-2 3.4 x 10-24 Orrù et al., 
Cell 2013

0.44 
(0.03) 

2 87026807 rs71411868 A G 0.76 CD8A 0.0 

6 4 
Number of CD8a+ 
CD56hi NK cells 

CD56hi NK cells; 
CD69+ CD56hi NK 
cells; CD56+ ILC 

9.1 x 10-19 2.7 x 10-2 2.5 x 10-9 - 
1.57 

(0.18) 
2 111808558 rs12986962 A G 0.62 

ACOXL / 
BCL2L11 

0.0 

7 8 HLA-DR in cDC3 - 2.6 x 10-11 - 3.1 x 10-10 - 
0.11 

(0.02) 
6 32340176 rs143655145 T C 0.19 HLA-DRA 67.4 
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8 8 HLA-DR in cDC1 - 6.1 x 10-38 - 1.3 x 10-17 - 
0.12 

(0.01) 
6 32574308 rs2760994 T C 0.63 HLA-DRB1 16.7 

9 8 HLA-DR in pDC 

CD86 in pDC; HLA-
DR+ CD56hi NK cells; 

HLA-DR in CD14hi 
monocytes 

2.2 x 10-56 - 2.7 x 10-26 - 
9.06 

(0.54) 
6 32599163 rs114973966 T C 0.18 HLA-DRB1 41.5 

10 6 
CD24 in IgM+ 

marginal zone B 
cells 

CD24 in B cells, and 
in naive, memory, 
double negative 
memory, IgM- 

marginal zone and 
marginal zone B cells

3.8 x 10-21 - 5.5 x 10-10 - 
0.20 

(0.02) 
6 107168676 rs12529793 C T 0.92 CD24 254.7 

11 7 CD203c in basophils - 2.1 x 10-28 3.2 x 10-2 3.9 x 10-14 - 
8.83 

(0.77) 
6 132043056 rs2270089 G A 0.09 ENPP3 0.0 

12 1 
CCR7 in CD4+ 
naive T cells 

CCR7 in CD8b+ naive
T cells 

3.0 x 10-19 - 2.0 x 10-7 - 
0.07 

(0.01) 
16 429129 rs11648403 C T 0.57 TMEM8A 0.0 

13 7 
FCεRI in 

eosinophils 
- 9.2 x 10-14 5.1 x 10-5 1.9 x 10-7 - 

0.96 
(0.13) 

17 4560141 rs56170457 G T 0.75 ALOX15 25.9 

14 4 
Ratio of CD16 MFI 

in CD16hi and 
CD56hi NK cells 

CD16 in CD56hi NK 
cells 

4.3 x 10-30 2.4 x 10-2 8.9 x 10-13

Aguirre-
Gamboa et 

al., Cell 
Reports 

2016 

0.39 
(0.03) 

19 8788184 rs114412914 G A 0.85 ACTL9 21.0 

 592 

Table 1 Genome-wide signals of association with immunophenotypes in the Milieu Intérieur cohort. 593 

aOther immunophenotypes correspond to any measured immunophenotype in the Milieu Intérieur cohort that was also significantly associated with the 594 

candidate variant, but to a lesser extent than the main immunophenotype. 595 
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bReplication was performed in an independent cohort of 75 European-descent Americans. Only panels 4 and 7 could be used, due to sample limitations. 596 

Effects were in the same direction as in the primary cohort. 597 

cP-values for biological replicates were estimated based on immunophenotypes measured from a new blood draw taken ~17 days after the initial visit, in 500 598 

subjects of the Milieu Intérieur cohort.  599 

dEAF is the frequency of the effect allele, which was defined as the allele with a positive effect on the immunophenotype. 600 

 601 
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Online Methods 602 

A summary of the Online Methods can be found in the Life Sciences Reporting Summary. 603 

 604 

The Milieu Intérieur cohort 605 

The 1,000 healthy donors of the Milieu Intérieur cohort were recruited by BioTrial (Rennes, France), 606 

and included 500 women and 500 men, and 200 individuals from each decade of life, between 20 and 607 

69 years of age. Donors were selected based on stringent inclusion and exclusion criteria, detailed 608 

elsewhere18. The clinical study was approved by the Comité de Protection des Personnes — Ouest 6 609 

(Committee for the protection of persons) on June 13th, 2012 and by the French Agence Nationale de 610 

Sécurité du Médicament (ANSM) on June 22nd, 2012. The study is sponsored by the Institut Pasteur 611 

(Pasteur ID-RCB Number: 2012-A00238-35), and was conducted as a single center study without any 612 

investigational product. The protocol is registered under ClinicalTrials.gov (study# NCT01699893).  613 

 614 

Human material and staining protocol 615 

Whole blood samples were collected from the 1,000 healthy, fasting donors on Li-heparin, every 616 

working day from 8 to 11AM, from September 2012 to August 2013, in Rennes, France. Tracking 617 

procedures were established in order to ensure delivery to Institut Pasteur, Paris, within 6 hours of 618 

blood draw, at a temperature between 18°C and 25°C. To check the stability of our flow cytometry 619 

measures through time, a second blood sample was drawn for half of the cohort during a second visit, 620 

~17 days on average after the first visit, ranging from 7 to 44 days. After receipt, samples were kept at 621 

room temperature prior to sample staining. Details on staining protocols can be found elsewhere20.  622 

 623 

Reproducibility testing and assay development 624 

For optimization studies and panel development, whole blood samples were collected from healthy 625 

volunteers enrolled at the Institut Pasteur Platform for Clinical Investigation and Access to Research 626 

Bioresources (ICAReB) within the Diagmicoll cohort. The biobank activity of ICAReB platform is 627 

NF S96-900 certified. The Diagmicoll protocol was approved by the French Ethical Committee (CPP) 628 
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Ile-de-France I, and the related biospecimen collection was declared to the Research Ministry under 629 

the code N° DC 2008-68. The reproducibility tests were performed as detailed elsewhere20.  630 

 631 

Cytometric analyses 632 

Ten 8-color flow cytometry panels were developed. Details on staining antibodies can be found in 633 

Supplementary Table 2. A unique lot of each antibody was used for the entire study. Each antibody 634 

was selected and titrated as described earlier20. Gating strategies are described in Supplementary 635 

Figures 1-10. The acquisition of cells was performed using two MACSQuant analyzers (Serial 636 

numbers 2420 & 2416), each fit with identical three lasers and ten detector optical racks (FSC, SSC 637 

and eight fluorochrome channels). Calibration of instruments was performed using MacsQuant 638 

calibration beads (Miltenyi, ref. 130-093-607). Flow cytometry data were generated using 639 

MACSQuantify™ software version 2.4.1229.1 and saved as .mqd files (Miltenyi). The files were 640 

converted to FCS compatible format and analyzed by FlowJo software version 9.5.3. A total of 313 641 

immunophenotypes were exported from FlowJo. These included 110 cell proportions, 106 cell counts, 642 

89 MFI and 8 ratios. We excluded from subsequent analyses all cell proportions, 35 643 

immunophenotypes that were measured several times on different panels and were exported for 644 

quality controls, and two MFI that were measured with a problematic clone (Supplementary Table 645 

3). A total of 166 flow cytometry measurements were thus analysed, including 76 cell counts, 87 MFI 646 

and 3 ratios (Supplementary Table 3). Problems in flow cytometry processing, such as abnormal 647 

lysis or staining, were systematically flagged by trained experimenters, which resulted in 8.70% 648 

missing data among the 166,000 measured values.  649 

 650 

Outlier removal 651 

Despite the exclusion of flagged problematic values, a limited number of outlier values were 652 

observed. As the goal of this study was to identify common non-genetic and genetic factors 653 

controlling immune cell levels, we removed these outlier values. Outliers were detected using a 654 

distance-based algorithm instead of a parametric method (e.g., removal based on a number of standard 655 

deviations from the mean), because of the substantial and highly variable skewness of the 656 
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distributions of flow cytometry measurements. A value in the higher tail was considered an outlier if 657 

the distance to the closest point in the direction of the mean of the distribution was more than 60% of 658 

the total range of the sample, while a value in the lower tail was considered an outlier if that distance 659 

was more than 15% of the total range of the sample. To choose these threshold values, we simulated 660 

10,000 log-normal distributions with a skewness similar to that of the flow cytometry measurements. 661 

We then searched for threshold values so that simulated values outside of these ranges were observed 662 

in less than 5% of the distributions. Outliers were only looked for in the 50 highest and lowest values. 663 

This threshold was chosen to make sure that we do not miss any effect on immunophenotypes of 664 

common genetic variants (minor allele frequency>5%), or that of one of 39 continuous or common 665 

categorical non-genetic factors studied here. All values more extreme than the points labelled as 666 

outliers were also labelled outliers. A total of 24 values was removed at this stage.  667 

 668 

Batch effects on flow cytometry measurements 669 

Two batch effects on flow cytometry measurements were considered: the hour at which blood 670 

samples were drawn (from 8h to 11h in the morning) and the day at which samples were processed (8 671 

to 12 samples per day, from September 2012 to august 2013). The hour of blood draw effect was 672 

evaluated with linear regression on all immunophenotypes. We observed that hour of blood draw 673 

impacts a limited number of cell counts, mainly CD16hi NK cells (Supplementary Fig. 14a). The 674 

sampling day effect was evaluated by estimating its variance component on all immunophenotypes. 675 

Visual inspection was used to determine whether temporal fluctuations – observed for those 676 

immunophenotypes with a large variance explained – were seasonal or not. We observed that sample 677 

processing day has a substantial impact on MFI. Fluctuations in MFI across time were strongly 678 

discontinuous, suggesting technical issues possibly related to the compensation matrix, rather than 679 

seasonal effects (Supplementary Fig. 14b). 680 

 681 

Inclusion and imputation of candidate non-genetic factors 682 

A large number of demographic variables were available in the Milieu Intérieur cohort18. These 683 

included infection and vaccination history, childhood diseases, health-related life habits, and socio-684 
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demographic variables. Of these, 39 variables were chosen for subsequent analyses (Supplementary 685 

Table 1), based on the fact that they are intrinsic factors (i.e., age, sex), or measure the exposure of 686 

individuals to exogenous factors, and thus may not be affected by the immunophenotypes themselves. 687 

These variables were filtered based on their distribution (i.e., categorical variables with only rare 688 

levels, such as infrequent vaccines, were excluded) and on their levels of dependency with other 689 

variables (e.g., height and BMI). The dependency matrix among the 39 non-genetic variables, 690 

together with batch variables, was obtained based on the generalized R2 measures for pairwise fitted 691 

generalized linear models. If the response was a continuous variable, we used a Gaussian linear 692 

model. If the response was binary, we used logistic regression. Categorical variables were used only 693 

as predictors. Missing values were imputed using the random forest-based R package missForest57. 694 

 695 

Impact of candidate non-genetic factors on immunophenotypes  696 

To analyse the impact of non-genetic factors on immunophenotypes, we fitted a linear mixed model 697 

for each of the 166 immunophenotypes and each of the 39 non-genetic treatment variables. A total of 698 

6,474 models were therefore fitted using the lme4 R package51. All models were fitted to complete 699 

cases. Due to lack of a priori knowledge on how the non-genetic variables impact the 700 

immunophenotypes, we did not attempt to make a full causal structural equation model for all 701 

variables. Instead, we chose to keep the amount of controls in the models small to increase 702 

interpretability of the results, and to make the study easier to reproduce. We included age, sex and 703 

CMV seropositivity as fixed-effect controls for all models (Fig. 3 and Supplementary Fig. 19), 704 

except when they were the treatment variable to be tested (Fig. 2 and Supplementary Figs. 17). The 705 

intrinsic factors, i.e., age and sex, were included as covariates because they are known to have an 706 

impact on immunophenotypes6,7,10,14,25–27, as well as on many of the other environmental exposures, 707 

and are therefore possible confounders. CMV seropositivity was included because it has been shown 708 

to strongly affect some immunophenotypes6,13,14,17. We also controlled for genome-wide significant 709 

SNPs for corresponding immunophenotypes (Table 1). Genetic variants were included to reduce the 710 

residual variance of the models and to make the inferences more robust. To correct for the batch effect 711 

related to the day of sample processing, we included it as a random effect for all models: we included 712 
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a constant for each day and assumed that all constants were drawn from the same normal distribution. 713 

This procedure models correlation among subjects processed during the same day. We also included 714 

the hour of blood draw as a fixed-effect control for all models. 715 

The distributions of the immunophenotypes have variable skewness. We considered normal, 716 

lognormal and negative binomial response distributions, and chose to model all immunophenotypes as 717 

lognormal based on diagnostic plots, AIC measures and our aim to have comparable results across 718 

immunophenotypes and facilitate the interpretation of effect sizes. A total of 46 immunophenotypes 719 

had zero values. A unit value was added to those before log-transformation.  720 

For each model, we tested the hypothesis that the regression parameter for the treatment variable 721 

was zero by an F-test with the Kenward-Roger approximation. This test has better small- and 722 

medium-sample properties than the traditional chi-square-based likelihood ratio test for mixed 723 

models52 and can readily be applied using the pbkrtest R package53. We assumed that our sample size 724 

was large enough for this test to be appropriate and chose therefore not to do parametric 725 

bootstrapping. We considered all 6,474 tests as one multiple testing family and we used the false 726 

discovery rate (FDR) as error rate. An effect was considered significant if the adjusted P-value was 727 

smaller than 0.01. If a test was significant, confidence intervals were constructed using the profile 728 

likelihood method in such a way that the false coverage rate was controlled at a level of 0.01. The 729 

false coverage rate measures the rate of confidence intervals that do not cover the true parameter and 730 

is needed if confidence intervals are selected based on a criterion that makes these intervals especially 731 

interesting, for instance significant hypothesis tests54. FCR-adjusted confidence intervals are always 732 

wider than regular intervals. All these analyses were done, and can be reproduced, with the mmi R 733 

package (http://github.com/JacobBergstedt/mmi).  734 

 735 

Genome-wide DNA genotyping 736 

The 1,000 subjects of the Milieu Intérieur cohort were genotyped at 719,665 SNPs by the 737 

HumanOmniExpress-24 BeadChip (Illumina, California). SNP call rate was higher than 97% in all 738 

donors. To increase coverage of rare and potentially functional variation, 966 of the 1,000 donors 739 

were also genotyped at 245,766 exonic SNPs by the HumanExome-12 BeadChip (Illumina, 740 
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California). HumanExome SNP call rate was lower than 97% in 11 donors, which were thus removed 741 

from this dataset. We filtered out from both datasets SNPs that: (i) were unmapped on dbSNP138, (ii) 742 

were duplicated, (iii) had a low genotype clustering quality (GenTrain score < 0.35), (iv) had a call 743 

rate < 99%, (v) were monomorphic, (vi) were on sex chromosomes and (vii) were in Hardy-Weinberg 744 

disequilibrium (HWE P < 10-7). These SNP quality-control filters yielded a total of 661,332 and 745 

87,960 SNPs for the HumanOmniExpress and HumanExome BeadChips, respectively. The two 746 

datasets were then merged, after excluding triallelic SNPs, SNPs with discordant alleles between 747 

arrays (even after allele flipping), SNPs with discordant chromosomal position, and SNPs shared 748 

between arrays that presented a genotype concordance rate < 99%. Average concordance rate for the 749 

16,753 SNPs shared between the two genotyping platforms was 99.9925%, and individual 750 

concordance rates ranged from 99.80% to 100%, validating that no problem occurred during DNA 751 

sample processing. The final dataset included 732,341 QC-filtered genotyped SNPs.  752 

 753 

Genetic relatedness and structure 754 

Possible pairs of genetically related subjects were detected using an estimate of the kinship coefficient 755 

and the proportion of SNPs that are not identical-by-state between all possible pairs of subjects, 756 

obtained with KING55. Genetic structure was visualized with the Principal Component Analysis 757 

(PCA) implemented in EIGENSTRAT56. For comparison purposes, the analysis was performed on 758 

261,827 independent SNPs and 1,723 individuals, which include the 1,000 Milieu Intérieur subjects 759 

together with a selection of 723 individuals from 36 populations of North Africa, the Near East, 760 

western and northern Europe57. 761 

 762 

Genotype imputation 763 

Prior to imputation, we phased the final SNP dataset with SHAPEIT258 using 500 conditioning 764 

haplotypes, 50 MCMC iterations, 10 burn-in and 10 pruning iterations. SNPs and allelic states were 765 

then aligned to the 1,000 Genomes Project imputation reference panel (Phase1 v3.2010/11/23). We 766 

removed SNPs that have the same position in our data and in the reference panel but incompatible 767 

alleles, even after allele flipping, and ambiguous SNPs that have C/G or A/T alleles. Genotype 768 
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imputation was performed by IMPUTE v.259, considering 1-Mb windows and a buffer region of 1 Mb. 769 

Out of the 37,895,612 SNPs obtained after imputation, 37,164,442 were imputed. We removed 770 

26,005,463 imputed SNPs with information ≤ 0.8, 43,737 duplicated SNPs, 955 monomorphic SNPs, 771 

and 449,903 SNPs with missingness >5% (individual genotype probabilities < 0.8 were considered as 772 

missing data). After quality-control filters, a total of 11,395,554 high-quality SNPs were further 773 

filtered for minor allele frequencies >5%, yielding a final set of 5,699,237 SNPs for association 774 

analyses. 775 

 776 

Genome-wide association analyses 777 

Prior to the genome-wide association study, we transformed immunophenotypes using a different 778 

procedure than that used for the analysis of non-genetic factors. This is because we tested for 779 

association between immunophenotypes and millions of genetic variants, among which some have an 780 

unbalanced genotypic distribution (i.e., SNPs with a low minor allele frequency), which makes this 781 

analysis more sensitive to deviations from distributional assumptions. Our primary aim was therefore 782 

to use transformations that make the GWAS as robust as possible against such deviations. Also, we 783 

map loci associated with immunophenotypes based on P-values, so it was less important to keep 784 

effect sizes on the same scale, in contrast with the analysis of non-genetic factors, for which we 785 

favoured the interpretability of effect sizes. A unit value was first added to all phenotypes with zero 786 

values. The transformations were then chosen based on an AIC measure using the Jacobian-adjusted 787 

Gaussian likelihood, among three possible choices of increasing skewness: identity transformation, 788 

squareroot-tranformation and log-transformation. We kept the amount of possible transformations low 789 

to minimize the amount of added unmodelled stochasticity. The added unit value was kept only for 790 

immunophenotypes for which the log-transformation was chosen.  791 

After transformation, a second round of outlier removal was done, to remove extreme values on the 792 

new scale. The thresholds for the lower and higher tail were 20%, obtained as for the first step of 793 

outlier removal (see description of the distance-based outlier removal algorithm above), but on the 794 

Gaussian scale. The immunophenotypes were then imputed using the missForest R package57, as 795 

missing data is not allowed by the subsequent analyses. We finally adjusted all immunophenotypes 796 
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for the batch effect of processing days. We used the ComBat non-parametric empirical-Bayes 797 

framework60, instead of the mixed model described above (see section “Impact of candidate non-798 

genetic factors on immunophenotypes” above), because the GEMMA mixed model used to conduct 799 

GWAS (see below) includes only the random effect capturing genetic relatedness. ComBat adjusts for 800 

batch effects by leveraging multivariate correlations among response variables. We did not include 801 

variables of interest in the ComBat model (none of the non-genetic variables were significantly 802 

different across sample processing days, with the exception of smoking (regression P=0.002)).  803 

To reduce the residual variance of GWAS models and make the inferences more robust61, we 804 

sought to adjust models for covariates selected among 42 variables. These included the 39 non-genetic 805 

variables (Supplementary Table 1), the hour of blood draw variable, and the two first principal 806 

components of a PCA based on genetic data (Supplementary Fig. 20b). Covariates were selected by 807 

stability selection62,63, with elastic net regression as the selection algorithm. A selection algorithm uses 808 

a cost function that drives regression parameters of non-predictive variables to zero, unlike least-809 

square regressions. The elastic net method was used in particular because it has lower variance than 810 

stepwise methods and overcomes limitations of the LASSO method related to correlated variables64. 811 

To perform stability selection, we estimated, for each of the ݅ ∈ ሼ1, … ,42ሽ variables, the probability pi 812 

= P(βi = 0) that the elastic net regression parameter βi of variable i equals zero. Specifically, we first 813 

took 50 subsamples of half of the data, performed variable selection on each subsample, and estimated 814 

pi as the number of subsamples in which βi > 0, divided by the total number of subsamples. The 815 

variables were then chosen to be controls in the GWAS models by thresholding the probability ̂݌i. It 816 

has been shown that this procedure, with the right threshold and under certain assumptions, controls 817 

the false discovery rate of selected variables63. The procedure is more stable than selecting variables 818 

by, for instance, stepwise regression or elastic net without stability selection, and thus adds less 819 

unmodelled variability to the estimates. Still, because this approach does select predictive variables 820 

for each individual response variable, it adds more variance to the model selection, relative to models 821 

in which only age, sex, CMV infection and smoking would be systematically included. However, 822 

controlling for the selected variables is expected to generate more parsimonious models (i.e., the 823 

inclusion of unnecessary covariates could reduce power65), and to decrease the risk of type 1 errors 824 
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(e.g., some of the many rare genetic variants that are tested could associate, by chance, with an 825 

immunophenotype when the model does not fulfil inference assumptions due to a specific, 826 

unmodelled covariate).  827 

The univariate genome-wide association study was conducted for each imputed, transformed and 828 

batch-effect corrected immunophenotype using the linear mixed model implemented in GEMMA66, 829 

adjusting on selected covariates. GEMMA is an efficient mixed model that controls for genetic 830 

relatedness among donors and allows for multivariate analyses. Genetic relatedness matrices (GRM) 831 

were estimated for each chromosome separately, using the 21 other chromosomes, to exclude from 832 

the GRM estimation potentially associated SNPs (i.e., "leave-one-chromosome" approach; see 67). A 833 

conditional GWA analysis was also carried out for each of the 14 immunophenotypes that showed the 834 

strongest genome-wide significant signals (“main immunophenotypes” in Table 1), by including as a 835 

covariate in GEMMA the genotypes of the most strongly associated variant. A multivariate GWAS 836 

was conducted on a set of 6 candidate immunophenotypes (i.e., number of HLA-DR+ memory T 837 

cells), using GEMMA linear mixed model adjusted on covariates that were selected for at least one of 838 

the six traits. For all genome-wide association analyses, a conservative genome-wide significant 839 

threshold of P<10-10 was used, to account for testing multiple SNPs and immunophenotypes. 840 

 841 

Power estimation 842 

We used simulations to estimate the minimum effect of a variant that we could detect with 95% power 843 

by our GWAS. Namely, we sampled 100,000 times a SNP in our data, and simulated an 844 

immunophenotype by adding to a randomly sampled immunophenotype the effect k of that SNP, k 845 

being drawn from a uniform distribution of bounds 0 and 1 (k is expressed in unit of phenotype 846 

standard deviations, as in ‘scheme 1’ of ref68). We then ran the GEMMA mixed model on the 847 

simulated data, and estimated the probability that the variant was detected, assuming our genome-848 

wide significant threshold of P<10-10. We found that we have 95% power to detect a SNP with a 849 

medium effect of 0.6 phenotype standard deviation. We also confirmed empirically the power to 850 

identify medium-effect genotype-phenotype associations in the Milieu Intérieur cohort by replicating 851 

well-known genetic associations with non-immune traits, including OCA2-HERC2 genes with eye and 852 
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hair color (rs12913832, P=6.7x10-138 and 8.5x10-18, respectively), SLC45A2 with hair color 853 

(rs16891982, P=3.2x10-9), UGT1A gene cluster with bilirubin levels (rs6742078, P=2.6x10-75), 854 

SLC2A9 with uric acid levels (rs6832439, P=4.3x10-14), and CETP with HDL levels (rs711752, 855 

P=4.5x10-8). 856 

 857 

Enrichment in variants associated with diseases 858 

We explored the implication of our 15 genome-wide significant variants in human diseases and traits 859 

using previously published hits of genome-wide association studies (GWAS), obtained from the 860 

31/08/2017 version of the EBI-NHGRI GWAS Catalog. A candidate variant was considered as 861 

implicated in a disease/trait if it was previously associated with such a disease/trait with a P<5x10-8, 862 

or if it was in linkage disequilibrium (LD) with a variant associated with such a disease/trait (r²>0.6). 863 

We tested if our 15 genome-wide significant variants were enriched in known associations with 864 

diseases/traits by resampling. Namely, we sampled 100,000 times 15 random SNPs with minor allele 865 

frequencies matched to those observed, and we calculated for each resampled set the proportion of 866 

variants known to be, or in LD with a variant known to be, associated with a disease. The enrichment 867 

P-value was estimated as the proportion of resamples for which this proportion was larger than that 868 

observed in our set. LD was precomputed for all 5,699,237 SNPs with PLINK 1.9 (options ‘--show-869 

tags all --tag-kb 500 --tag-r2 0.6’)69.  870 

 871 

HLA typing and association tests 872 

Four-digit classical alleles and variable amino acid positions in the HLA class I and II proteins were 873 

imputed with SNP2HLA v 1.0370. 104 HLA alleles and 738 amino acid residues (at 315 positions) 874 

with MAF >1% were included in the analysis. Conditional haplotype-based association tests were 875 

performed using PLINK v. 1.0771, as well as multivariate omnibus tests used to test for association at 876 

multi-allelic amino acid positions. 877 

 878 

Replication cohort 879 



Page 41 of 44 

We recruited 75 donors through the Genentech Genotype and Phenotype (gGAP) Registry. This 880 

sample size provides 95% power to replicate SNPs with an effect > 0.9 phenotype standard deviation. 881 

Ethical agreement was obtained for all gGAP donors. Samples were received at room temperature and 882 

processed 1 h after blood draw. Prior to staining, the blood was washed with PBS 1X. Except for the 883 

CD32 antibodies, the antibodies for population identification were titrated using the same clones and 884 

providers as in the primary study (Supplementary Table 2). Cell labelling were performed manually 885 

in deep-well plates. Data acquisition was performed within one hour using a calibrated FacsCantoII 886 

(Becton Dickinson). We selected panels 4 and 7 for the replication study, because 10 of the 16 GWAS 887 

hits were identified with these panels, and because of sample limitations. Immunophenotypes were 888 

transformed based on models chosen in the primary cohort. The GEMMA linear mixed model was 889 

used to test for replication, with age and sex as covariates and a GRM estimated from 1,960,432 890 

autosomal SNPs obtained by the Illumina HumanOmni1-Quad v1.0 array.  891 

 892 

Gene expression assays 893 

NanoString nCounter®, a hybridization-based multiplex assay, was used to measure gene expression 894 

in non-stimulated whole blood of the 1,000 Milieu Intérieur subjects, with the Human Immunology v2 895 

Gene Expression CodeSet. This data is described in detail in a separate work36. Expression probes that 896 

bind to cDNAs in which at least 3 known common SNPs segregate in humans were removed from the 897 

analyses (i.e., HLA-DQB1, HLA-DQA1, HLA-DRB1, HLA-B and C8G). After quality control filters, 898 

mRNA levels were available for 986 individuals at 90 candidate genes, i.e., immunity-related genes in 899 

a 1-Mb window around the genome-wide significant and suggestive associations identified in this 900 

study. For each sample, probe counts were log2 transformed, normalized and adjusted for batch 901 

effects. eQTL mapping was performed in a 1-Mb window around corresponding association signals, 902 

using the linear mixed model implemented in GenABEL72. All models were adjusted on the 903 

proportion of eight major cell populations, including neutrophils, CD19+ B cells, CD4+ T cells, CD8+ 904 

T cells, CD4+CD8+ T cells, CD4– CD8– T cells, NK cells, and CD14+ monocytes, to account for the 905 

effect of heterogeneous blood cell composition on gene expression. 906 

 907 
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Decomposition of the proportion of variance explained 908 

We analysed each of the 166 batch-corrected and transformed immunophenotypes (see section 909 

“Genome-wide association analyses” of Online Methods) with a linear regression model including the 910 

four most impactful non-genetic factors (Fig. 2), i.e., age, sex, CMV seropositivity status and 911 

smoking, and both genome-wide significant (P<10-10) and suggestive (P<5x10-8) genetic factors. The 912 

contribution of each of these variables to the variance of each immunophenotype was calculated by 913 

averaging over the sums of squares in all orderings of the variables in the linear model, using the lmg 914 

metric in the relaimpo R package73.The averaging over orderings was done to avoid bias due to 915 

correlations among predictors. 916 

The difference in contribution to explained variance between innate and adaptive immunophenotypes 917 

was tested using linear mixed models, where we used the log-transformed proportions of variance of 918 

each immunophenotype explained by age, sex, CMV serostatus, smoking or genetics as different 919 

response variables, and indicator variables for the immunophenotype being innate or adaptive, and 920 

being a count or an MFI. The sum of the individual contributions of associated genetic variants was 921 

used to estimate the overall contribution of genetics. Since some of the immunophenotypes are 922 

correlated, their proportion of variance explained are also correlated. To account for this, we included 923 

a random effect term whose covariance matrix was modelled as a variance component multiplied by 924 

the sample correlation matrix among the immunophenotypes. Due to the small sample size, 925 

hypothesis testing was done by building a null distribution of likelihood ratios using the parametric 926 

bootstrap. The models were fitted using the R package lme4qtl (http://github.com/variani/lme4qtl). 927 

Because the distribution of variance explained by genetics was zero-inflated, we also tested for 928 

differences in the proportion of variance explained by non-genetic and genetic factors between innate 929 

and adaptive cell measurements with a non-parametric Mann-Whitney U test. Because the Mann-930 

Whitney U test cannot account for correlations among immune cell measurements, we conducted this 931 

test on a subset of immunophenotypes that were selected to be uncorrelated (h<0.6 with the protoclust 932 

R package). Fifty immunophenotypes were kept, including 19 adaptive and 31 innate cell measures, 933 

among which the median Pearson’s r was 0.039.  934 

 935 
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