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RESEARCH ARTICLE Open Access

Unraveling the evolution and coevolution
of small regulatory RNAs and coding genes
in Listeria
Franck Cerutti1, Ludovic Mallet1, Anaïs Painset1,7, Claire Hoede1, Annick Moisan1, Christophe Bécavin2,3,4,5,
Mélodie Duval2,3,4, Olivier Dussurget2,3,4,6, Pascale Cossart2,3,4, Christine Gaspin1 and Hélène Chiapello1*

Abstract

Background: Small regulatory RNAs (sRNAs) are widely found in bacteria and play key roles in many important
physiological and adaptation processes. Studying their evolution and screening for events of coevolution with other
genomic features is a powerful way to better understand their origin and assess a common functional or adaptive
relationship between them. However, evolution and coevolution of sRNAs with coding genes have been sparsely
investigated in bacterial pathogens.

Results: We designed a robust and generic phylogenomics approach that detects correlated evolution between
sRNAs and protein-coding genes using their observed and inferred patterns of presence-absence in a set of
annotated genomes. We applied this approach on 79 complete genomes of the Listeria genus and identified
fifty-two accessory sRNAs, of which most were present in the Listeria common ancestor and lost during Listeria
evolution. We detected significant coevolution between 23 sRNA and 52 coding genes and inferred the Listeria
sRNA-coding genes coevolution network. We characterized a main hub of 12 sRNAs that coevolved with genes
encoding cell wall proteins and virulence factors. Among them, an sRNA specific to L. monocytogenes species, rli133,
coevolved with genes involved either in pathogenicity or in interaction with host cells, possibly acting as a direct
negative post-transcriptional regulation.

Conclusions: Our approach allowed the identification of candidate sRNAs potentially involved in pathogenicity and
host interaction, consistent with recent findings on known pathogenicity actors. We highlight four sRNAs
coevolving with seven internalin genes, some of which being important virulence factors in Listeria.
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Background
Small regulatory RNAs are widespread in all kingdoms
of life and are recognized as key negative or positive
regulators of gene expression [1–3]. They are involved
in a wide panel of physiological processes and adaptive
responses in bacteria including stress responses, quorum
sensing, toxin-antitoxin systems or pathogenicity [4–6].
They generally act post-transcriptionally in cis (antisense)
or trans by base pairing with their target messenger RNA
(mRNA) but can also bind specific proteins and modify

their activity, as illustrated by CsrB and 6S sRNA [1]. The
most extensively studied class of sRNA includes trans-
encoded sRNAs which regulate their target mRNA by
forming short and imperfect duplexes. In silico identifica-
tion of these duplexes remains a major challenge due to a
prohibitively high level of false positive candidates [7–9].
Nevertheless, an improvement in target prediction was
shown [10, 11] by focusing on site-specific regions such as
the ribosome binding site (RBS), the accessibility of
unstructured seed regions in both the sRNA and target
mRNA, and the use of comparative genomics of inter-
action candidates. Altogether, these features argue for a
better understanding of sRNA history during bacterial
evolution and shed light on how regulatory networks
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involving trans-acting-sRNA and target mRNA have
emerged and evolved. Unfortunately, little is known about
sRNA evolution, sRNA expression control and sRNA-
mRNA coevolution within bacteria, and very few studies
have been carried out on these topics so far. This can be
explained by the lack of sRNA annotation in available
genome resources as well as by the low number of well-
characterized regulatory sRNAs and the rapid evolution of
regulatory sRNAs in bacteria [1].
In the last decade, high throughput sequencing and

transcriptome-wide approaches led to a continuous
accumulation of complete genomic data in public
databases and contributed to the discovery of hundreds
of putative and confirmed new sRNAs in many bacteria
such as Escherichia coli [12], Salmonella [13], Bacillus
subtilis [14, 15] and Listeria [5, 6, 16–27], giving rise to
large-scale comparative analyses and sRNA evolutionary
studies. Existing studies on that topic focused on Gram-
negative species, including Escherichia coli and related
genomes [8, 28–30]. Phyletic analysis of E.coli sRNAs
[29] led to the first insights into the distribution of
sRNAs in gamma-proteobacteria, greatly improving our
understanding of the origin of sRNA-mediated regula-
tion and the underlying mechanisms at the source of
sRNA acquisition. To our knowledge, such a global
evolutionary study has never been performed in Gram-
positive bacteria.
Listeria are Gram-positive bacteria that are widespread

in the environment and encompass 17 species, two of
which are pathogenic: Listeria monocytogenes, the
human foodborne agent responsible for listeriosis, and
Listeria ivanovii, an animal pathogen [31]. L. monocyto-
genes has become a model for the study of host-
pathogen interactions due to its unique ability to cross
host barriers, escape from immune defenses, invade cells
and manipulate cellular machineries [32–34]. The
comparative analysis of the complete genome sequence
of L. monocytogenes and the non pathogenic species L.
innocua in 2001 was the first study to shed light on
Listeria virulence and its evolution [35]. Following this
pioneer work, Listeria genomic data grew exponentially
and more than 80 complete genomes have been se-
quenced [36]. Small non-coding RNAs were also exten-
sively studied in L. monocytogenes [5, 6, 16–27]. Indeed,
304 non-coding RNAs elements were reported in L.
monocytogenes EGD-e including 154 sRNAs, 104 anti-
sense and 46 cis-encoded [16, 17, 37]. Among these
sRNAs, several were shown to be upregulated in bacteria
growing in murine intestinal lumen and in human blood,
suggesting that they may play a role in adaptation of the
bacteria to the niches occupied during infection [1, 5, 21].
Comparative analyses of Listeria sRNAs by Kuenne et

al. [38] revealed the organization of CRISPR arrays and
cas genes in 38 complete L. monocytogenes genomes.

Becavin et al. compared three L. monocytogenes species
and observed a high conservation of sRNAs compared
to protein-coding genes [37]. A comparative transcripto-
mics approach was also used to compare the expression
of non-coding RNAs in L. monocytogenes and L. innocua
species, which revealed conservation across most tran-
scripts, but significant divergence between the species in
a subset of non-coding sRNAs [22].
In this article, we present a robust phylogenomics ap-

proach that extends and improves existing strategies
dedicated to the study of sRNA evolutionary dynamics.
We use it to provide the first evolutionary dynamics
study of 79 complete genomes of the Listeria genus with
regards to protein-coding genes, and a selected set of
112 sRNA loci experimentally identified in the patho-
genic strain L.monocytogenes EGD-e. This dataset in-
cludes intergenic trans-encoded sRNAs assumed to
target independently expressed and distant mRNAs. We
built the core and accessory sRNA and coding genes sets
and deduced the ancestral presence-absence states for
all Listeria genes. Using these patterns, we identified a
subset of 23 sRNAs that significantly coevolved with 5′
untranslated regions of coding genes (5’UTRs) and cod-
ing DNA sequence (CDS) regions of 52 Listeria coding
genes. We reconstructed the coevolution network be-
tween sRNAs and coding genes and revealed a hub of 12
sRNAs coevolving with genes encoding cell wall proteins
and virulence factors. Among them, we focused on
rli133, an sRNA specific of L. monocytogenes species that
coevolved with 12 coding genes, six of which exhibited a
documented function linked to either virulence or inter-
action with the host cell, possibly acting as a negative
post-transcriptional regulator.

Results
A robust screening strategy for sRNA and coding genes
coevolution
We designed an original approach to build a reference
phylogenetic tree to infer observed and ancestral evolu-
tion patterns and to identify coevolution relationships
between pairs of sRNAs and coding-genes. The four
main steps of this approach are presented in Fig. 1 and a
full description of each step of the workflow is provided
in the Methods section. Briefly, the approach starts from
a set of annotated genomes and a list of sRNAs to proceed
through four main steps: (1) the construction of a refer-
ence phylogenetic tree based on orthologous genes; (2)
the construction of the presence-absence matrix for
sRNAs, 5’UTRs and CDS parts allowing across all the ge-
nomes to define core and accessory sets for all elements;
(3) the inference of ancestral presence-absence patterns
for all variable sRNAs, 5’UTRs and CDS; and (4) the de-
tection of coevolution events between regulatory sRNA
and coding genes and construction of a coevolution
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network using both the observed and the reconstructed
ancestral presence-absence patterns. The detection of cor-
related evolution events relies on a phylogenetic-statistical
method based on continuous-time Markov modeling of
trait evolution developed by M. Pagel [39]. It compares
the statistical likelihood of the observed data (in this case,
sRNAs, 5’UTRs and CDS presence/absence patterns)
under two alternative scenarii: one in which the two
features are allowed to evolve independently on the phyl-
ogeny, and another where they coevolve together.
This strategy was applied on 112 L. monocytogenes

EGD-e putative trans sRNAs, all screened on 79 Listeria
genomes (see Additional file 1: Table S1) obtained from

the Listeriomics database [36]. To deal with the
remaining paralogs in the dataset, sRNAs exhibiting
overlapping positions on the EGD-e reference genome
were merged in 15 sRNA loci (see Additional file 2:
Table S2 and the Methods section for details).
The Listeria phylogenetic reference tree obtained from

the 1399 syntenic core coding genes of Listeria was ro-
bust and consistent with previous studies [40] (see Fig. 2).
The four major phylogenetic lineages of L. monocyto-
genes were clearly separated with good Shimodaira Hase-
gawa (SH) supports (Fig. 2b) [40]. We however observed
a few branches of lineage I with lower SH support that
correspond to highly conserved genomes, resulting in

Fig. 1 Strategy and workflow. The strategy consists in 4 steps: (1) Construction of a phylogenetic reference tree computed from a super-alignment of
syntenic core genes and a Maximum Likelihood approach (2) Presence-absence matrices computation using alignments of sRNAs, 5’UTRs and CDS
(3) Ancestral presence-absence pattern reconstruction for sRNAs, 5’UTRs and CDS based on Markov Model and a Maximum Likelihood approach
(4) Detection of coevolution events between sRNAs and 5’UTRs or CDS using both observed and ancestral patterns and construction of the
sRNA-coding genes coevolution network
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short branch lengths and a weaker phylogenetic signal.
This reference tree was subsequently used to compare
sRNAs and coding gene content of Listeria genomes.

sRNA content of Listeria genomes
On the 112 L. monocytogenes EGD-e sRNAs, 52 (46%)
were found to be variable in Listeria genomes, i.e.,
absent in at least one Listeria genome, and 60 (54%)
were found to be present in all Listeria genomes
(Additional file 3: Table S3) the later constitute the core
Listeria-sRNAs. Six of these core sRNAs (rli102, rli119,
rli120, rli19-ssrA, rli69 and the rli2-LhrC-2_rli4-LhrC-

4_rli7-LhrC-5_rli3-LhrC-3_rli1-LhrC-1 sRNA locus)
were kept in the core set despite that their presence
could not be confirmed in one or two genomes due to
unsequenced regions. Among the core sRNAs, 79% of
their occurrences were located in syntenic regions
(meaning that both 5′ and 3′ adjacent genes were also
found conserved). We then focused on the 52 variable
sRNA loci to decipher their evolutionary history in
Listeria genomes.
Small-RNA presence-absence patterns along the Listeria

phylogenetic reference tree are shown in Fig. 3. Most
sRNAs are present in nearly all genomes, except mostly

c

a b

Clade - label Terminal branches labels (from bottom to top in each clade of the tree)

Lineage I-18 26,27,29,30,32,33,34, 39,40, 43,45, 48,49, 51 57,58, 60, 61, 62, 65, 66, 67,71,72, 73, 74

Lineage II-75 78,79,82,83,86,87,88,95,96,98,99,101,102,107,108,109,111,112,113,116,117,120,123,124,125,120,130,131,132,133

Lineage III-7 11,12,13,15,16,17

Lineage IV-6 6

L.innocua-34 136,137,138

L.welshimeri 139

L.ivanovii-141 144,145,146,149,150,151

L. seeligeri-142 154,155,156

Fig. 2 Listeria reference tree. The left part (a) presents the tree as a cladogram to visualize Shimodaira–Hasegawa (SH) supports for all branches.
Best SH support branches (SH support values >0.75) are indicated in green. Branches with a support value between 0.5 and 0.75 are indicated in
yellow and those with a support value between 0.25 and 0.5 are indicated in orange. Low SH support branches are indicated in red (SH support
values <0.25). The right part (b) represents the tree with estimated branch lengths. The four highlighted clades correspond to the four known
Listeria lineages. Branch labels are used in Additional file 4: Table S4. Terminal branch labels of each main clade of the tree are listed in a
separated table below (c)
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non-L. monocytogenes species. Small-RNA presence-
absence patterns (Fig. 3) also suggest a link between sRNA
content and previously defined Listeria lineages. For ex-
ample most of sRNAs present in genomes of lineage I are
also present in genomes of lineages II, but not systematic-
ally in lineage III and IV. Two sRNAs are found only in
lineages I and II of Listeria monocytogenes (i.e., see rli49
and rli33-3_rli33). Two other sRNAs are systematically
absent of lineage I, while they are present in almost all the
other Listeria genomes (e.g., rli6-rliB, rli23_rli25_rli35).
Rli74 is specifically present in all four L. monocytogenes
lineages and absent in other Listeria species. Additionally,
several sRNAs exhibit sparse presence-absence patterns
probably related to complex evolutionary histories.

Listeria sRNA evolution and coevolution profiles
To investigate sRNA evolutionary histories, we inferred
ancestral presence-absence patterns for all 52 variable
sRNAs and obtained 44 different phyletic profiles (see
Additional file 3: Table S3). Only eight sRNAs shared
identical phyletic profiles as following: (1) rli109,
rli131, rli36 and rli94_rli45: one loss in branch 154

(L. seeligeri/str. FSL S4–171), (2) rli9-rliH and rli97: one
loss in branch 137 (L. innocua/str. FSL S4–378) and (3)
rli135 and rli76: one loss in branch 147 (common ancestor
of three L. ivanovii strains). This indicates that most pro-
files and evolutionary histories are specific to an sRNA,
even if some evolutionary events are shared by several
sRNAs. On the basis of the reconstructed sRNA gains and
losses on the reference phylogenetic tree, we found
only three sRNAs with monophyletic patterns (present
in the most-recent common ancestor and all its de-
scendants) (rli146, rli38 and rli74) and two sRNAs
with polyphyletic patterns (present in some genomes
but not in their most-recent common ancestor) (rli62
and rli99_rli140). All the other 47 (90%) sRNAs
exhibit more or less complex paraphyletic patterns
(present in the most-recent common ancestor and
some of its descendants). Additionally, several sRNAs
have undergone either a large number of gains (e.g.,
rli116: 10 gains, rli115: 5 gains) or a large number of
losses (e.g., rli122_rli112_rli78_rli94_rli50_rli28 locus:
13 losses; rli141: 10 losses; rli26, rli48 and rli117: 8
losses) or both (e.g., rli48: 8 gains and 8 losses),

Fig. 3 Phylogenetic distribution of L. monocytogenes EGD-e sRNAs in Listeria genomes. The figure represents the distribution of 52 variable
L.monocytogenes EGD-e sRNA loci across 79 Listeria genomes. A black box indicates a presence (i.e. the sRNA sequence is present in the
corresponding genome), while a white box indicates the absence (i.e. this sRNA sequence is not found in the corresponding genome).
Listeria strains are ordered based on their placement in the Listeria reference tree shown on the left (see Fig. 2 for details)
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suggesting that some sRNAs are subject to frequent
reshuffle, even at short evolutionary scales.
The three monophyletic profiles indicate a scenario of

gene appearance and descent. For instance, rli146 and
rli74 exhibit the same monophyletic profile, i.e., one
acquisition at branch 3 (ancestor of L. monocytogenes
strains). It was inferred that rli38 was acquired at branch
132 in L. monocytogenes EGD-e. Two different and com-
plex polyphyletic patterns observed for Rli62 and
rli99_rli140 suggest potential Horizontal Transfer
events. All other sRNAs exhibit paraphyletic patterns,
suggesting they underwent one or several loss events in
the Listeria reference tree. Thirty-five out of 47 sRNAs
(74%) with paraphyletic patterns are inferred to be
present at the tree root, suggesting that the majority of
sRNAs were present early, in Listeria evolution.

The Listeria sRNA-coding gene coevolution network
We used Pagel’s model statistical framework [39] (see
Methods) and both observed and ancestral presence/ab-
sence states to identify significant coevolution relation-
ships between sRNAs and 5’UTRs/CDS regions along
the Listeria reference tree. We obtained 23 putative
sRNAs showing significant coevolutionary relationships
with 23 5’UTRs and 39 CDS of 52 coding genes (see
complete list in Additional file 4: Table S4).
All results of sRNAs, 5’UTRs and CDS phyletic pat-

terns, coevolution analyses and the resulting coevolu-
tion network were made available on a dedicated web
server that provides several facilities to browse the
results: http://genoweb.toulouse.inra.fr/Listeria_sRNA.
The web application was developed with the Shiny
technology [41] and allows interactive visualization of
individual phyletic patterns (i.e., observed and inferred
ancestral presence/absence patterns) for all sRNAs
and their coevolution partners along the Listeria
reference tree (see an example in Fig. 4).

The Listeria sRNA-coding gene coevolution hub
The inferred sRNA-coding genes coevolving network
(see Fig. 4b) reveals interesting features. We observed a
hub of 12 sRNAs (rli107, rli117, rli123, rli133, rli146,
rli26, rli30, rli33-3_rli33, rli34, rli49, rli74 and rli79) that
are connected through common coevolution partners.
This cluster includes mainly distant (i.e. distance
>40 kb) 5’UTRs and CDS coevolving partners, with the
exception of partners of only two sRNAs: rli30 paired to
CDS partners lmo0501 to lmo0508, and rli74 with its
CDS partner mpl (lmo0203). This cluster includes many
genes encoding cell wall proteins, proteins involved in
secondary metabolism and virulence factors (see next
section and rli133 case study for details). The other 11
sRNAs are all included in 11 individual clusters that
contain either 5’UTR coevolving regions (rli132, rli116)

exclusively or CDS coevolving regions (rli28–3,
rli99_rli140, rli141) exclusively or a mix of both 5’UTRs
and CDS regions (rli75, rli5-rliA_rli121, rli34–2, rli115,
rli125_rli8-rliC_rli85, rli48). Interestingly, nine out of 11
of these individual clusters include evolving partners that
are close on the genome (< 8 kb). Two individual coe-
volving groups [rli28–3/lmo0035] and [rli5-rliA_rli121/
lmo2309-lmo2407] were found with distant coevolution
partners (distance >800 kb for both clusters). To
summarize, our results reveal an sRNA hub including
mainly distantly located coevolving 5’UTRs and CDS
regions, some of them exhibiting functions related to
Listeria pathogenicity. Most of the remaining coevolu-
tion clusters include pairs of sRNA and 5’UTRs/CDS
that exhibit very close genomic positions, i.e. a distance
between the start of their sRNA and the start of their
5’UTR/CDS under 8 kb.
We investigated the functional classes of genes coevol-

ving with Listeria regulatory sRNAs by using annota-
tions from the Clusters of Orthologous Groups (COGs)
database [42] retrieved from the Listeriomics website
[36]. The distribution of coding genes in COG categories
reveals a significant functional enrichment of coding
genes associated with cell wall or membrane biogenesis
(see Table 1, Fisher exact test [43], p-value = 0.0131).
Interestingly, among coding genes coevolving with
Listeria sRNAs, we found seven internalin genes (out of
an expected 26 in Listeria [36]), two coding genes of
the Listeria Pathogenicity Island LIPI-1 mpl
(lmo0203) and orfX (lmo0206) [44, 45], one compo-
nent of the flagellar biosynthesis pathway, eight genes
involved in secondary metabolism and bacteriophage
genes (see Additional file 4: Table S4 for details).

rli133, an sRNA coevolving with genes known to be
involved in pathogenicity
The detailed analysis of rli133 phyletic pattern (Fig. 5a)
reveals an early acquisition event in L. monocytogenes
common ancestor. Rli133 cannot be found in other
Listeria species, indicating that this sRNA is specific to
L. monocytogenes species. Nevertheless, rli133 is lost in
four strains of lineage III (L. monocytogenes FSLF2–208,
L. monocytogenes LM850658, L. monocytogenes M7, L.
monocytogenes L99) and in the L. monocytogenes FSLJ1–
208 strain of lineage IV. In these five strains, the
corresponding intergenic region is missing due to the in-
sertion of two genes. These genes appear to be specific
of these five strains and do not have any homolog in
public databases (see Additional file 5: Figure S1). In
genomes where rli133 is present, the corresponding
sequence is well-conserved and includes few mutation
events, i.e., six transitions, two transversions and two
indels events corresponding to 12 variables sites out of
126 (9.6%) in the rli133 alignment (see Additional file 6:
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Figure S2). Considering these mutated sites, rli133
homologous sequences can be easily separated in two
clusters that correspond to Listeria lineage I and II.
Rli133 presents coevolutionary relationships with 12
coding genes, eight 5′ UTRs and seven CDS regions.
Coevolving gene partners include three internalin genes:
inlI (lmo0333), inlE (lmo0264) and inlP (lmo2470). Inter-
nalins are important virulence factors [46, 47]. InlE may
contribute to host tissue colonization [46, 48] and InlP
has recently been shown to promote placental infection

[47]. The role of inlI in pathogenicity remains to be de-
termined [49]. Interestingly, we found three other
sRNAs potentially coevolving with internalin genes:
rli117 (lmo0549, lmo0263 and lmo2470), rli30 (lmo2445)
and rli132 (lmo2017). Other genes were found to co-
evolve with rli133, e.g., lntA, lmo0206 and sepA. The
virulence factor lntA (lmo0438) targets the chromatin
repressor BAHD1 to activate interferon-stimulated genes
in the host cell nucleus [50]. Expression of LntA seems
to be tightly controlled to subvert immune responses
and prevent antibacterial responses [50]. The orfX
(lmo0206) gene is located within the L. monocytogenes
pathogenic island 1 (LIPI-1), which includes genes re-
quired for Listeria intracellular lifestyle such as hly, plcA,
plcB and actA [33] and contributes to bacterial survival
in macrophages. SepA (lmo2157) encodes a protein in-
volved in septum formation and play a role in stress re-
sponse [51]. To summarize, six out of the twelve
coevolution partners of rli133 exhibit a documented
function linked to either pathogenicity, interaction with
host cells or stress response [36, 46, 47, 51]. Moreover,
rli133 sRNA was found to be expressed in several tran-
scriptomes during infection, especially in blood and in-
testine [5, 22, 36]. Coevolution between sRNAs and
coding genes may be resulting from the existence of dir-
ect or indirect functional links. Direct functional links
can be explained by physical interaction through base-

Table 1 Functional enrichment of sRNAs and coding genes
coevolution groups

Functional category P value

Amino acid transport and metabolism 0.9055

Carbohydrate transport and metabolism 0.2202

Cell wall/membrane biogenesis 0.0131*

Energy production and conversion 0.8563

Replication, recombination and repair 0.8610

Secondary metabolites biosynthesis, transport and catabolism 0.5206

Signal transduction mechanisms 0.3669

Transcription 0.2648

This table contains p-values obtained with Fisher tests to measure a potential
enrichment of a COG functional category in coding genes found to co-evolve
with sRNAs (Additional file 4: Table S4). The * indicates a significant (under
0.05) p-value for genes of the category Cell Wall/membrane biogenesis

Fig. 4 Listeria sRNA, 5’UTR and CDS evolution and coevolution results. a The Listeria sRNA, 5’UTR and CDS coevolution results available on the
Shiny web site. The left frame allows the browsing of the results and the selection of coevolving pairs. The right frame allows visualization of
phyletic patterns (i.e. observed and ancestral presence/absence patterns) on the Listeria reference tree for each selected pair. b The Listeria
coevolution network available on the web site. The network represents predicted coevolution between L. monocytogenes EGD-e sRNAs and either
5’UTRs or CDS regions (compared to the null hypothesis of independent evolution between these elements). sRNAs are indicated in blue while
5’UTRs and CDS are indicated respectively in yellow and red. The arrows of the network represent three types of coevolution relationships: (i)
evolution of the sRNA depends on the presence of the 5’UTR/CDS (blue) (ii) evolution of 5’UTR/CDS depends on the presence of the sRNA (red)
and (iii) bidirectional dependency between evolution of the sRNA and the 5’UTR/CDS (green)
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pairing at specific regions of a sRNA with their target
mRNA. To identify possible physical interaction between
rli133 and its coevolution partners, we used several
methods to predict structure of both the sRNAs and the
5’UTRs/CDS interacting regions and look for putative
interacting zones (see Methods).
We found regions possibly interacting with rli133 for

all the 12 genes coevolving with rli133. Nine of these
genes were identified to present interacting regions
compatible with a negative regulation mechanism: inlI
(lmo0333), inlE (lmo0264), inlP (lmo2470), lntA
(lmo0438), orfX (lmo0206), lmo0082, lmo0334, lmo0550
and lmo2107. For the three remaining coevolving genes

(lmo0419, lmo0017 and lmo2157) we did not identify a
consistent interacting region. As illustrated in Fig. 5b,
fifteen interacting regions were predicted between
lmo0333–5’UTR and rli133. Two interacting regions
were overlapping in the proximity of the Shine-Dalgarno
sequence and the initiation codon (see regions 1 and 3
in Fig. 5b, c and d), which are crucial sites for ribosome
recruitment during the initiation of the translation. On
the mRNAs, these sequences are mainly found to be
accessible in loops or pseudo-loops (Fig. 5d), suggesting
that they are constitutively available for translation.
Interaction with complementary regions on sRNAs po-
tentially makes them unavailable for ribosome binding

Fig. 5 The rli133 coevolution ties. rli133 shows significant coevolution with six CDS and nine 5′-UTR regions. Figures 5a to 5d show an example of
a coevolution pattern and a putative mechanism of interaction between rli133 and the lmo0333 5’UTR region corresponding to the promoter of
an Internalin IntI protein. a Coevolution patterns observed between rli133 (left) and the 5’UTR of lmo0333 (right). Yellow circles correspond to
observed (or ancestral) sRNA/CDS presence. Blue circles correspond to observed (or ancestral) sRNA/CDS absence. A yellow branch indicates a
sRNA/CDS gain event while a blue branch indicates a loss event along the branch. b Predicted interaction regions between rli133 and lmo0333.
The figure presents the interaction regions between the 5’UTR (and the beginning of the coding region) and the sRNA. Highlighted and
numbered regions correspond to predicted interaction zones according to the RNAplex software. c Predicted structure of the sRNA rli133.
Structure was generated using LocaRNA software and a multiple alignment of all conserved rli133 sRNAs in the genomic dataset. Highlighted
numbered regions correspond to Lmo0333–5’UTR predicted interaction zones of Fig. 5b. Representation of structure was performed with FoRNA.
d Predicted structure of the 5’UTR region of Lmo0333. Structure was generated using LocaRNA and a multiple alignment of all conserved
Lmo0333 5’UTRs in the genomic dataset. Highlighted numbered regions correspond to rli133 predicted interaction zones of Fig. 5b.
Representation of structure was performed with FoRNA
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during translation initiation, suggesting a potential in-
hibitory action of rli133 at posttranscriptional level on
these genes. The existence of direct interaction between
rli133 and coevolving genes partners could explain their
coevolution.
To conclude, interacting regions corresponding to

putative translation inhibition regions targeted by rli133
were identified for nine coevolving genes including inlE
[46, 48], inlI [49], inlP [47], lntA [50] and orfX which
were already found to be involved in host-interaction in
previous studies.

Discussion
We built a robust workflow that provided new insights
on Listeria sRNA evolution and coevolution patterns.
First, the screening of sRNA presence-absence patterns
suggests that 60 out of 112 L. monocytogenes EGD-e
sRNAs (53%) shape the Listeria sRNA core set, in the
sense that they were found to be present and conserved
in all Listeria genomes. These 60 sRNAs were hence
inferred present in the common ancestor of Listeria,
suggesting that they were present early during the evolu-
tionary history of the genus. This is a lower proportion
compared to the 60 out of 83 E. coli K12 sRNAs (72%)
that were found present and conserved in a dataset of 27
complete genomes of E. coli-Shigella [29]. However, this
is consistent with the higher number of genomes and
the wider evolutionary scale (genus) used in our analysis
compared to the species level of the E.coli-Shigella
study.
The 52 remaining L. monocytogenes EGD-e sRNA loci

constitute the variable sRNA set that is part of the Lis-
teria accessory genome. This number is higher than the
43 accessory Listeria sRNAs previously identified by
Kuenne et al. [38] in a smaller dataset of 11 genomes re-
stricted to L. monocytogenes species. We found a higher
proportion of them exhibiting complex paraphyletic
distribution compared to the E. coli/Shigella study: 47 vari-
able sRNAs out of 52 were shown to have paraphyletic pat-
tern (90%) compared to 25 out of 32 (78%) in the 27
genomes of E. coli-Shigella [29]. Only three and two sRNAs
have monophyletic and polyphyletic patterns, respectively.
This indicates complex and various evolutionary histories
underlying diverse origins and a potentially wide panel of
sRNA acquisition and loss mechanisms in Listeria.
Detection of coevolution and analysis of the Listeria

sRNA-coding genes coevolving network highlighted
many interesting features.
We revealed an evolutionary link between sRNAs and

coding genes related to pathogenicity and interaction
with the host cell that suggests a key role for these
sRNAs to shape Listeria virulence and adaptation. More
precisely, we identified a hub of 12 sRNAs (rli26, rli30,
rli33-3_rli33 locus, rli34, rli49, rli74, rli79, rli107, rli117,

rli123, rli133 and rli146) coevolving with many genes
encoding cell wall proteins, especially internalins, that
are known to be involved in host cell interaction [52],
proteins involved in secondary metabolism, stress re-
sponse and virulence factors. We detected a significant
coevolution pattern of four sRNAs (rli117, rli30, rli132
and rli133) and seven internalin genes (lmo0549,
lmo0263, lmo2470, lmo2445, lmo2027, lmo0333 and
lmo0264), indicating a probable key functional role of
these sRNAs on these genes, possibly regulatory. To our
knowledge, the relationship between small regulatory
RNAs and internalin evolution was never observed be-
fore and opens several new perspectives concerning the
possible impact of sRNAs in Listeria evolution and
virulence. These results are consistent with previous
observations that several internalin genes present long
5’UTRs that may also be post-transcriptionally regulated
and that Listeria controls many of its virulence genes by
a mechanism that involves 5’UTRs [23].
Interestingly, previous studies performed in E. coli or

S. enterica have shown that sRNAs are often found to
control the expression of cell wall proteins, particularly
in outer membrane [53] or lipopolysaccharide layer syn-
thesis [54]. This is consistent with our result revealing
that the ‘cell wall or membrane biogenesis’ functional
category is significantly overrepresented in Listeria
sRNAs coevolving genes. Namely, we found seven inter-
nalin genes and two coding genes of the Listeria Patho-
genicity Island LIPI-1 (mpl, orfX) in the Listeria sRNA
coevolution partners. These results suggest a possible
key regulatory role of some Listeria sRNAs on genes in-
volved in host-bacteria interaction and pathogenicity.
We focused on rli133, a L. monocytogenes-specific

sRNA, and identified 6 out of 12 rli133 coevolution part-
ners exhibiting a function linked to either pathogenicity,
interaction with the host cells or stress response. Inter-
acting regions compatible with mechanisms of mRNA
translation inhibition were predicted for rli133 and nine
coevolving genes, including inlE [46, 48], inlI [49], inlP
[47], lntA [50] and orfX. These results suggest a possible
direct negative regulatory role of rli133, which poten-
tially impairs the translation process of some of its coe-
volving partners. The presence of compatible interacting
regions is not a feature specific to genes coevolving with
rli133, but taking together the observations of coevolu-
tion pattern and the presence of a consistent interacting
zone argue in favor of a functional link. Moreover, we
looked for the presence of the nine 5’UTR-interacting
zones of the genes co-evolving with rli133 in 5’UTRs
and CDS that do not coevolve with rli133 and found
only two similar regions for the inlP (lmo2470) interact-
ing zone: one located in another internalin 5’UTR region
(inlP/lmo2027) and one located in the 5’UTR region of
the lmo0974 gene that is involved in LPS synthesis and
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conserved in all the genomes of the dataset. This argues
for quite a good specificity of the rli133 predicted inter-
acting zones. For coevolving partners in which no clear
mechanism were highlighted, such as sepA (lmo2157)
[51], a well-known stress response gene involved in
septum formation, coevolution patterns may correspond
to presence of direct interaction at post-translational
level or indirect functional links involving intermediate
genes. These results suggest that rli133 could act as a
negative regulator of genes involved in Listeria
pathogenicity.
Interestingly, rli133 sRNA is missing in the L. monocy-

togenes M7 and L. monocytogenes L99 genomes of L.
monocytogenes lineage III that also have a reduced
internalin-coding genes content (respectively 17 and 18
internalins) [55–57]. This suggests a possible link be-
tween the presence of rli133, the internalin gene content
and the regulation of pathogenicity. The situation may
be more complicated in other genomes such as the
pathogenic strain L. monocytogenes J1–208 (lineage IV)
identified in goat and whose chromosome contains only
16 internalin-coding genes and no rli133 sRNA. This
strain includes a plasmid (pLMIV) which contains
additional internalins that may be involved in another
mechanism of regulation of pathogenicity [57]. This in-
dicates that the presence of rli133 is not an absolute
hallmark for pathogenesis and that other, yet unanno-
tated sRNAs may interact with internalin genes in
pathogenic strains of lineage IV. Additional genomes
and sRNA experimental datasets are needed in this clade
to fully understand the role of sRNAs and internalin
coding genes in Listeria pathogenicity.
The Listeria coevolution network also pointed out 11

sRNAs exhibiting correlated evolution, mostly with close
5’UTRs and CDS regions. Screening for distances be-
tween coevolving sRNAs and genes indeed revealed two
trends concerning gene location: on one hand, genes
close to the corresponding sRNA (putative cis-regulated
genes closer than 8 kb), and on the other hand, genes
found at distant locations (putative trans-regulated genes
with distances higher than 40 kb) (see Additional file 7:
Figure S3). One possibility is that some of the closer
coevolving sRNAs may correspond to uncharacterized
or unannotated 5’UTR regions.

Conclusion
The analysis of the Listeria coevolving network sheds
light on several sRNAs which might play a role in viru-
lence regulation. Since our approach makes it possible
to obtain a list of sRNAs present only in the virulent
strains, this study paves the way for new biochemical
and biological analyses aimed at identifying and deci-
phering new factors involved in virulence.

The workflow proposed in this work is resourceful
and, to our knowledge, does not have any equivalent in
previous work. Our strategy proposes several methodo-
logical enhancements and additional analyses compared
to the pioneer work of Skippington and Ragan [29]. For
instance, our strategy was designed to deal with uncov-
ered regions of draft genomes and paralogy problems
(both for sRNAs and coding genes). Moreover, three key
steps of our workflow, i.e. the reference tree construc-
tion, the inference of ancestral presence-absence states
and the detection of coevolution between sRNAs and
coding genes, rely on the statistical framework of
continuous-time Markov models and maximum likeli-
hood, improving on parsimony approaches that do not
provide consistent branch length estimation and may
lead to lower precision.
Another key advantage of our approach is its exten-

sively generic character since it can be transposed to any
type of organism, any type of functional data and, more
generally, to any kind of qualitative trait. For example,
the strategy developed may be used to look for a pos-
sible coevolution between regulatory or structural RNAs
and any type of element or feature such as pathogeny
islands, pseudogenes, CRISPRs, phages, insertions se-
quences, etc. The entire workflow is built on an open
source frame that is flexible, optimized and implements
parallel and distributed computation, while however
remaining computationally demanding.
Several features may be proposed in the future to

enhance the proposed strategy. First, as we currently
only consider presence, absence and unknown states, it
constitutes an oversimplification of the way functional
elements are defined, also undermining paralogy for
sRNA or coding genes. Consequently, an enhancement
of our strategy would be to deal with the occurrence of
sRNAs and coding genes for both evolution and coevo-
lution analysis. Second, another useful extension of the
current strategy would be to include the analysis of muta-
tion patterns and coevolving sites also for the core sRNAs
and coding genes present in all the genomes of the dataset
as well. This could be performed by including an add-
itional step in the workflow that relies on a previously
published method like the CoMap software [58].

Methods
Listeria genome dataset
Seventy-nine complete public genomes of Listeria were ob-
tained from GenBank (release 211). A full description of
the 79 Listeria genomes is available in Additional file 1:
Table S1). The dataset includes 70 complete and 9 draft
genomes representing five different Listeria species (L.
monocytogenes, L. ivanovii, L. inoccua, L. welshimeri and L.
seeligeri). L. monocytogenes genomes were the most repre-
sented (73 genomes corresponding to 92% of our dataset).
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Listeria monocytogenes EGD-e sRNA
A set of 304 experimentally validated sRNAs from L.
monocytogenes EGD-e was extracted from the Listerio-
mics database [36]. We focused on the 154 sRNAs anno-
tated as putative trans sRNAs which are known as
important regulators of gene expression in bacteria act-
ing on independently expressed targets. A group of 19
sRNAs were excluded because they recently have been
found to include small ORFs [6]. Overlapping sRNAs
and sRNAs harboring paralogs in the L. monocytogenes
EGD-e genome were processed using the following pro-
cedure. sRNAs were aligned on the L. monocytogenes
EGD-e genome sequence using BLASTN+ [59].
Overlapping hits were merged considering a minimal
overlap length of 15 pb, independently of their orienta-
tion. Finally, 112 sRNA loci were used as input se-
quences in the following analyses, including 15 loci built
from merged hits and 97 original sequences.

sRNA and coding gene coevolution strategy
The strategy we developed is implemented in a Sna-
kemake workflow [60] that consists in four main
steps (see Fig. 1).

Step 1: Phylogenetic reference tree.
PanOCT, version 3.23 [61], was used to build groups

of orthologs from annotated genomes. PanOCT is able
to deal with recently diverging paralogs by using neigh-
borhood gene information (synteny). All the parameters
were set to default values except for the length ratio to
discard shorter protein fragments when a protein is split
due to a frameshift or other mechanisms was set to 1.33
as recommended by the authors. Amino-acid sequences
of ortholog families were then aligned using ProbCons,
version 1.12 [62], and resulting alignments were post-
processed using GBLOCKS, version 0.91b [63], using the
following parameters: the minimum number of se-
quences for a conserved position was set to (n/2) + 1,
the minimum number of sequences for a flank position
to (n/2) + 1 (where n is the total number of sequences
in the aligned dataset), the maximum number of
contiguous non-conserved positions was set to 20, the
minimum length for a block to 5, and gap positions were
allowed [8].
The reference tree was built using the syntenic core

gene families corresponding to the PanOCT clusters
with a single unique ortholog in each genome of our
dataset. The corresponding nucleic acid alignments were
obtained from all these core families filtered amino-acid
alignments and concatenated into a single superalign-
ment to compute a maximum likelihood tree using
FastTree2, version 2.1.9 [64]. The following parameters
were used for FastTree2: the Generalized Time-Revers-
ible model (GTR) was chosen, the likelihood was reported

under the Gamma model using 20 categories of sites, the
exhaustive search mode (“-slow” option) was selected to
obtain a more accurate reconstruction, NNI and SPR heu-
ristics were used to browse the tree space. Support ana-
lyses were performed using Shimodaira Hasegawa test
(SH) and 1000 resampling steps of site likelihood.

Step 2: sRNA and coding gene presence-absence matrix.
Presence-absence patterns were inferred from BLAST

analyses with different parameters for sRNAs and coding
genes. L. monocytogenes EGD-e sRNAs were aligned
on the genome dataset using BLASTN+, version
2.2.29 [59]. Resulting hits were filtered using two
criteria: an e-value <10−2 and a coverage related to
the query sequence ≥70%. Only sRNAs meeting these
two criteria were considered as present in the tar-
geted genomes.
For coding genes, we analyzed separately 5’UTRs and

CDS regions. L. monocytogenes EGD-e CDS were re-
trieved from GenBank annotations and aligned against
all Listeria genomes using BLASTP+, version 2.2.29 [59].
Resulting hits were filtered using the following criteria:
an e-value <10−2, a coverage relative to the query se-
quence ≥70%, an identity rate ≥ 60% and a bitscore ≥50.
Only CDS meeting these three criteria were considered
as present in the targeted genomes.
L. monocytogenes EGD-e 5‘UTRs were retrieved using

the following procedure. When available, we used
experimental data indicating 5’UTR positions [36] to
extract the corresponding DNA sequence. When not
available, 5’UTR positions were defined arbitrarily as the
100 nearest 5’ nucleotides upstream from each L. mono-
cytogenes EGD-e CDS start codon of intergenic region.
Only 5’UTRs with a minimum size of 15 bp were kept.
5’UTR sequences were then used as queries for
BLASTN+ [59] alignments against all genomes. Resulting
BLASTN+ hits were filtered using the following criteria:
an e-value <10−2, and a minimal identity percentage and
coverage adjusted to the 5’UTR sequence lengths as
follows. For 5’UTRs with lengths from 15 to 20 bp, the
minimum identity percentage was set to 90% and the
minimum coverage percentage to 100%. For 20–50 bp
long 5’UTRs, both identity percentage and coverage were
set to a minimum of 80%. For 50–100 bp and >100 bp
long 5’UTRs, the minimal identity percentage was set to
80% and the minimal coverage was set to 50% and 25%,
respectively. 5’UTRs meeting these criteria in subject
genomes were considered as present.
A binary vector (0/1) corresponding to the absence/

presence profile in the whole genome dataset was finally
generated using BLASTN+ results and filters defined
above. Due to their lack of informative value, sRNAs,
5’UTRs and CDS found in all genomes were not taken
into account in subsequent analyses.
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To avoid absence mispredictions corresponding to
unsequenced regions of draft genomes, absence events
of non-coding elements (sRNAs and 5’UTRs) were sys-
tematically checked as follows: for queries without hit in
a given genome, 5′ and 3′ adjacent genes of the query
element were screened for putative homologs in the
same genome. In case where homologs were found, the
non-coding sequence between the two homolog genes
was extracted and screened for stretches of Ns, i.e.
assembly gaps. If such stretches were found, the state of
the query element was considered as undetermined due
to missing DNA region in the considered genome (‘?’
state assigned). If the region was present but not similar
to the query sequence, the query element was consider
to be absent (‘0’ state assigned).

Step 3: Ancestral presence-absence pattern reconstruction.
Presence/absence ancestral states were reconstructed

using the recent “Hidden rates model” method proposed
by Beaulieu et al. [65]. This method uses Hidden Markov
Models (HMM) to reconstruct ancestral character states
from observed states and a reference phylogenetic tree.
It makes it possible to use different transition rate clas-
ses. We used the ‘rayDISC’ function of the ‘corHMM’ R
package version 1.20 [17] and selected the ‘ARD’ transi-
tion model, i.e. independent transition rates. Internal
node states were inferred using maximum likelihood
estimation and joint probabilities. The root state
probabilities were inferred using the method of Fitzjohn
and Maddison [66]. Initial transition rates were esti-
mated using the results of PanOCT orthologs obtained
in Step 1 and computed using the ‘DiscML’ function of
the ‘DiscML’ R package, version 1.0.1 [67], and the ‘ARD’
transition model (assuming independent transition
events, in this case, gain and loss events, for each
element). This step results in a matrix containing the
binary presence/absence (0/1) pattern for each internal
node of the reference tree and for the three analysed
features (sRNAs, CDS, 5’UTRs). Finally, gain and loss
events were determined as follows: if the feature was
absent (present) in a given node but present (absent) in
its ancestor, it was considered as lost (gained) along the
corresponding branch linking both nodes.

Step 4: Detection of coevolution events.
Our strategy allows the detection of coevolution

between a sRNA and a 5’UTR or CDS using a reference
phylogenetic tree and both observed and ancestral
presence-absence patterns. We used the ‘corDISC’ func-
tion of the ‘corHMM’ R package [65] to identify putative
coevolutionary relationships. This function fits Pagel’s
models of independency and dependency [39] to identify
dependent evolution between two binary characters (in
this case, the presence or absence of sRNAs, CDS/

5’UTRs) and related to a phylogenetic tree. The first
model supports an independent relationship between
both binary traits: sRNA and 5’UTR/CDS (the null hy-
pothesis). The second kind of model (the alternative hy-
potheses) supports a dependent relationship between
both traits (coevolution). The use of ancestral states
along the phylogenetic reference tree makes it possible
to evaluate the probable temporal ordering of changes
between two x and y presence/absence patterns and to
test hypotheses about cause and effect. For this, we used
three kinds of dependency models: the x model, mean-
ing that the evolution of the sRNA depends on the pres-
ence/absence state of the 5’UTR/CDS, the y model,
meaning that the evolution of 5’UTR/CDS depends on
the presence/absence state of the sRNA and the xy
model, assuming bidirectional dependency between
evolution of the sRNA and the 5’UTR/CDS element.
The ‘corDISC’ function merges the two x, y traits in a

single vector, fits them on a precomputed phylogenetic
tree using a specified model and then returns the likeli-
hood of the model. The likelihood of each model was
computed and a Likelihood Ratio Test (LRT) was per-
formed. The corresponding p-value was computed. All
of the analyses were performed between each variable
sRNA, each variable CDS and 5′ UTR. P-values were
corrected for multiple testing using the Benjamini-
Hochberg (BH) procedure [68]. Finally, we only
retained coevolving pairs of sRNA loci and coding
gene elements (5’UTR and CDS) with a minimum BH
corrected p-value threshold of 0.01.
The coevolution network between sRNAs and cod-

ing genes was reconstructed using inferred significant
dependency relationships between phyletic patterns of
sRNAs and coding gene elements (5’UTR and CDS)
of L. monocytogenes EGD-e. Graph representations
were built using the ‘igraph’, version 1.0.1 [69],
‘visNetwork’, version 1.0.3 [70], and ‘Shiny’, version
1.0.1 [41] R packages.

Gene targets functional enrichment
Functional enrichment test was performed using L.
monocytogenes EGD-e gene COG ontologies [36] and
computed using a Fisher’s exact test [43] (‘fisher.test’
function from the ‘stats’ R package, version 3.5.0 [71]),
with a p-value threshold of 0.05.

Interacting regions prediction
Possible physical interactions between sRNAs and
coding genes identified as coevolving partners using our
method were predicted using several pieces of software:
Ssearch (implementation from Wisconsin Package), ver-
sion 6.1, IntaRNA, version 2.0.2, RIsearch, version 1.1,
RNAcofold, version 2.3.4 and RNAplex, version 2.3.4
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[72–76], which are all included in the sRNAtabac re-
source [77]. We used an extended region including
100 bp before and after the start codon to identify puta-
tive interactions between a sRNA region and the ex-
tended 5’UTR region of mRNAs (original regions were
used for CDS). Only interactions containing a minimum
of six successive interacting matches were selected and
considered as valid.
Homologous sequences of rli133 previously identified

(see Step 2 for details) in L. monocytogenes genomes
were extracted. Homologous sequences of lmo0333 (inlI)
5’UTR (see Step 2 for details) were extended up to 60
nucleotides after the start codon. Rli133 and lmo0333-
extended 5’UTR sequences were processed using
LocARNA software, version 1.8.9 [73]. LocARNA is a
tool that allows simultaneous folding and alignment of
input RNA sequences. LocARNA default alignment
accuracy was increased using match probabilities and
probabilistic consistency transformation. Additional
parameters were used since it is recommended by the
authors in the software documentation for aligning up
to about 15 sequences of lengths up to a few hundred
nucleotides. The weight of base pair match contribution
was set to 400. An iterative refinement of the progressive
alignment was performed using two iterations. The 2D
structure representation of rli133 and lmo0333- ex-
tended 5’UTR were computed with FoRNA, version 0.1
[78], using consensus structures of rli133 and the
lmo0333-extended 5’UTR associated with corresponding
sequences of the reference strain L. monocytogenes
EGD-e.
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Additional file 1: Table S1. List of the 79 genomes used in this study.
The table includes the list of 79 genomes obtained from Listeriomics and
retrieved from the NCBI database. Several fields have been abbreviated
for easier reading: ‘Se.’: strain serotype, ‘Li.’: Listeria lineage and ‘Co.’:
country where the strain was first isolated. (DOCX 98 kb)

Additional file 2: Table S2. List of the 112 sRNA loci used in this
study.The table includes 97 sRNAs obtained from the Listeriomics database
and 15 merged regulatory sRNA loci tagged with an * in the table and
obtained from the procedure described in Methods. (XLSX 21 kb)

Additional file 3: Table S3. Ancestral presence/absence patterns of
L.m. EGD-e regulatory sRNAs. For all 52 L.m. EGD-e variable sRNAs, the
table includes the following information according to the Listeria refer-
ence tree (see Fig. 2): root presence - absence information (Root state
column), tree branches labels where gain (Gains column) and loss events
(Losses column) were inferred (labels correspond to branch identifiers in-
dicated in the cladogram of Fig. 2). The undefined column corresponds
to tree branch labels with undefined state due to missing data in the
corresponding genomes (draft genomes). The pattern_type column
corresponds to the three different types of phyletic profiles inferred: mono-
phyletic, polyphyletic or paraphyletic profiles. (DOCX 128 kb)

Additional file 4: Table S4. Listeria sRNAs and coding genes
coevolution groups. For each sRNA, the table includes the following
informations on the corresponding co-evolving elements: the gene locus
tag name (‘Element’ column), the type of element (CDS or 5’UTR, ‘Type’

column), the type of dependency model that highlighted the interaction:
x = evolution of the sRNA depends on the state of the 5’UTR/CDS,
y = evolution of 5’UTR/CDS depends on the state of the sRNA and
xy = bidirectional dependency between evolution of the sRNA and the
5’UTR/CDS element (Model column), the distance between the sRNA and
the element in nucleotides (Distance column) and the description of the
gene/operon function according to Listeriomics database (‘Description’
column); ‘id’ = identical content. Coevolution groups that are included in
the main network hub are highlighted in gray. (DOCX 142 kb)

Additional file 5: Figure S1. Rli133 genomic context conservation in
Listeria. 5′ and 3′ homolog genes are represented using red arrows.
GFXXXX names correspond to PanOCT ortholog clusters identifiers. Blue
arrows correspond to two genes inserted in several strains of Listeria
lineages III and IV. (PDF 212 kb)

Additional file 6: Figure S2. Multiple alignment of rli133. This figure
represents the multiple alignment of rli133 sequences in strains where it
is present. Red denotes a fully conserved position. The phylogenetic tree
at the left corresponds to a Maximum Likelihood tree computed from
the corresponding multiple alignment. (PDF 1413 kb)

Additional file 7: Figure S3. Genomic distance between coevolving
sRNAs and CDS. Plain curves show the distance density between sRNAs
and 5’UTRs (red) or CDS (blue) engaged in coevolution relationships,
considering genome circularity. They are compared to distances between
sRNAs and all 5’UTRs or CDS (all) respectively represented by red and
blue dotted curves. (PDF 117 kb)
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