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Abstract

Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals
express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect
neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such
as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open
question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that
several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-
staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not
astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET
induced intracellular Ca2+ rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole
cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous
excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a
result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve
terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in
neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which
subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a
subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in
neuronal tissue is due to a direct effect of ET on neurons.
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Introduction

Epsilon toxin (ET) is a protein of 30 kDa produced by

Clostridium perfringens types B and D with a very high lethality

(,400.000 mouse LD100/mg protein). This ranks this toxin among

the 10 most potent poisonous substances so far known. Infection

with the bacteria occurs via food, water, animal litter or soil, and

causes severe, often fatal, enterotoxaemia (e.g. pulpy kidney disease

and diarrhoea) in sheep, goats, cattle, poultry and pigs [1]. ET is

secreted in the gut lumen as a proto-toxin and following its

activation by endoproteases the toxin compromises the intestinal

barrier [2]. This allows ET to spread through the blood-stream,

affecting the lungs, kidneys and the brain [1,3,4].

ET shares significant sequence homology and structural

similarities with aerolysin from Aeromonas hydrophila and with alpha

toxin produced by C. septicum and belongs to a large family of pore

forming bacterial toxins [5–7]. Most of its cellular mode of action

has been deduced from studies performed on renal cell lines or

purified membranes. After binding to specific, yet unknown,

membrane acceptor(s) ET undergoes a cholesterol-dependent
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heptamerization leading to the formation of a transmembrane

pore [8–12]. The channel-forming domain of ET has been

recently identified [13]. The ET-induced pore leads to an efflux of

K+, and influx of Na+ and Cl2 [8,11,14,15]. In renal cells ET also

induces intracellular Ca2+ rise, ATP depletion and cell death,

which involves a caspase-independent process [12]. However, the

causal link between pore formation and altered functions remains

unclear: in conditions that prevent ET heptamerization ET can

cause cell death [12].

ET-intoxicated animals express severe neurological disorders

[1,4,16,17] associated with a marked increase in neurotransmitter

release (including glutamate and dopamine) and neuronal cell

death [18–21]. Altered neurons are found scattered among

apparently normal nerve cells in the cerebral cortex, hippocam-

pus, thalamus, basal ganglia and cerebellum; cerebellum is a

predilection site for the induction of early central nervous system

damage [4,18,22].

Since ET binds to capillary endothelial cells and alters the blood

brain barrier [23–25], the nerve tissue damages caused by ET

have been proposed to indirectly result from vasogenic edema [4].

The possibility that ET acts directly on the nerve tissue cells needs

to be considered. Several studies support such a possibility: the

bilateral symmetry of the damage caused by ET, notably in the

brain stem [22], and the local nerve-tissue alterations produced by

intra-hippocampal injection of ET [19] suggests a nerve-tissue

vulnerability to ET. However, the identity of the cells directly

altered by ET remains a matter of debate. On one hand, 125I-

labelled ET binds and forms pores in membranes purified from rat

brain synaptosomes [11,14,26]. On the other hand, the most

recent studies performed using GFP-tagged ET support the notion

that the toxin binds to cells belonging to the glial lineage (the

astrocytes and myelin, which is formed by oligodendrocytes), but

not to the neurons [25,27].

In this study, we addressed the possibility that ET targets

neurons. To identify the nerve tissue regions of interest, we

examined ET-binding on brain slices by immunofluorescence. An

intense staining was observed in the cerebellum. By analyzing the

staining of ET and cell markers of interest we established that ET

binds to the cell body and dendrites of granule neurons and

oligodendrocytes, but not to the astroglial cells, GABAergic

neurons, or nerve terminals in the cerebellar cortex. To investigate

the effect of ET on neurons, electrophysiological and pharmaco-

logical analyses were performed and revealed that ET directly

depolarizes granule cell somata, thereby greatly stimulating their

firing activity and ensuing glutamate release. However, we found

that ET has no direct effect on inhibitory cerebellar GABAergic

interneurons and Purkinje cells. The effect of ET on glutamatergic

neurons is likely to enhance the highly potent action of the toxin,

and this may explain why ET lethality is 100-fold higher than that

of other structurally related, pore-forming toxins.

Results

ET binds to defined regions of the cerebellar cortex
Whole brain acute sagittal slices taken from adult (P25–P30)

mice were incubated in the presence of ET (1028 and 1027 M, at

room temperature) for 5 min before fixation and then immuno-

stained for ET using immunoaffinity purified primary antibodies

specific for ET (see single 36 kDa ET band in Fig. 1A). In the

presence of 1027 M ET the staining was marked in several brain

regions, including cerebellum (Fig. 1B), hippocampus, thalamus,

striatum (myelinated tracts), olfactive bulb, the colliculi, and

cerebral white matter. To determine possible cross reactivity of the

anti-ET antibodies, similar experiments were repeated with slices

incubated without ET: no immuno-staining was detected for ET,

while immunoreactivity for cells markers could be revealed

(Fig. 1C). Figure 1B and D, illustrates ET staining observed in

cerebellum at different magnifications, and figure 1D–E shows

Figure 1. ET staining in mouse cerebellum and hippocampus
slices. A, Western blot of rabbit anti-epsilon toxin antibodies. Crude
culture supernatant of C. perfringens type D was submitted to
immunoblotting experiment using immunoaffinity purified rabbit
anti-epsilon toxin (1:2000). Molecular weight markers are indicated.
The labeled band at 36 kDa corresponds to ET. ET-immuno staining
obtained when tissue slices were incubated with (B, D–F) or without (C)
ET (1027 M) for 5 min before fixation. B, mouse cerebellum. Scale bar
= 500 mm. C, Immuno-staining obtained in absence of ET: cerebellar
cortex was submitted to double immunostaining against ET and
calbindin, which is expressed by the Purkinje cells in their dendrites (i.e.
in the molecular layer), cell body, and axons (present in granule cells
layer and white matter). Scale bar = 40 mm. D, Magnification of a
cerebellar lobule from (B); Scale bar = 250 mm. C–D: WM: white matter,
GL: granule cells layer, PCL: Purkinje cells layer, ML: molecular layer. E
and F, ET-staining obtained in hippocampus: in the CA4 region (E) and
in dentate gyrus (F); Scale bars are 50 and 100 mm, respectively. E–F:
CA4 denotes presence of large pyramidal cells, MFL: mossy fiber layer,
GCL: granule cell layer, MLH: molecular layer of hippocampus,
*: capillary blood vessel.
doi:10.1371/journal.pone.0013046.g001
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examples of ET labeling in hippocampus. At 1028 M, the labeling

was faint. Overall the staining pattern in the brain is reminiscent of

the distribution of tissue injuries (hippocampus, basal ganglia,

internal capsule, thalamus and substantia nigra, and cerebellum)

resulting from subacute intoxication of mice and rats [4,18]. The

marked staining observed in the cerebellum is consistent with the

previous reports that the cerebellum is a predilection site for the

induction of ET damage [4,18,22].

When ET-labeling was observed at a higher magnification, we

found that the toxin markedly stained the capillary vessels

(denoted by * in Fig. 1E), numerous fibers likely to correspond

to myelinated axons (as in the cerebellar white mater in Fig. 1D or

hippocampal regions displayed in Fig. 1E and F). A less intense ET

labeling was also found on pericaryon of numerous cells (for

example in the granule cell layer in the hippocampus (Fig. 1E)

raising the possibility that neurons might be labeled by ET.

To determine whether neurons or a subset of neurons are

targeted by ET in the central nervous system we focused on the

cerebellar cortex which segregates glial cells and neuron somata

or/and processes in identified layers by its laminar organization.

When ET was applied (1027 M, at room temperature) for 5 min

either before (Fig. 1B, see D for a closer view) or after fixation (not

illustrated), the staining distribution was qualitatively similar, albeit

less intense when performed on nerve tissue fixed prior to ET

application. With the exception of some capillary walls (not

illustrated), no obvious structure in the molecular layer was

significantly stained by ET (Fig. 1B,D). This indicates that the cells

constituting this layer (i.e. the inhibitory GABAergic neurons and

the astrocyte related Bergmann’s glial cells), as well as neuronal

processes, corresponding to parallel fibers from granule cells and

dendritic trees of Purkinje cells, are not targeted by ET. The large

soma of the Purkinje cells that lie at the interface of the molecular

and granule cell layers were not stained (Fig. 1B,D). The granular

layer was clearly stained, thus raising the question of which cell

types and/or processes are targeted by ET: granule cells,

GABAergic interneurons, the nerve fibers afferent to the granule

cells (i.e. the mossy fiber nerve terminals), astrocytes or

oligodendrocytes. The cerebellar white matter mainly composed

of myelinated axons (including the Purkinje cells axons) and

oligodendrocytes displayed a strong ET staining.

Granule cells and oligodendrocytes are the cell targets of
ET in the cerebellum

To identify the cells types targeted by ET in the granular layer,

we analyzed cerebellar slices immuno-labeled for ET and well

defined cell markers.

Since, as mentioned above, the ET-labeling intensity produced

by applying the toxin on acute (i.e. still living) slices was higher

than that observed when applying ET on fixed tissue, we analyzed

double (ET, cell marker) staining in slices submitted to ET 1027 M

for 5 min before washing out and fixation (see the Material and

Methods). However such a staining procedure can introduce a bias

if ET is cytotoxic for a subset of its targets, which is revealed by the

fast appearance of pyknotic nuclei in renal cell culture [12] and

nerve tissue cells [22]. Accordingly we examined nuclei in the

granular layer using the DNA marker DRAQ5. We did not

observe any pyknotic nucleus indicating that ET (1027 M for up to

20 min before fixation) does not induce cell death in the acute

cerebellar slices at least within the duration of the experiments.

This ruled out the possibility that cell-specific cytotoxicity hampers

the interpretation of double stained cells.

Each of the double staining experiments (ET, cell marker of

interest) listed in Table 1 was performed a minimum of 3 times.

Figure 2 illustrates several typical examples. The biological

significance of the double staining for each of the mentioned

pairs (ET, cell marker) was determined by calculating the

Pearson’s correlation coefficient (rp) for each analyzed region of

interest (ROI) in multiple slices. The number of analyzed ROI,

averaged rp, and statistical significance are reported in Table 1.

ET stained the pericaryon of numerous small MAP-2-positive

cells (i.e. neurons) corresponding to granule cells, the most

prominent cell type in the granular layer (.3.106 granule cells

per mm3 in the rat) [28] (Figure 2Ai). Data presented in Table 1

confirms this identification because the highest rp values (ranging

between 0.39 and 0.48) in the granular layer were obtained for the

co-staining of ET with two granule cell markers (the alpha-6-

Table 1. The double staining by ET and specific cell markers.

Neurons Synapses and dendrites Glial cells

Granule cells
Purkinje
cells PC + Interneur. Pre-synaptic

Post-
synaptic Dendrites Astrocytes Oligodendrocytes

Marker Alpha-6 Kv3-1b calbindin Parvalb Sytg Syph PSD-95 MAP-2 GFAP CNPase

ROIs GL GL PCL + ML PCL + ML + GL GL GL GL GL GL GL WM

rp 6 SEM 0.39
60.03

0.48
60.03

0.002
60.05

0.02
60.04

20.05
60.01

0.01
60.01

0.02
60.05

0.22
60.02

0.10
60.02

0.52
60.01

0.36
60.04

nb. ROI 11 16 8 6 6 6 6 18 6 6 3

significance *** *** n.s. n.s. n.s. n.s. n.s. **/*** n.s. *** **/***

ET staining yes Yes no no no no no yes no yes yes

Among the different cerebellar neuron types, granule cells were identified by their expression of the alpha-6-GABAA receptor subunit (alpha-6) [47] or potassium
channel subunit Kv3.1b [48]. Purkinje cells were identified by their typical morphology and presence of the Ca2+-buffering proteins calbindin and parvalbumin (parvalb),
whereas the other GABAergic cerebellar interneurons were identified by expression of parvalbumin but not calbindin [49]. Nerve terminals (i.e. pre-synaptic
compartment) were identified by the presence of the synaptic vesicle protein synaptotagmin (sytg) [50] or synaptophysin (syph) [51]; whereas Post-Synaptic Density
95 kD protein (PSD-95) was used to label the post-synaptic (i.e. the dendritic spines) compartment [52]. Cerebellar neuronal dendritic trees were identified by the
presence of the microtubule associated protein-2 (MAP-2), which is denser in the dendrites [53]. Astrocytes and radial Bergman’s glia were identified by Glial Fibrillary
Acidic Protein (GFAP) [54,55]. Oligodendrocytes were identified by expression of 29,39-Cyclic Nucleotide 39-Phosphodiesterase (CNPase) [56]. Analyzed ROI are: ML,
molecular layer; PCL, Purkinje cells layer; GL, granular layer; WM, white matter. The averaged Pearson’s coefficients (rp 6 SEM) were determined from the mentioned
number of ROI. Since the rp varied from ROI to ROI, we tested the significance of eventual differences in average rp in all the reported conditions by a pairwise multiple
comparison procedure.
doi:10.1371/journal.pone.0013046.t001

C. perfringens Epsilon Toxin
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GABAA receptor subunit and the potassium channel subunit

Kv3.1b). Table 1 shows no significant ET-staining on Purkinje

cells, which are calbindin and parvalbumin positive, or GABAer-

gic interneurons, which are calbindin negative but parvalbumin

positive, as revealed by almost null rp. We also determined that ET

did not bind to the pre- and post-synaptic compartments in the

granular layer as revealed by almost null rp when ET labeling and

synaptotagmin (Fig. 2B), synaptophysin or PSD-95 staining were

analyzed (Table 1). Analysis of CNPase and ET co-labeling

revealed that ET binds to the oligodendrocytes (Fig. 2C) in

agreement with positive and reproducible rp values (0.52 in the

granular layer, and 0.36 in the white matter). Figure 2Ci shows

that in the granular layer the CNPase positive structures (i.e. the

oligodendrocytes and their processes) were stained with higher

intensity than that observed on granule cells.

Whatever the staining conditions (ET applied before or after

tissue fixation), the ET and GFAP co-labeling was low (Fig. 2D),

with an averaged rp = 0.10. This value is close to that obtained

when analyzing co-staining of pairs of markers specific for distinct

cell types: for example, immunolabeling against alpha-6-GABAA

(specific of the granule cells) and GFAP (specific of the astrocytes)

led to an average rp = 0.1560.03, n = 6. Thus, the averaged

rp = 0.10 found for the ET GFAP co-staining does not indicate that

ET binds to the astroglial cells and likely results from interspersion

Figure 2. ET stains granule cells and oligodendrocytes but not astrocytes or nerve endings. A–D: column i: ET-staining (green), column
ii: specific cell-marker immunoreactivity (red) and DRAQ5 DNA signal (cyan), column iii: merge of the ET and cell-marker immunoreactivities. In all
experiments ET was applied for 5 min 1027 M. A: ET and MAP-2, B: ET and synaptotagmin. C: ET and CNPase. D: ET and GFAP. Scale bars are 10 mm in
A, B, D, and 50 mm in C.
doi:10.1371/journal.pone.0013046.g002
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of astrocytes with other cell types present in the cerebellar tissue

giving rise to detection of signals from different cell types in a small

portion of the analyzed voxels.

To summarize the above data establishes that ET targets

granule cell somata, which are glutamatergic neurons, but not the

granule cell axons or nerve terminals, afferent nerve terminals or

cerebellar GABAergic neurons (Purkinje cells or interneurons).

Among the glial cell lineage, ET binds to oligodendrocytes, but

neither the astrocytes nor related radial glia (i.e. Bergman’s cells).

ET effects on granule cells in primary culture
Having established that ET binds granule cells in cerebellar

slices, we performed experiments aimed at examining the specific

effect(s) of ET on granule cells in primary culture. Under the

conditions used to prepare primary cultures of mice cerebellar

cortex, most of the cells present are granule cells (96%), few are

astrocytes (,4%) and none are oligodendrocytes, Purkinje cells or

fibroblasts. When applied at 1027 M in PBS onto fixed primary

cultures, ET stained granule cells, but not astrocytes, which

express GFAP (Fig. 3Ai, and 3Aii for a closer view), confirming the

observations made above. Since PBS buffer does not contain Ca2+

ions, this indicates that binding of ET to granule cells does not

require Ca2+ ions. When applied at lower concentrations

(1028 M), no significant ET labeling was observed. A noticeable

difference compared with the staining of ET in acute slices is that

the toxin binds to the neuronal somatic and neurite membranes as

well as varicosities corresponding to nerve terminals on the

cultured neurons (not illustrated).

Since the ET injection into the brain stimulates glutamate and

dopamine release, by a yet unknown mechanism [19–21], we first

examined whether ET could trigger glutamate release from

granule cells. Figure 3B shows a typical experiment of a series of 5

during which increasing concentrations of ET were tested.

Consistent with the staining of granule cells by ET that we

observed at 1027 M, but not 1028 M, ET 1027 M and higher

concentrations, but not 1028 M and lower ones, induced

glutamate efflux (red, Fig. 3B). This effect was strongly diminished

when the experiments were repeated using physiological medium

lacking Ca2+ ions (containing 10 mM EGTA, and 0 mM CaCl2;

cyan curve in Fig. 3B). Since ET binds to granule cells in absence

of Ca2+ ions (see above, and data not shown), this finding suggests

that glutamate release is mediated by a Ca2+-dependent process.

However, we also detected leakage of cytoplasmic lactate

deshydrogenase (LDH) in the surrounding medium (Fig. 3C).

Consistent with previous reports [19–21] these experiments

indicate that ET causes glutamate efflux from cultured granule

neurons in part due to stimulation of the Ca2+-dependent

glutamate release machinery and in part due to neuronal leakage

as indicated by the release of LDH. This latter effect might

account for presence of a Ca2+-independent glutamate release

component when ET is applied at high concentration. Moreover,

we observed that after a 10–20 min incubation with ET 1027 M,

many granule cells presented membrane blebs (not illustrated).

This manifestation of late ET cytotoxicity on the cultured granule

cells contrasts with the apparent lack of detectable cell toxicity in

acute slices (see above mention of lack of appearance of pyknotic

nuclei).

In the renal cells lines, ET has been reported to induce a rise in

the intracellular concentration of [Ca2+] [12]. Similarly, we

observed that ET induced a very fast and marked increase in the

cytosolic Ca2+ concentration in the cultured granule cells, as

determined using Fura2 (Fig. 3D). Preincubation with a medium

containing no Ca2+ ions (10 mM ETGA, 0 M Ca2+) almost

abolished the intracellular rise in [Ca2+] induced by 1027 M ET

(Fig. 3D). This suggests that this intracellular Ca2+ rise is due to

influx of Ca2+ ions and not from mobilization of intracellular

Ca2+-stores.

In the renal cell lines a causal relationship between cell toxicity

and ET oligomerization has been proposed. Since ET oligomer-

ization, but not ET binding, depends on the presence of

cholesterol [10–12], we examined whether cholesterol sequestra-

tion by methyl-b-cyclodextrin interfered with the cytotoxicity of

ET. Granule cell cultures were incubated with 1 mM methyl-b-

cyclodextrin for 30 min at 37uC (a condition which efficiently

prevents formation of ET-heptamers in membranes of renal cells

[12]). Under these conditions, ET staining in granule cell cultures

appeared qualitatively similar to that observed without methyl-b-

cyclodextrin pre-treatment (compare panels Ai or Aii and Aiii in

Fig.3) and a significant decrease in ET-induced glutamate release

was observed (Fig. 3B). This pretreatment almost abolished the

intracellular rise in [Ca2+] induced by 1027 M ET (Fig. 3D). This

is reminiscent of previous studies in renal cells, in which cholesterol

depletion prevented the ET-induced intracellular rise in [Ca2+]

[12]. Moreover no blebs were observed on the cultured cells

submitted to ET 1027 M for at least 20 min (not illustrated).

Overall these data confirm that the granule cell can be targeted

and affected by ET, leading to [Ca2+]i rise likely due to Ca2+

influx, glutamate release and membrane severing. Since choles-

terol sequestration impairs these effects and efficiently prevents

formation of ET-heptamers in membranes and cytotoxicity in

renal cells [12], it is tempting to speculate that they relate to the

pore forming activity of ET.

ET directly stimulates glutamatergic, and indirectly
GABAergic, synaptic transmission afferent to the Purkinje
cells

To analyze the effect of ET on neurotransmission (i.e. neuronal

network activity and neurotransmitter release), we used cerebellar

slices cultured for 2–3 weeks in vitro, which form a simplified

cerebellar neuronal network, and are thin enough (few layers of

neurons) to allow access of ET to all the neurons present in the

slice, which is not the case in acute slices. In cultured slices,

Purkinje cells receive glutamatergic (excitatory) inputs originating

only from granule cells while the GABAergic (inhibitory) inputs

are made by inhibitory interneurons and Purkinje cells [29,30].

To allow simultaneous recording of spontaneous postsynaptic,

mostly Na+-dependent, excitatory currents (sEPSC) resulting from

vesicular release of glutamate or spontaneous postsynaptic

inhibitory, Cl2-dependent, currents (sIPSC) due to GABA release,

Purkinje cells were voltage clamped (whole cell patch configura-

tion) at a holding potential of 255 mV (note that ENa
+ ,

+107 mV and ECl- ,292 mV using the mentioned extracellular

and intrapipette solutions). Typical postsynaptic current traces are

shown in Figure 4A. sEPSC and sIPSC frequencies were

determined from recording epochs of 5 min duration, made

before and after ET (1027 M) application. Due to the irreversible

action of ET, only one Purkinje cell could be recorded per

cultured slice. After a delay of a few minutes (281+/253 s), sEPSC

frequency was significantly increased by a factor of ,2.5 fold

(p,0.01) after ET application. Bar chart in Figure 4A summarizes

data from n = 15 independent experiments. sIPSC frequency was

also significantly increased, but only by ,60% (p,0.05) (Fig. 4A).

Then, during the course of each experiment both sEPSC and

sIPSC frequencies declined. No change in plasma membrane

resistance of the Purkinje cells was detected (control: 42.1+/

25.2 MV, vs ET: 43.4+/24.1 MV, n.s.).

No significant change was detected in the mean amplitudes of

the sEPSC and sIPSC, under control condition (cont.) and after

C. perfringens Epsilon Toxin
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ET application (Fig. 4A): (mean sEPSC cont.: 16.3+/21.3 pA, vs

ET: 20.0+/23.5 pA, n.s, from n = 15 experiments during which at

least 200 synaptic events were averaged; mean sIPSC cont.:

38.5+/216.9 pA, vs ET: 37.7+/214.8 pA, n.s., averages from

n = 15 experiments, 200 synaptic events each). The amplitude of

the first and main peak in the sEPSC and sIPSC amplitude

distribution histogram (not shown), which corresponds to the

monoquantal postsynaptic currents, was not modified after ET

(sEPSC cont.: 14.6+/22.9 pA, vs ET: 15.2+/21.9 pA; sIPSC

cont.: 12.6+/21.0 pA, vs ET: 14.2+/21.9 pA, same n and

averaging conditions as described just above). This indicated that

ET does alter neither the size of the glutamate or GABA

transmitter quantum (i.e. no changes in synaptic vesicle transmit-

ter content or density in postsynaptic receptors), nor the

postsynaptic properties of the Purkinje cells.

Since ET has been reported to make pores in synaptosomal

membranes assumed to correspond to nerve ending membrane

[11], we investigated whether stimulation of synaptic activities by

ET might result from a direct effect of the toxin on the nerve

endings (albeit no-significant staining was detected, see Table 1

and Figs. 1 and 2). To pharmacologically isolate the nerve

endings from action potentials propagating in the neuronal

network, we bath applied the potent blocker of Na+-channels

Tetrodotoxin (TTX, 1026 M for at least 15 min) prior to

application of ET. On its own, TTX reduced the frequency of

both the sEPSC (by 25.3+/211.5%, p,0.05) and sIPSC (by

40.5+/28.3%, p,0.01 leaving only the miniature EPSC and

IPSC, which are due to spontaneous fusion of synaptic vesicles

containing glutamate or GABA. Subsequent application of ET

(1027 M) did not induce significant change in respective

frequencies or amplitudes of miniature EPSC or IPSC (Fig. 4B)

ruling out the possibility that ET directly acts on nerve endings.

This is consistent with i) the lack of significant ET-staining in the

molecular layer of the cerebellar cortex which contains all

granule-to-Purkinje cells synaptic contacts (see above) and ii)

previous report that ET fails to trigger glutamate release from

brains synaptosomes [27].

The TTX experiments suggest that the ET-stimulated increase

in synaptic activity is due to an enhanced activity in the neuronal

network. To discriminate between direct stimulation of ET on the

excitatory neurons, from their dis-inhibition following alteration of

inhibitory transmission, we examined the synaptic effects of ET

after pharmacological isolation of glutamatergic or GABAergic

transmission, using either the GABA-receptor antagonist bicucul-

line, or CNQX to block glutamate receptors of AMPA-type. Bath

application of bicuculline (1025 M, bicu) on the cultured slices

abolished the occurrence of all the sIPSC detected in the Purkinje

cells (Fig. 4C) and, due to dis-inhibition of glutamatergic neurons,

this also potentiated the frequency of sEPSC (to 327+/2151%,

p,0.01). Subsequent application of ET (still in the presence of

bicuculline) led to a further potentiation of the sEPSC frequency

by a factor ,2.5, p,0.01, (Fig. 4C) with no significant changes in

Figure 3. Effect of ET on primary cultures of cerebellum highly
enriched in granule cells. Ai, Aii and Aiii, primary cultures of
cerebellar cells. Ai and Aii, 1027 M ET was applied in PBS buffer (i.e.
containing no Ca2+ ions) for 5 min after fixation of the cells, then the ET-
(green) and GFAP-(red) immunoreactivities were revealed. Cell nuclei
were labeled using DRAQ5 (cyan). GFAP-positive cells (astrocytes) are
not labeled by ET. Aiii, same kind of experiment except that the culture
was pretreated with methyl-b-cyclodextrin (MbCD, 1 mM for 30 min at
37uC) before fixation. B, the glutamate concentration (mM) in
extracellular medium was determined from cerebellar primary cultures
using the Amplex Red Assay. ET was applied for 10 min at the indicated
final concentrations, under the following conditions: ET alone (red) ET
after pretreatment with methyl-b-cyclodextrin (blue), ET in physiological
medium containing no Ca2+ (10 mM EGTA; 0 mM CaCl2; cyan). Data
points are mean 6 SEM determined from triplicate determinations. C,
extracellular lactate-deshydrogenase (LDH) levels (using the Cytotoxic-
ity Detection Kitplus assay). Data points are mean 6 SEM (n = 4). In B
and C, lower black horizontal lines denote basal levels (i.e. without ET),
and upper dashed red lines denote the maximal values determined

after granule cell lysis was induced by hypo-osmotic shock. D, averaged
Fura-2 measurements of intracellular [Ca2+] from 25 granule cells, in
absence (black, denoted as Basal)) or after addition of 1027 M ET (red),
with ET after preincubation of the cells with methyl-b-cyclodextrin
(1 mM for 30 min, blue), or with medium containing 10 mM EGTA-
0 mM Ca2+ (cyan). The green curve shows control cells preincubated
only with methyl-b-cyclodextrin. Inner graph: relative [Ca2+] changes (%
of control) determined 10 min after addition of ET in absence (red,
n = 15) or presence of methyl-b-cyclodextrin (blue, n = 5) or in EGTA-0
Ca2+ medium (cyan, n = 14). ET vs control: p,0.001, ET + MbCD vs
control or MbCD alone: n.s.
doi:10.1371/journal.pone.0013046.g003
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the mean sEPSC amplitude (mean sEPSC bicu: 12.7+/20.7 pA,

vs bicu + ET: 16.2+/21.8 pA, n.s.) or monoquantal sEPSC (first

peak sEPSC bicu: 10.8+/20.5 pA, vs bicu + ET: 12.1+/20.9 pA,

n.s.). When CNQX (1025 M) was applied, sIPSC frequency was

reduced (to 62.2+/212.2%, p,0.01) consistent with the fact that,

in the slices, the firing activity of the inhibitory interneurons is

driven by the excitatory inputs they receive [29,30]. Subsequent

application of ET (1027 M) failed to induce any increase in the

sIPSC frequency recorded in the Purkinje cells (Fig. 4D) with no

significant changes in the mean sIPSC amplitude (mean sIPSC-

CNQX: 17.5+/22.2 pA, vs CNQX + ET: 14.6+/21.9 pA, n.s.)

or monoquantal sIPSC amplitude (first peak sIPSC-CNQX:

12.9+/21.0 pA, vs CNQX + ET: 11.6+/20.8 pA, n.s.). This

important finding unambiguously indicates that ET directly and

selectively stimulates glutamatergic transmission by the granule

cells, which are the only glutamatergic neuronal cell type in

cultured cerebellar slices. Moreover, a lack of ET effect on the

GABAergic transmission, when ET is applied after excitatory

transmission has been blocked, indicates that the stimulation of the

inhibitory activity by ET, as observed in absence of pretreatment

(Fig. 4A), is indirect and results from enhanced GABAergic

neurons firing activity in response to increased firing activity of the

granule cells.

ET directly depolarizes granule cell somata causing their
firing

The above immunostaining data and our electrophysiological

findings clearly pinpoint the granule cells of the cerebellar cortex

as a major ET target. Since ET binds to granule cell somata

(Table 1, Fig. 2) and has effects on them in primary culture (see

above, Fig. 3), we examined whether and how ET acts on the cell

body of granule cells. Granule cells were current-clamped under

the whole cell patch configuration (Fig. 5A). The transmembrane

potential changes were continuously monitored, during a control

resting period (at least 15 min) and after ET was bath applied. In

all of the n = 15 experiments performed (one cell recorded per

slice), after a delay of 3–5 min (see Table enclosed in Fig. 5F), ET

induced a ,20 mV depolarization of the granule cell leading to

bursts of action potentials (Fig. 5B) followed by a plateau

depolarization in about 2/3 of the cells.

We could not completely exclude the possibility that the ET-

induced depolarization of the granule cell soma was indirect,

mediated by an ET-induced release of excitatory neuroactive

molecules from neighboring glial cells (as the oligodendrocytes that

are targeted by ET). Thus, we repeated the above described

experiments after the recorded granule cells were pharmacolog-

ically isolated by pre-incubating the slices with agents aimed at

blocking receptors to the neurotransmitters or reducing the firing

activity. Application of bicuculline (1025 M, for 10 min, see a

typical recording from a series of 6 in Fig. 5C), CNQX (1025 M,

for 10 min, see a typical recording from a series of 7 in Fig. 5D),

TTX alone (1026 M, for 10 min, not illustrated) or a mixture of

the 3 drugs (see a typical recording from a series of 8 in Fig. 5E)

did not prevent the depolarizing effect of ET on granule cells

(Fig. 5F).

When determined 1 min after the onset of ET-induced

depolarization, the membrane resistance was found about 8 fold

decreased (from about 2 GigaV to about 270 MegaV, p,0.001;

see Fig. 5G). Note however that the residual membrane resistance

was still high, suggesting that no membrane disruption occurs.

These findings bring rational for explaining how TTX suppressed

the stimulation of glutamate release by ET: TTX, which does not

interfere with the initial depolarizing effect of ET on granule cells,

prevents propagation of its consequences (i.e. the action potentials)

to nerve endings.

Figure 4. ET stimulates excitatory and inhibitory synaptic transmission onto the Purkinje cells. A, right: spontaneous PSC detected in
voltage-clamped Purkinje cells maintained at 260 mV, in absence (Cont) or 5 min after ET (1027 M) application. The relative mean frequencies (Freq)
and amplitudes (Ampl) of spontaneous EPSC (upper graph) or IPSC (lower graph), before (white bar) or 5–7 min after 1027 M ET was added (black
bar), n = 15 distinct experiments. B–D, same kind of measurements but after pre-treatment (B) with TTX (1026 M for 10 min, n = 18, (C) with
bicuculline (1025 M for 5 min) to block the IPSC (n = 17), or (D) CNQX (1025 M for 5 min) to block the EPSC (n = 18). The frequencies and amplitudes
are presented as percent of control condition (i.e. without any treatment, white bars) or after pre-treatment (grey bars), and after subsequent
application of ET (black bars). **: p,0.01, *: p,0.05, otherwise n.s. Same scale for all current traces.
doi:10.1371/journal.pone.0013046.g004

Figure 5. ET depolarizes granule cells in cultured slices.
A, Schematic representation of the recording configuration (Whole
Cell). B–E, typical membrane potential changes recorded in granule cells
(using the Current Clamp mode) adjusted at 260 mV, after application
of 1027 M ET but without (B, n = 15) or after pre-treatment for 10 min
with (C, n = 6) Bicuculline (Bicu, 1025 M), (D, n = 7) CNQX (1025 M) or, (E,
n = 8) a cocktail of Bicuculline (1025 M), CNQX (1025 M) and TTX
(1026 M). F, quantification of the delay and amplitude of the
depolarization induced by ET. For the corresponding n, see above. All
comparisons vs ET alone are n.s. G, Changes in membrane resistance of
the granule cells before (white bar) and 5 min after 1027 M ET (black
bar) (n = 15, p,0.001). Same scale for all voltage traces.
doi:10.1371/journal.pone.0013046.g005
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Characterization of the neuronal membrane changes
induced by ET

We investigated the mechanisms by which ET affects neuronal

plasma membrane. To this aim we recorded the transmembrane

current (voltage-clamp, whole cell configuration) changes pro-

duced by ET on granule cells maintained at –75 mV. To

minimize the contribution to the whole cell membrane current

of the recruitment of endogenous voltage- or neurotransmitter

gated channels, the preparations were preincubated for 10 min

with a cocktail containing bicuculline (1025 M), CNQX (1025 M),

TTX (1026 M), TEA (2 mM) and 4-aminopyridine (1 mM), these

two latter drugs blocking endogenous K+-selective voltage-

dependent channels. Under this experimental configuration, the

ET effect on granule cells was revealed by abrupt inward current

changes that may reach ,100 pA amplitude, during which

smaller steps of ,15 pA could be also observed. Such current

changes (see the downward step in the current trace illustrated in

Fig. 6A) appeared after an averaged delay of 561.5 min, very

similar to the delay observed for ET-induced depolarization of

granule cells (Fig. 5F). The transmembrane current increased with

time either progressing by large or smaller steps (not illustrated).

On average, as determined within 1 min after the first membrane

current change was detected, the increase in plasma transmem-

brane current due to ET was ,50 pA (holding potential of –

75 mV), but it increased with time. These findings suggest that the

ET-induced transmembrane current is contributed by activation/

opening of several pores or channels, the recruitment of which

increases with time.

To determine the reversal potential of the ET-induced current,

we built the current (I) to membrane potential (V) relationship (i.e.

the I = f(V) curves). Given the kinetic of the membranes changes

caused by ET, we could not construct the I = f(V) curves by

analyzing the current traces corresponding to voltage square pulses

of incremented amplitude, but, instead, we used a continuous

depolarizing ramp of membrane potential (from 2115 mV to

215 mV, 100 mV.s21). The corresponding ramp currents

increased almost linearly with transmembrane potential (see

example in Fig. 6B). Figure 6C shows the average I = f(V) curve

(summary of 5 experiments, data denoted by filled circle). The I =

f(V) curve showed no rectification between 2115 and 215 mV,

and the reversal potential for ET-induced current was ,225 mV.

We also attempted to investigate the elementary membrane

changes induced by ET. In a series of n = 100 experiments, ET

(1027 M) was applied inside the recording pipette prior to cell-

attach recordings were made (scheme in Fig. 7A). To minimize

leakage of ET from the tip of the micropipette during the micro-

positioning, a negative pressure was applied. The pipette potential

was maintained at 0 mV. In 34 out of the 100 experiments

performed, within the few minutes after the sealing of the tip of the

patch pipette was established onto the outer face of the plasma

membrane of the granule cells, we observed the appearance of

abrupt increases (i.e. step) in the membrane current (Fig. 7B).

Their amplitude distribution showed a main peak at ,16 pA, but

the average amplitude was 70 pA (Fig. 7E). When control

recordings (for more than 20 min without ET inside the

micropipette) were performed, no similar change in transmem-

brane current was observed (occurrence of abrupt membrane

current change: + ET, n = 34/100, - ET: n = 0/26, p,0.001). This

finding revealed a direct effect of ET on the granule cell

membrane. In the 66 negative experiments, it was unclear

whether ET had failed to produce an effect (may be no ET

receptor was present in the recorded patch of membrane or the

pore/channel activation occurred during the process of sealing of

the patch pipette to the plasma membrane of granule cell).

Since heptamerization of ET and ensuing pore forming activity

needs the presence of cholesterol [11,12], we examined whether

the membrane effects of ET were sensitive to methyl-b-

cyclodextrin. Slices were preincubated with methyl-b-cyclodextrin

(1 mM for at least 20 min at 37uC), and the recording was

performed with micropipettes containing ET (1027 M) + methyl-

b-cyclodextrin (1 mM). Surprisingly, in 16 out of 39 experiments

(i.e. 41%, similar as the 34% reported above in methyl-b-

cyclodextrin untreated slices), ET was still able to induce outward

membrane current steps (a typical example is provided in Fig. 7C).

No occurrence of abrupt membrane current change was observed

in absence of ET (+ MbCD and + ET, n = 16/39, + MbCD - ET:

n = 0/21; p,0.001). However, cholesterol sequestration increased

the delay before observing the ET-induced outward current steps

(Fig. 7D), and diminished their average amplitude (Fig. 7E).

Figure 6. Membrane current induced by ET in granule cells. Granule cells were maintained under voltage clamp using the whole cell
configuration. A, a recording taken from a series of 15 independent experiments (granule cells hold at 275 mV) during which slices were
preincubated for 10 min with TTX (1025 M), TEA (1 mM), 4-AP (2 mM), CNQX (1025 M) and bicuculline (1025 M) before application of ET (1027 M,
arrow). Note the abrupt large inward current step that manifests action of ET on the membrane characteristics. B, During the course of the same
series of experiments, membrane holding potential was changed from 275 mV to 2115 mV, followed by depolarizing ramps from 2115 mV to
215 mV, before returning to 275 mV. This paradigm was performed before application of ET and after the toxin had induced an abrupt change in
the whole cell current, as illustrated in A. Typical currents (before: grey; after ET: black) are shown. C) Currents traces were pooled under control
(before ET) or after ET and averaged, to build the I = f(V) relationship.
doi:10.1371/journal.pone.0013046.g006
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Despite the number of recordings made after methyl-b-cyclodex-

trin pre-treatment was fewer than in control, the main peak in the

distribution amplitude histogram of the ET-induced step currents

was unchanged (Fig. 7F, peak at around 16 pA).

Discussion

Following acute injection of ET into animals [20], excessive

neurotransmitter release has been reported. This has been

proposed to result from ET-induced brain micro-vessels lesions

[27,31], ensuing diffuse brain edema, and leakage of transmitters

from damaged neurons [4]. Albeit some biochemical studies

performed on rat brain synaptosomes have suggested a direct

action of ET on neurons [11,14,26], the more recent binding

studies performed using GFP-tagged ET, have disputed this

possibility. Indeed only the astrocytes and myelin (i.e. oligoden-

drocytes), microglial cells, but not neurons, were reported to be

targeted by GFP-tagged ET [25,27]. In this study, we bring a set of

compelling evidence (immunolabeling, functional data) that refutes

part of the previous deductions and establishes unambiguously

that ET can directly act on a subset of neurons, the granule cells in

the cerebellar cortex. The reason for the discrepancy between our

data and previous reports, may relate to i) unknown properties of

the GFP-tagged ET and/or, ii) the fact that the staining of the

neurons was faint as compared to that of the oligodendrocytes,

hence difficult to detect.

ET binds to oligodendrocytes but not to astrocytes
The lack of ET-staining on the molecular layer and on GFAP-

expressing cells in the granule layer of acute cerebellar slices or

primary cultures from the mouse cerebellar cortex indicates that

neither Bergman’s radial glial cells nor cerebellar velimentous

astrocytes are targeted by ET. This contradicts previous reports

that GFP-tagged ET binds to astrocytes [25]. Maybe, the presence

of the GFP-tag has miss-targeted ET in these previous studies, or

the close apposition of astrocytic processes (GFAP positive) with

the capillary blood vessel lead to the appearance that ET-bound to

the astrocytes. However, from our present results, the possibility

that a sub-population of GFAP-expressing cells may bind ET in

other brain regions cannot be ruled out.

The identification of oligodendrocytes as a major ET target is

consistent with a previous report showing that GFP-tagged ET

Figure 7. Abrupt current changes induced by ET in membrane patches. A, Schematic representation of the recording configuration (Cell
attached). ET (1027 M) was applied inside the patch-pipette. B–C, typical membrane current changes recorded after sealing the patch-pipette onto a
granule cell membrane (membrane potential maintained at 245 mV using the Voltage Clamp mode), without pre-treatment (Bi, Bii) or after pre-
treatment (C) for 30 min with 1 mM of methyl-b-cyclodextrin (MbCD). The corresponding average delays (D) before current changes were detected,
and average amplitude of the detected current changes (E), and distribution amplitude (F) of the observed current changes. Grey and black bars
denote experiments performed using ET alone (mean from 34 recordings) or after pre-treatment with MbCD (mean from 16 recordings) respectively.
doi:10.1371/journal.pone.0013046.g007

C. perfringens Epsilon Toxin

PLoS ONE | www.plosone.org 10 September 2010 | Volume 5 | Issue 9 | e13046



binds to myelin [27], and staining of brain white matter by ET

(this study). The strong staining intensity of white matter, which

contains myelinated axons and oligodendrocytes cell bodies, as

compared to the granular layer, suggests a greater avidity of the

oligodendrocytes for ET than the granule cells. Perhaps this does

relate on the high cholesterol content of their plasma membrane

and of myelin [32]. Analysis of the functional consequences of ET

binding on oligodendrocytes was beyond the aim of this report,

but this deserves to be investigated in further studies.

Induction of glutamate release by ET
Our observations that ET stimulates glutamate release in

cerebellar primary and cultured slices are fully consistent with the

several previous studies, which have shown ET-induced release of

various neurotransmitters, including glutamate [19–21]. Since

neuron and glial cells contain and can release glutamate, the large

efflux of glutamate reported in poisoning experiments may have a

neuronal or glial origin. Our present observation that ET directly

acts on neurons, induces glutamate release in primary cultures of

granule cells, and stimulates glutamatergic transmission at the

granule cell - Purkinje cell synapse in slices largely supports the

possibility that the release of glutamate reported in brain [19–21]

is mostly neuronal. However, since oligodendrocytes are labeled

by GFP-ET [27] as well as native ET (this study), the possibility

they are a source for ET-induced release glutamate cannot be

ruled out.

ET-induced release of glutamate may involve two distinct effects

of ET: i) stimulation of the neurotransmitter release machinery,

and ii) leakage from severed cells. Since glutamate is present in the

cytosolic compartment of any kind of cells, ET-induced plasma

membrane severing of the toxin’s targets can lead to an efflux of

glutamate. This possibility is supported by our observations that

LDH, which is a cytosolic protein, is released upon application of

high ET concentration (1026 M). We also observed that a similar

fraction of glutamate efflux induced by ET in primary culture is

Ca2+-independent and resistant to pretreatment with methyl-b-

cyclodextrin. However, our study cannot distinguish between

plasma membrane disruption and formation of ET-pores large

enough to allow transmembrane passage of proteins or amino

acids. Since we observed that ET depolarizes neurons and induces

intracellular Ca2+-rise, most of the glutamate efflux induced by ET

at 1027M may result from stimulation of the vesicular release

machinery in cultured granule cells. This is supported by

observations that i) when Ca2+ ions are lacking in the extracellular

medium, ET binds to neuronal membrane but fails to induce

glutamate efflux, and ii) pretreatment with methyl-b-cyclodextrin

prevents induction by 1027 M ET of Ca2+-intracellular rise as well

as glutamate release. Further experiments directly altering the

vesicular release machinery should be performed to confirm the

vesicular origin of the glutamate released by cultured cells

submitted to ET. In next paragraph, we discuss the possibility

that glutamate release is a secondary, distant, manifestation of the

ET effects.

Propagation of ET-effect from its binding site to nerve
endings and non-target neurons

Our labeling and functional data in nerve tissue revealed that

the ET effects comprise primary action(s) close to the toxin’s

binding site, and secondary actions, possibly occurring distant

from the binding site. Although one of the most prominent effects

of ET in nerve tissue is the stimulation of glutamate release (see

electrophysiological data in Fig. 4), no experimental evidence

supports the possibility that ET directly acts on nerve ending.

Indeed i) the molecular layer of the cerebellar cortex, which

contains the glutamatergic varicosities making synaptic contacts

between granule cells (highly susceptible to ET), and the dendritic

tree of Purkinje cells appears almost unlabelled by ET; ii) no co-

staining was observed between ET and synaptic markers such as

synaptotagmin, synaptophysin and PSD-95 in the granular layer.

Thus our labeling data contradict the initial reports that ET forms

pores into membranes isolated from rat brain synaptosomes

[11,14] but confirms previous observations that ET-GFP fails to

directly induce glutamate release from synaptosomes [27].

Consistent with the binding of ET on granule cell pericaryon,

the electrophysiological measurements performed on granule cells

showed that the membrane resistance is lowered by a factor ,8

following ET application. The pore-forming activity recorded

during cell-attach experiments on granule cell somata indicates

that the membrane resistance change is likely to represent a

primary effect of ET. This change is associated with an inward

increase of the resting current in the range of 50–100 pA, which

depolarizes the granule cells thus reaching the threshold for

initiating action potentials. The latter propagate toward nerve

endings and produces a secondary effect of ET consisting in

stimulating vesicular glutamate release. This view is fully

supported by our observation that TTX, which prevents action

potential propagation, abolishes the stimulatory effect of ET on

neurotransmitter release. Our findings are also consistent with a

previous report that riluzole, which blocks persistent Na+- and

Ca2+-currents [33] and thus impairs the action potential

propagation, attenuates ET-induced glutamate release in the

mouse hippocampus [20].

Propagation of ET effect in the neuronal network may also

explain its stimulatory action on the release of other neurotrans-

mitters (as GABA in the cerebellar cortex). In the cerebellar

cortex, we did not identify neurons other than granule cells

potentially sensitive to ET. In the molecular layer and the granular

layer ET does bind neither to GABAergic interneurons nor to

Purkinje cells. Moreover we did not detect significant change in

the membrane input resistance of the Purkinje cells in presence of

ET. The pharmacological dissection of the synaptic effects of ET

on neurotransmission clearly indicates that the stimulation of

GABA-release by ET is only indirect and results from the ET-

induced increase in the excitatory activities in the neuronal

network.

Comparison of the primary effects of ET on neurons and
on other cell targets

Few cell types have been identified to be targeted by ET. This

includes the cells of the distal renal tubule [24,34] and related cell

lines [8,12,35], vascular capillary endothelial cells [23–25], enteric

epithelial cells [2], the oligodendrocytes and peripheral Schwann

cells that both contribute to neuronal axon myelination [27],

specific neurons, as the cerebellar granule cells (this study),

macrophages and the related brain microglial cells [27,36]. This

strongly suggests that this biological spectrum of selectivity relates

to the expression of yet unidentified specific receptor(s) by ET cell

targets.

With regard to the other aspects of the cellular and molecular

effects of ET, most of the current knowledge has been established

using renal cells and comparison of the data established using

neurons (this study) and renal cells reveals several commonalities.

For example the extent of ET binding on the baso-lateral and

apical membranes of renal cells differs [12], and in the acute

cerebellar slices, where granule cells are highly differentiated, ET

labels their cell body but not axons and nerve terminals. This

suggests that only specific membrane domains allow ET binding as

revealed by immunostaining. Further experiments are needed to
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determine whether this results from a local enrichment in ET

receptors or/and organization of phospholipids and cholesterol

micro-domains. In renal cells or granule neurons, the data suggest

that part of the ET action, but not ET binding, relies on

cholesterol or integrity of cholesterol containing microdomains:

pretreatment with methyl-b-cyclodextrin abolishes ET-induced

Ca2+-rise in granule cell primary cultures (this study) as well as in

renal cells [12]. This is less clear with regard to the pore forming

action of ET: it is abolished in renal cells when pre-treating the

cells with methyl-b-cyclodextrin [8–12], but in granule neurons

the ET-induced changes in transmembrane currents were not

abolished in presence of methyl-b-cyclodextrin (cells pretreated for

30 min); yet these currents were slightly delayed and their mean

amplitude lowered but without affecting the main peak of their

distribution amplitude. Thus the question arises of whether the

observed ET-induced abrupt changes in membrane current relate

to the pore-forming activity of ET or to activation of endogenous

conductances. Although we cannot exclude this later possibility,

we have to point the facts that ET has been reported to form pores

in liposomes containing phosphatidylcholine exclusively [10] and

that pre-treatment with 1 mM methyl-b-cyclodextrin for 30 min

might not be sufficient to extract enough cholesterol from the

granule cell membranes, as discussed elsewhere [37]. This makes

the possibility of endogenous conductance activation less likely.

The pore formed or activated by ET in neuronal
membrane

In membrane bilayers, ET pore has been previously determined

as a general diffusion pore, allowing Cl2, K+ Na+ ions to flow, but

with a preferential anionic selectivity (permeability ratio PK+/PCl-

,0.30) [9]. Thus, if PNa+ , PK+, and given EK+ = 2101 mV,

ENa+ = +107 mV, and ECl2 = 292 mV, under our exper-

imental conditions the expected equilibrium potential should be ,
237 mV (based on the Goldman-Hodgkin-Katz equations). Our

findings that the reversal potential for ET-current was ,
225 mV, indicates that the ionic selectivity determined previously

using bilayers [9] does not fully apply to pores formed or activated

into neuronal membrane. May be, the ET- induced intracellular

Ca2+ rise (which is abolished when cells are incubated with no

extracellular Ca2+ ions) is due to Ca2+ permeation through ET

formed pores, thus explaining a more depolarized equilibrium

potential than that expected. Given the depolarizing effect of ET

on granule cells, further experiments are needed to determine the

respective contribution of ET-pores and endogenous voltage-

dependent Ca2+-channels in the ET-induced rise of intracellular

Ca2+.

Considering that the resting potential of granule cells submitted

to cell-attached recording is ,265 to 260 mV and the reversal

potential for ET-induced current , 225 mV, the ET-induced

current steps of 15 pA (see main peak of the distribution, Fig. 7F)

may correspond to the opening of single state conductance large

pores of over 370 pS, as determined using the Ohm’s law. This is

far larger than the conductance of endogenous neuronal channels

and reminiscent of that determined for ET-pore in lipid bilayers

(550 pS in presence of 1 M KCl) [9]. Using the membrane model

where pores are analog to parallel resistors, the large fall in

membrane resistance that we observed in granule cells (from

,2 GV to ,270 MV) can be accounted by formation of ,9 pores

per granule cell.

To conclude, the emerging picture from our labeling and

functional studies is that granule cells and oligodendrocytes are

major ET targets in the mouse cerebellar cortex. In view of the

high bio-hazard of ET [38], identification of neurons as ET targets

shed a new light on the mechanisms by which ET can exert

deleterious action on the central nervous system. It probably

results from a direct severing action of ET on subsets of neurons

(our study), and indirect damage resulting from vasogenic edemas

[4]. The direct effect of ET on neurons is likely to amplify the

highly potent systemic action of the toxin, and this may explain

why ET lethal activity is 100-fold higher than that of other

structurally related pore-forming toxins [39].

Materials and Methods

Ethic Statement
All experiments have been conducted using protocols designed

according to the European and French guidelines on animal

experimentation and approved by the direction of the Bas-Rhin

veterinary office, Strasbourg, France; authorization number 67-

295 to JdB), and the direction of Paris veterinary office, France,

(authorization number 75-279 to MP).

Epsilon toxin materials
ET was purified from an overnight culture of C. perfringens type

D strain NCTC2062 as previously described [8]. The purity of ET

(.90%) was checked by SDS-PAGE electrophoresis. Unless

otherwise stated, ET was extemporaneously diluted to a final

concentration of 1027 M in the superfusion medium from stock

aliquots stored at 280uC. Specific anti-ET antibodies were raised

in rabbit with formalin treated wild type epsilon toxin as described

previously for other clostridial toxins [40]. Antibodies against

epsilon toxin were purified from hyper-immune rabbit sera using

wild type epsilon toxin coupled to cyanogen bromide activated

sepharose 4B (Amersham Biosciences) according to the manufac-

turer’s recommendations. Specificity for ET of immunoaffinity

purified antibodies was checked by immunoblotting experiments:

crude culture supernatant of C. perfringens type D strain

NCTC2062 (100 mg proteins) was run on a SDS-PAGE (10%),

and then transferred on nitrocellulose. The membrane was

blocked with non-fat milk and incubated with rabbit anti-epsilon

toxin (1:2000) and subsequently with protein A-peroxidase.

Protein bands were visualized using the ECL detection system

(InVitrogen, Gergy-Pontoise, France).

Whole brain and cerebellar preparations
Acute slices of whole brain or cerebellum alone were prepared

according to standard procedures. 150 mm thick parasagittal

cerebellar slices from 25–30 days old C57/BL6 mice were made

following a protocol approved by the European and French

guidelines on animal experimentation. Briefly, mice were killed by

decapitation under isoflurane general anesthesia (AErrane, Baxter

SA, Maurepas, France; Isoflurane anesthesia unit from Medical

Supply Service lnt, England). Whole brains or only cerebella were

dissected in ice-cold physiological medium (i.e. artificial cerebro-

spinal fluid) equilibrated with 95% O2 and 5% CO2, and

containing: NaCl 124 mM, KCl 2.7 mM, CaCl2 2 mM, MgCl2
1.3 mM, NaHCO3 26 mM, NaH3PO4 0.4 mM, glucose 18 mM

and ascorbate 4 mM. Slices were made using a Leica VT1000S

slicer, and then maintained at the desired temperature in the same

physiological solution.

Cerebellar slices in organotypic culture were prepared from

cerebella removed from 7–10 day old C57/BL6 mice and cultured

using the roller tube technique modified from [41] as described

previously [29,42]. In short, parasagittal cerebellar slices (350 mm

thick) cut under aseptic condition were embedded in clotted

chicken plasma on glass cover-slips and placed in culture tubes

containing 750 ml of culture medium made of 25% heat-

inactivated horse serum, 50% Eagle’s basal medium, 25% HBSS
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supplied with 33.3 mM D-glucose and 0.1 mM glutamine. The

tubes were placed in a roller drum at 36uC. To delay the

overgrowth of macrophages, glial cells and fibroblasts in the

cultured slices, 2 days after the culture was started, uridine,

cytosine-b-D-arabino-furanoside and 5-fluorodeoxyuridine (Sig-

ma) were added (1027 M final) to the culture medium for

24 hours. The cultures were fed once a week by renewing the

culture medium.

Cerebellar cells primary cultures highly enriched in granule cells

were prepared from 7 day old C57BL6 mice. In brief, dissected

cerebella were transferred in Hank’s buffer salt solution (HBSS).

Enzymatic dissociation of the cells was made by incubating

cerebella for 5 min at 37uC in trypsin 0.05%-EDTA 0.02%

solution (GIBCO), then in papaı̈n (Sigma-Aldrich) 15 U/ml

during 20 min at 37uC. The enzymatic reaction was stopped by

adding B27/Neurobasal medium (GIBCO). After centrifugation

(1 min, 120 g), the pellet was resuspended in Neurobasal medium

and mechanically dissociated. Cells were plated on poly-ornithin-

coated glass coverslips and cultured in modified Neurobasal

medium. To increase granule cells survival the culture medium

was supplemented with KCl 30 mM, insulin 1 mM, putrescin

100 mM, progesterone 20 nM, transferin 100 mg/ml, and sodium

selenite 30 nM. Experiments were performed after 5 days in vitro

(5 DIV).

For glutamate release studies, cells were plated on poly-L-lysine-

coated (10 mg/ml) 24-well Corning dishes (3–5 105 cells in 30 ml)

and then incubated at 37uC in a water saturated atmosphere of

5% CO2-air.

Immunodetection of ET and immunocytochemistry of
specific cell markers

Whole brain or cerebellar acute slices (150 mm thick) were pre

incubated with BSA (1% in physiological medium), then submitted

to ET (at the concentrations and for the indicated duration at

room temperature) and then fixed using paraformaldehyde 4% in

PBS at 4uC overnight. Cerebellar cells primary cultures or, when

needed, slices were fixed in paraformaldehyde 4% in working

solution during 20 min before incubation with ET. Fixed slices

were permeabilized using Triton 0.1% for 1 day followed by 3

washes in PBS. Then, the fixed slices were transferred in a working

solution containing PBS with 1% bovine serum albumin +10%

normal goat serum (Chemicon-Millipore) for 2 h to saturate non-

specific sites.

To reveal the labeling contributed by ET, the primary anti-

toxin antibodies (see above) were applied (dilution 1/150)

overnight at 4uC. Secondary anti-rabbit antibody tagged with

Alexa 488 or Alexa 546 (Molecular Probes, 1/2000) was applied

overnight at 4uC. Whole brain or cerebellar slices were then

mounted on glass coverslips with mowiol (Calbiochem).

To identify the cells targeted by the toxin, a similar protocol was

applied except that the immuno-labeling against ET and the cell

marker of interest were performed simultaneously by applying the

primary antibodies overnight at 4uC (ET: antibodies from rabbit;

cell marker: antibodies from mouse, except when specified)

followed by 3 washes in the working solution, by overnight

application of the secondary antibodies tagged with Alexa 546

(Molecular Probes, diluted 1/2000), at 4uC. When the primary

anti-cell marker antibodies were from rabbit, we used the two steps

sequential process described previously [43]: tissue preparations

were first treated for ET immunodetection and then, after a

20 min post-fixation in paraformaldehyde 4%, the preparations

were processed for cell marker detection.

The following primary antibodies were used: Glial Fibrillary

Acidic Protein (GFAP) (Sigma-Aldrich, mouse monoclonal diluted

1/400), 29,39-Cyclic Nucleotide 39-Phosphodiesterase (CNPase)

(Sigma-Aldrich, mouse monoclonal diluted 1/1000), synaptotag-

min (1D12 mouse monoclonal, diluted 1/500, a generous gift from

Dr. M. Seagar, Marseille, France), alpha-6-GABAA receptor

subunit (Chemicon-Millipore, rabbit polyclonal diluted 1/1000),

Kv3.1b (Sigma-Aldrich, rabbit polyclonal, diluted 1/200), parval-

bumin (Sigma-Aldrich, mouse monoclonal clone PARV-19,

diluted 1/1500), MAP-2 (Sigma-Aldrich, mouse monoclonal,

diluted 1/250), Post-Synaptic Density Protein 95 (PSD-95;

Chemicon-Millipore, mouse monoclonal, clone 666-1C9, diluted

1/100), calbindin (Sigma-Aldrich, mouse monoclonal clone CB-

955, diluted 1/1500)

When needed after the immunostaining process the cell nuclei

were stained using the DNA marker DRAQ5TM (Biostatus Ltd,

UK), 10 mM final in PBS.

Imaging and co-staining analysis
Unless otherwise stated, confocal images (confocal microscope

Zeiss LSM 510, software release 3.2; fields of 102461024 pixels,

magnification x40, initial pixel size of 0.053 mm2) were acquired

using 500–530 nm (green, channel 1), 560–615 nm (red, channel

2) and .633 nm (ultrared for DRAQ5) filters at the Imaging

Facility of the Institut Fédératif des Neurosciences (IFR37) at

Strasbourg (France). The possible presence of ET on a specific cell

type (identified on the basis of an immuno-labeling against a

marker of interest) was tested: if ET binds to a cell type expressing

a specific marker of interest, the respective intensities of the

corresponding fluorescent immuno-signals should be positively

correlated. To examine this issue, regions of interest (ROI; e.g.

cerebellar molecular layer, granular layer, white matter) of at least

100,000 pixels were determined under each of the studied

conditions and taken from at least triplicates of the immune-

labeling experiments. For each ROI, an intensity threshold was

applied (10% of maximum amplitude for each channel) for either

channel 1 or 2. Then for each channel, the signal intensity was

normalized to the maximum observed in the ROI [44] and the

Pearson’s correlation coefficient (rp) was determined for channels 1

and 2.

Calcium imaging
Intracellular calcium changes were monitored using the Fura-2

probe (Molecular probes) as described [45]. Cerebellar primary

cultures enriched in granule cells were incubated in the presence of

Fura-2-AM + pluronic acid (2 mM each) for 30 min at 37uC. Cells

were then washed for 20 min in a solution containing NaCl

130 mM, KCl 5.4 mM, CaCl2 2 mM, MgCl2 1 mM, D-glucose

5.5 mM, Hepes 10 mM, adjusted at pH 7.2 and placed in an

inverted microscope (Axiovert, Zeiss). They were alternatively

illuminated at 350 nm and 380 nm and images pairs were

recorded using an EM-CCD camera (Hamamatsu) at 520 nm

every 5 s for 20 min. The ratio of the fluorescence intensities (Ex

350 nm/Ex 380 nm) was calculated on a pixel basis for each

image pair using the Metafluor software (Molecular Devices). The

mean value of the fluorescence ratio was normalized for each

region of interest and the intracellular [Ca2+] changes were

estimated without further calibration.

Electrophysiological recordings
Organotypic cerebellar slices cultured for 2 weeks were placed

in a recording chamber fixed on the stage of an upright

microscope (Nikon Eclipse FN1 or Olympus BX51WI). The

recording chamber was filled with a physiological solution

containing in mM: NaCl 145, KCl 2.7, CaCl2 5, MgCl2 0.5,

Hepes 1, glucose 5.6, pH 7.4 adjusted with TrisOH. Neurons to
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be recorded were identified at the 40x magnification under DIC.

Purkinje cells and granule cells were identified by their typical

morphology: in cultured slices, Purkinje cells have large cell body

(15–20 mm) characterized by highly refringent nucleolus, whereas

granule cell are small (5–8 mm) and mostly spherical.

Whole-cell patch clamp recordings were carried out at room

temperature using an Axopatch 200A Amplifier (Axon Instru-

ments), under current- or voltage-clamp modes. Electrodes of

5 MV (for Purkinje cells recording) or 15 MV (for Granule cell

recording) were pulled from borosilicate glass capillaries (Harvard)

and filled with a solution containing: K+-gluconate 132 mM,

EGTA/KOH 1 mM, MgCl2 2 mM, NaCl 2 mM, Hepes 10 mM,

MgATP 2 mM, and GTP 0.5 mM; pH 7.2 adjusted with TrisOH;

osmotic pressure was adjusted to that of extracellular medium

using saccharose. Under the extracellular medium condition used,

the junction potential was calculated , +16 mV using the JPCalc

software in the PClamp suite (Axon Instruments) and corrections

of membrane potentials were made a posteriori. When cell-attach

recordings were needed, 15 MV electrodes were filled with filtered

extracellular medium and the pipette potential maintained at

0 mV. The recorded current and voltage traces were digitized

prior acquisition at 20 KHz using a Digidata 1320 (Axon

Instruments). Off-line analysis was performed using MiniAnalysis

(Synaptosoft) or pClamp-9 (Axon Instruments) softwares. When

appropriate, changes in membrane resistance were determined

from membrane current changes induced by a hyperpolarizing

step of 10 mV under voltage-clamp.

Determination of glutamate release using the Amplex
red assay

Glutamate release was determined following a process

inspired from Chapman and Zhou [46]. Granule cells cultured

on 24-well plates were washed three times with 300 ml HBSS

before being challenged with the indicated ET final concentra-

tions. After 10 min incubation at 37uC, the medium was

collected and stored appropriately for glutamate determination.

Glutamate concentration was monitored three times for each

sample using a cycling assay based on the ‘amplex red glutamic

acid kit’ (Molecular Probes). Typically, reactions were conduct-

ed in 96-well plates. To each 50 ml sample was added 50 ml of

reagent containing 0.25 U.ml21 HRP, 0.08 U.ml21 Glutamate

oxydase, 0.5 U.ml21 Glutamate pyruvate synthase, 0.2 mM L-

alanine and 100 mM amplex red in 0.1 mM Tris buffer, pH 7.4.

The cycling reaction was allowed to proceed at 37uC for 30 min

and the increase in the resorufin fluorescence was measured

using a fluorescence plate reader (Mithras LB 940, Berthold

technologies) (530 nm excitation –590 nm emission). Determi-

nation of the total intracellular pool of glutamate was performed

by lysing all the cells by a hypo-osmotic shock: the supernatant

was removed and the cells were submitted to distilled water

containing only 10 mM Tris, pH 7.4.

Determination of lactate deshydrogenase release
The lactate des-hydrogenase released by ET treated cells was

quantified using the Cytotoxicity Detection Kitplus (LDH) (Roche)

on 96-well plates, following the manufacturer instructions. The

assay was performed on the cell culture medium collected before

the HBSS cell monolayer wash (basal release during the culture),

on the same samples used for glutamate concentration quantifi-

cation (LDH release due to toxin effect) and on the cell extract

(total LDH) after hypo-osmotic shock. The reaction results are

obtained by reading the optical density on a multi-plate reader

Mithras LB 940 (Berthold, Germany).

Other materials
Methyl-b-cyclodextrin was from Sigma-Aldrich. Tetrodotoxin

(TTX, Latoxan), bicuculline methiodide, TEA, 4-AP (Sigma-

Aldrich) were prepared as stock solutions in distilled water and

CNQX (Sigma-Aldrich) was dissolved in DMSO prior dilution to

the desired final concentration in the physiological solution

immediately before the experiments.

Statistical analysis
When adequate, results are presented as means 6 SE from the

indicated number n of separate experiments. Statistical compar-

isons were done using Khi2 or ANOVA tests as appropriate. When

statistical differences were detected with ANOVA, multiple

comparisons Bonferroni test was performed. A p value ,0.05

was considered significant; n.s. denotes not significant comparison.
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