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Abstract

Remote sensing can contribute to early warning for diseases with environmental drivers,

such as flooding for leptospirosis. In this study we assessed whether and which remotely-

sensed flooding indicator could be used in Cambodia to study any disease for which flooding

has already been identified as an important driver, using leptospirosis as a case study.

The performance of six potential flooding indicators was assessed by ground truthing. The

Modified Normalized Difference Water Index (MNDWI) was used to estimate the Risk Ratio

(RR) of being infected by leptospirosis when exposed to floods it detected, in particular dur-

ing the rainy season. Chi-square tests were also calculated. Another variable—the time

elapsed since the first flooding of the year—was created using MNDWI values and was also

included as explanatory variable in a generalized linear model (GLM) and in a boosted

regression tree model (BRT) of leptospirosis infections, along with other explanatory vari-

ables. Interestingly, MNDWI thresholds for both detecting water and predicting the risk of

leptospirosis seroconversion were independently evaluated at -0.3. Value of MNDWI

greater than -0.3 was significantly related to leptospirosis infection (RR = 1.61 [1.10–1.52];

χ2 = 5.64, p-value = 0.02, especially during the rainy season (RR = 2.03 [1.25–3.28]; χ2 =

8.15, p-value = 0.004). Time since the first flooding of the year was a significant risk factor in

our GLM model (p-value = 0.042). These results suggest that MNDWI may be useful as a

risk indicator in an early warning remote sensing tool for flood-driven diseases like leptospi-

rosis in South East Asia.
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1. Introduction

Remote sensing provides a large variety of indicators that can inform Public Health especially

when diseases have environmental drivers [1]. Remotely-sensed environmental indicators can

help to understand the epidemiology of such diseases, predict health risks and improve timely

and targeted response to outbreaks. Models using remote sensing data can for example be

used as an early warning tool when changes in environmental indicators have been shown to

predict an outbreak [2,3]. After the launch of Landsat 1 in the 70’s and the development of

earth observation systems in the 80’s and the 90’s, several environmental indicators produced

from satellite images were used for health studies, especially for the surveillance of vector-

borne diseases which usually have strong environmental drivers [4]. Remotely-sensed data

were used to map different factors such as vegetation, deforestation, flooding or urban features

and infer the associated risk of disease, promising the development of early warning systems

for major health threats such as Rift Valley Fever or malaria [3–7].

Water-borne diseases are by definition driven by strong environmental factors. The moni-

toring of environmental indicators related to water can help assess the risk associated with

these diseases [8]. Cholera was one of the first disease for which the use of remote sensing dras-

tically improved the knowledge about the epidemiology of the disease and the capacity to

anticipate out breaks [2]. Remotely-sensed data—including sea surface temperature and sea

surface height—were used to infer the presence of the bacterium responsible for the disease

[2]. This demonstrated the influence of climate on cholera outbreaks and allowed for the

development of an early warning system [2]. The impact of climate change on infectious dis-

eases in general is uncertain but satellite imaging could help in mounting an effective response

[9]. Many remotely-sensed indicators have been used to study waterborne diseases whether by

mapping water bodies and flooded areas or by trying to characterize different water variables

of interest for disease transmission [10]. Selecting relevant indicators is a crucial step and an

assessment of the performance of the different potential indicators should initiate research,

especially in new study regions [11]. Despite its potential to improve the surveillance of water-

borne diseases, remote sensing is still seldom used by health specialists and should be better

promoted for the development of monitoring and early warning system by regional or national

health authorities [8].

Leptospirosis is a worldwide bacterial disease caused by a spirochete of the genus Leptos-
pira. Considered as a non-specific anthropozoonosis, leptospirosis may be transmitted by

many wild and domestic species (rodents, insectivores, horses, cattle, dogs and pigs) [12]. This

makes leptospirosis difficult to control in human and animal population. The incubation

period ranges from 2 to 30 days after the onset of symptoms. The immune response is detect-

able only after 7 to 10 days [13]. Some symptoms are similar to other infections such as influ-

enza, meningitis, hepatitis or dengue fever, which explains why clinical diagnosis is difficult

and contributes to the underreporting of leptospirosis. It has been estimated that 90% of cases

of leptospirosis were asymptomatic or mild [12]. Ten percent of leptospirosis infections are

termed severe. In such cases, symptoms may progress to pulmonary hemorrhage, kidney or

liver failure or coma [14–16]. The global case-fatality rate (CFR) for severe leptospirosis is esti-

mated at 22% and can be greater than 70% for Weil Disease [17]. The CFR varies greatly,

depending on available medical facilities [18]. It is estimated that 1,030,000 cases and 58,900

deaths are caused by leptospirosis each year, a mortality comparable to melanoma or rabies

[17]. with an estimated 2.9 million Disability-Adjusted Life Year (DALYs) lost per annum

[19].

In South East Asia, the annual incidence of leptospirosis is estimated at 10–100 cases per

100,000 people [20]. A recent study estimated the incidence of leptospirosis in the region at
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55.54, 95% CI 20.32–99.53 per 100 000 population [17]. In Thailand, an annual incidence of

23.7 per 100,000 persons was observed in 2000. Most of the cases (90%) were reported from

flooded areas [20]. In Viet Nam, a March 2003 study found a prevalence of 11% in children

aged 7 years with an annual seroconversion rate of 1.5% [21]. In Lao PDR, the seroprevalence

was estimated at 23.9% in the rural population aged 15 or above [22].

In Cambodia, a study estimated the annual incidence equivalent to half that of dengue, at

12.9 per 100,000 inhabitants aged below 20 years in Kampong Cham province during the

2007–2009 rainy seasons [23]. Another, hospital-based study of suspected leptospirosis cases

found a seroprevalence of 29.0%; 14.4% with serological evidence of recent infection and

15.5% with evidence of previous leptospirosis infection [24]. More recently, a study on undif-

ferentiated fevers in rural Cambodian health centers found a seroprevalence for leptospirosis

of 20.8% [25]. Studies implemented in rodents in several provinces of the country showed that

they were more likely to be infected by leptospirosis during the rainy season (May to Decem-

ber) and the prevalence were higher in rodents trapped in rice fields, and other flooded areas,

forest areas or recently cleared culture areas [26].

The most common risk factors of leptospirosis infections are occupational (farmer, sewer

worker), recreational (canoeing, swimming), cultural factors (bathing in rivers, taming ani-

mals, the presence of pets in the home) and socioeconomic factors (poverty, lack of sanitation)

[13]. Living in a rural area, being a male or being exposed to flooding is also associated with a

higher risk of infection [13,17,27].Outbreaks are mostly observed during the rainy season [28]

and it seems that, in some places, flooding is the direct cause of the outbreak and not only a

risk-factor [27]. Many leptospirosis outbreaks have been reported after extreme climatic events

around the World [13]. The use of environmental data has proved useful in modeling the risk

of leptospirosis. On Samoa Island, a study showed the importance of altitude and some other

environmental variables to explain a rise in leptospirosis cases [29]. In Thailand, rainfall and

temperature were the core of a time-series model on the number of leptospirosis cases [28].

The strong link between leptospirosis outbreaks and extraordinary climatic events is explained

by the capacity for Leptospira bacteria to accumulate in the humid soil [30] which come in con-

tact with animals and humans in case of flooding [13].

The main objective of this study is to assess if and which remotely-sensed flooding indicator

could be used in Cambodia to study any disease for which flooding has already been identified

as an important driver. In this paper we use leptospirosis as a case study, assuming that flood-

ing is an important driver of leptospirosis in Cambodia as shown by Ivanova and al. for

rodents [26], and as demonstrated in India, Lao PDR, Indonesia, Italy, Guyana, Nicaragua,

Puerto Rico, New Caledonia, Australia and USA for Humans [13,22,31,32]. We do not explore

an epidemiological mechanism involving flooding for leptospirosis but rather the possibility

for national and local health authorities to easily use a remotely-sensed flooding indicator as

an early warning tool for flood-driven diseases like leptospirosis. Specifically, we (i) assess the

performance of various remotely-sensed indicators to detect flooded areas, select the best one

and (ii) evaluate its potential use in predicting the distribution of human leptospirosis infec-

tions at local level in Kampong Cham province, Cambodia.

2. Material and method

2.1. Study area, children cohort and leptospirosis data

A cohort of villagers aged below 20 were followed during 2007–2009 by active, community-

based surveillance for febrile illnesses in a convenience sample of 32 rural villages in four dis-

tricts of Kampong Cham province, Cambodia [23]. A total of 2359 paired sera samples col-

lected from febrile patients were randomly selected among 7162 fever cases who tested
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negative for other infectious diseases (dengue, Chikungunya, Japanese Encephalitis, Influenza,

Respiratory Syncitial virus and Human Metapneumovirus) [23]. A total of 100 cases showed a

seroconversion indicative of an acute leptospirosis infection, and defined by a second serum

sample positive for anti-Leptospira IgM (PanBio Leptospira IgM ELISA kit) while the first

serum sample, collected ten days earlier during the acute febrile phase of the disease, tested

negative [23]. Indeed, IgM are usually detectable in the blood around ten days after the onset

of the disease; two sera samples are therefore necessary to confirm an acute leptospirosis. The

database used in our study was a subset of the Hem et al [23] study and included only the 2359

cases who were IgM seronegative for the first serum sample collected. The variables retained

from the original database are the information about the leptospirosis infection (serology

results for leptospirosis and seroconversion status), information about the location of the vil-

lages (the villages code and geographical coordinates) and additional information about the

patients that have been suggested as risk factors for leptospirosis infection (the age and the

gender) [12,17,19].

2.2. Selection of the best remotely sensed flooding indicators

The remote sensing data used for water detection were MODIS TERRA MOD09A1 Surface-

Reflectance Product, resolution 500m), from the Land Processes Distributed Active Archive

Center of NASA (National Aeronautics and Space Administration) (http://e4ftl01.cr.usgs.gov/

MOLT/MOD09A1.005/). These data are easily and freely accessible online and could therefore

be used by local and national health authorities, even in countries with scarce resources dedi-

cated to disease surveillance.

No water or flooding indicator had been tested to date in Cambodia to our knowledge. Six

potential flooding indicators were selected based on the literature. Table 1 presents their

characteristics.

We had to choose the indicator best suited to the landscape studied. Cambodia land cover

is characterized by vegetation (trees, plantations) and water (paddy fields).

Remotely sensed flooding indicators are continuous variables and the range of values corre-

sponding to water presence must be determined. One of the methods used to validate such

indicators is to make observations in the field which are then used to calibrate the indicator for

the specific area studied. These field observations were carried out in Kampong Cham prov-

ince to match with the available leptospirosis data. A total of 230 locations were regularly

observed along several road transects covering the study area (Fig 1).

Six observations were made every other week for each location between May and July 2014.

The first observations were made on 05/05-05/07 and 05/19-05/21 during the dry season

Table 1. Summary of potential flooding indicators, their general formula, matched with MODIS band formula and their values.

Indicator General Formula MODIS Band Formula Value range

NIR [33,34] - b01 Superior to 0

NDVI [35] NDVI = NIR� R
NIRþR

(b01-b02)/(b01+b02) Between -1 and 1

EVI [36] EVI = 2:5 NIRþR
NIRþ6R� 7:5Bþ1

2.5((b01+b02)/(b01+6b02-7.5b03+1)) Between -1 and 1

NDWI [37] NDWI = G� NIR
GþNIR

(b04-b01)/(b04+b01) Between -1 and 1

NDII [38] NDII = NIR� MIR
NIRþMIR

(b01-b06)/(b01+b06) Between -1 and 1

MNDWI [39,40] MNDWI = G� MIR
GþMIR

(b04-b06)/(b04+b06) Between -1 and 1

Note: NIR = Near Infrared Red, NDVI = Normalized Difference Vegetation Index, EVI = Enhanced Vegetation Index, NDWI = Normalized Difference Water

Index, NDII = Normalized Difference Infrared Index, MNDWI = Modified Normalized Difference Vegetation Index.

https://doi.org/10.1371/journal.pone.0181044.t001
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which lasts from December to May and the following during the beginning of the rainy season

(06/02-06/03; 06/16-06/17; 07/08-07/09; 07/21-07/22). The observations consisted of observing

and photographing the presence of water in the georeferenced square represented by the

Fig 1. Study area and sites, Kampong Cham province, Cambodia (See S1 Table for the village names in English and Khmer). The main map is

showing the locations of the villages included in the epidemiological study about human leptospirosis as well as the locations of the sites were the field data

were collected for the ground truthing of the flooding indicator. The smaller map shows the location of the study area in Cambodia.

https://doi.org/10.1371/journal.pone.0181044.g001
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MODIS pixel. A ground truthing site was considered as flooded when at least one centimeter

of water was covering more than half of the area of the corresponding MODIS pixel. But most

of the time, the assessment of the presence of water was straightforward as highlighted by the

pictures we added as S1 Fig.

For each observation, the corresponding MODIS image was downloaded and the six differ-

ent flooding indicators were calculated.

The sensitivity and the specificity of the potential indicators were calculated for 40 thresh-

olds ranging between the maximal and the minimal values of the indicators observed in the

pixels studied. A receiver operating characteristic (ROC) curve was drawn, area under the

ROC curve (AUC) was calculated and the optimal threshold was identified for each flooding

indicator. The ROC curve is obtained by plotting the sensitivity depending on 1-specificity of

the model. The AUC is an indicator of performance ranging from 0.5 (equivalent to a random

test or model) to 1 (perfect test or model). The optimal threshold was the indicator value maxi-

mising both the sensitivity and the specificity of the water detection by the indicator.

The indicators with the best AUC were selected for the subsequent analyses.

The best flooding indicator and its optimal threshold for detecting water were then used to

create a new variable: the number of weeks since the first flooding of the year. We added this

new variable because it has been suggested that during the dry season, bacteria can be highly

concentrated in the soil in limited area and that the first flooding may disseminate leptospira

to more distant areas [32]. The first inundation of the year could then wash the soil where lep-

tospira were concentrated during the dry season and may be more strongly associated to lepto-

spirosis infections than subsequent flooding. In order to eliminate short term variations and

catch the seasonal trend, the values of the flooding indicator used to determine the first flood

of the year were smoothed over three weeks. The value for a given week was the mobile mean

calculated over 3 weeks (W-1, W0 and W+1). The week of the first flooding was then defined

as follows: the smoothed value of the indicator is greater than the optimal threshold and there

is no smoothed values of the indicator are greater than the optimal threshold in the previous

eight weeks.

2.3. Additional data

To evaluate the potential use of the best flooding indicator in predicting the distribution of

human leptospirosis infections, we included additional data on population density and alti-

tude, factors that may be related to leptospirosis infections [17,29]. For population density, we

used a layer based on the 2008 national census that gave information with a 100m spatial reso-

lution. For altitude, we used a Digital Elevation Model (DEM) with a 90m spatial resolution

from the Shuttle Radar Topography Mission center on Cambodia developed by the Center for

Spatial Information Science and Systems (George Mason University) and available on http://

ws.csiss.gmu.edu/DEMExplorer/. For each fever case, altitude, population density and the

flooding indicator were averaged spatially in a buffer of 1km around the center of the village.

Each averaged value was then used in the GLM.

2.4. Flooding indicator and leptospirosis risk

Using the best flooding indicator, we tested whether that flooding indicator is also related to

leptospirosis infections using univariate analysis and multivariate analysis, the latter to verify

whether the link between leptospirosis and the detection of flooding by the indicator remained

even when factors known to affect leptospirosis infections were taken into account.

First, we performed a chi-square test and estimated the rate ratio (RR) of leptospirosis infec-

tion associated with flooding detected through remote sensing. For each of the 2359 patients
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in the leptospirosis database, we estimated a flood variable by calculating the average value of

the best flooding indicator for all the pixels included in a 1km radius around the village of the

patient. If this average was above the optimal threshold, the village was considered as exposed

to flooding; if not, the village was considered as not exposed to flooding. We performed chi-

square tests and estimated the RR using the leptospirosis infection status and this flood vari-

able. The RR divides the cumulative incidence in exposed group by the cumulative incidence in

the unexposed group, determining whether being exposed to a factor is significantly associated

with infection. The estimation of the RR was stratified on the season to ensure that the indicator

was not only associated with the rainy season when flooding and most leptospirosis cases occur

and was actually a relevant indicator within the rainy season. Thus, we also estimated the RR of

leptospirosis infection associated with flooding detected through remote sensing during the

rainy season only. A sensitivity-specificity analysis was also conducted on the best flooding indi-

cator to estimate the optimal threshold of this indicator to discriminate leptospirosis infections

and compare this threshold with the optimal threshold to discriminate between flooding and

non-flooding areas. We used all the leptospirosis-confirmed cases (n = 100) and 300 randomly-

selected non-leptospirosis cases. The same method was used as above.

Second, we used a generalized linear model (GLM) to explore the correlation between the

best remotely-sensed indicator and leptospirosis infections while taking into account factors

known to be related to leptospirosis infection. Stepwise descending logistical regression was

performed to explore the risk of leptospirosis infection linked with flooding, after adjustment

for other known risk factors for leptospirosis: adult age [12,17,19], male gender [12,17,19],

rural setting [17], altitude [29] and rainfall [28]. A stepwise descending procedure starts with

the full model (the model including all the explanatory variables) and tries to remove explana-

tory variables at each step to simplify the model. An explanatory variable is removed when

the evaluation criterion of the resulting model is improved. We used the Akaike information

criterion (AIC) which takes into account the maximum likelihood and the parsimony of the

model. We then calculated the Area Under the Curve (AUC) on trained data (TD AUC, esti-

mated from the same data used to train the model) and by cross-validation (CV AUC, estimated

from 75% of the data, the other 25% being used to train the model) to assess the performance of

the model.

In order to take a deeper look at the association between leptospirosis infection and ex-

planatory variables and in particular flooding, we also conducted Boosted Regression Tree

modeling (BRT). BRT is a machine-learning method based on two algorithms: multivariable

regression trees and a boosting process that combines simple models to improve performance.

The BRT method was selected because it provides better predictions than generalised models

and is able to deal with complex responses such as non-linear relationships and interactions

between variables [41]. BRT assesses the relative importance (RI) of each explanatory variable,

based on the number of times a variable is used in all trees and its contribution to the final

model improvement.

The R software (version 3.1.0; The R Foundation for Statistical Computing, Vienna, Aus-

tria)[42] packages dismo (version 0.9–3) [43] and gbm (version 2.1) [44] were used to imple-

ment the BRT model. We used a tree complexity of 5, a learning rate of 0.0001, a bag fraction

of 0.5 and the number of trees was optimized using the step.gbm function.

In order to estimate the performance of the BRT model, we estimated the average trained

data AUC (TD-AUC, estimated from the same data used to train the model) and Cross-Vali-

dation AUC (CV_AUC, estimated from half of the data, the other half being used to train the

model) and the standard deviations were calculated over 10 iterations. These parameters pro-

vide the percentage of variability explained by the model in the data used to build the model

and with bag fraction data not used to build the model, respectively.
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Ethical considerations. The leptospirosis data were analysed anonymously. The leptospi-

rosis database was obtained from a previous study approved by the National Ethic Committee

for Health Research in Cambodia NECHR on April8th, 2011(#NEHCR35-2011).

3. Results

3.1. Selection of the best remotely sensed flooding indicators

Water presence was documented at 230 locations in May-July 2014 but only 152 of these loca-

tions remained accessible during the rainy season. A total of 1,217 MODIS pixels were docu-

mented to calibrate the indicator values. The ROC curves for each potential flooding indicator

are shown in Fig 2. MNDWI had the best AUC with 0.761 and was selected as the flooding

indicator and used in the following analysis.

3.2. Flooding indicator and leptospirosis risk

Results from the univariate analyses showed a statistically significant correlation between lep-

tospirosis infections and areas considered as exposed to flooding (based on averaged MNDWI

values superior to -0.3). The Risk Ratio was 1.61 [1.10–1.52] and the chi-square test value was

Fig 2. ROC curves for a EVI; b NDWI; c NIR; d MNDWI; e NDII; f NDVI, n = 1217, May-July 2014,

Kampong Cham, Cambodia.

https://doi.org/10.1371/journal.pone.0181044.g002
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5.64, (p-value = 0.02) for the whole dataset. The correlation was even stronger during the rainy

season only (RR = 2.03 [1.25–3.28], chi2 = 8.15, p-value = 0.004). During the rainy season, peo-

ple exposed to floods had a twice greater risk of being infected by leptospirosis.

The optimal threshold for discriminating leptospirosis cases with MNDWI values was the

same that the one to discriminate flooded areas, -0.3.

The best GLM model identified by the stepwise descending process included age, altitude

and the time elapsed since the first flooding of the year (Table 2). It had a training data AUC of

0.616 and a cross-validation AUC of 0.558.

The BRT model had an average training data AUC of 0.80 (SD = 0.002) and an average CV

AUC of 0.572 (SD = 0.009). The final model had 10080 trees, a learning rate of 0.0001, a tree

complexity of 5 and a bag fraction of 0.5.

MNDWI was the variable that contributed the most to the model (relative influence of

26%), followed by altitude (23%) and time since first flooding (19%).

The effect of each explanatory variable on the response variable is shown in Fig 3. The

MNDWI indicator had two thresholds; the risk for leptospirosis infection was higher for

MNDWI values greater than -0.3) (Fig 3A) and increased again for MNDWI values greater

than 0. The risk was higher just after the first flooding of the year and decreased slowly until 40

weeks after the first flooding (Fig 3C). Children aged below four and people living in villages

with an altitude below 35 meters had a lower risk of seroconversion (Fig 3D and 3B). Maps of

the MNDWI in the study area during rainy (July 2009) and dry (April 2009) seasons are pre-

sented in S2 Fig.

4. Discussion

In this study—the first of its kind to our knowledge in Cambodia—we (i) assessed the perfor-

mance of six different remotely-sensed flooding indicators and (ii) assessed whether the most

effective one could be used in predicting the distribution of human leptospirosis infections at

local level in Kampong Cham province, Cambodia. MNDWI was the best flooding indicator

based on field observations. Interestingly, the threshold of -0.3 maximizing the performance of

MNDWI as a flooding indicator was also the optimal threshold to discriminate leptospirosis

infection according to both our sensitivity-specificity evaluation methods and the BRT model.

Two independent analyses based on independent datasets showed that MNDWI values greater

than -0.3 were significantly associated with both flooding and an increased risk of leptospirosis

infection even during the rainy season (RR = 2.03 [1.25–3.28], chi-square = 8.15, p-value =

0.004). This is consistent with what is known of leptospirosis epidemiology and the role of

flooding in leptospirosis outbreaks [13,18,20,31,45–47] but differs from the results of Suwan-

pakdee et al. which did not find a direct correlation between leptospirosis cases and flooding

in Thailand [48]. However, they used confirmed and suspected leptospirosis cases reported to

Table 2. Summary of the regression analysis to explain leptospirosis cases in Kampong Cham Province, Cambodia, 2007–2009, n = 1832.

Variable coefficient CI95% p-value

Best model:

intercept -3.382 [-4.420; -2.405] 4.6e-11

Age 0.054 [0.013; 0.095] 0.009**

Altitude 0.011 [-0.017; 0.040] 0.437

Time since first flood -0.015 [-0.029; -0.001] 0.042*

* indicate significance at 95% and

** indicate significance at 99%.

https://doi.org/10.1371/journal.pone.0181044.t002
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the National surveillance system—that may lead to an important under-detection of the real

number of cases- whereas we used confirmed cases from a community active surveillance of

undifferentiated fevers [23,48]. Our results illustrate the potential for this flooding indicator to

be used as an early warning predictor of an increased leptospirosis risk in Cambodia and prob-

ably in other countries for leptospirosis or for other diseases strongly associated with flooding.

In addition to detecting flooded areas using MNDWI, we also included the time elapsed

since the first flooding of the year in our GLM and BRT models. This variable, estimated using

MNDWI, was a significant explanatory variable in the GLM (p = 0.042) and had an important

influence in the BRT model (relative influence of 19%).This is consistent with a Brazilian study

that observed peaks of leptospirosis cases three to five weeks after floods in Rio De Janeiro

[32]. This importance of the first flooding of the year may be explained by the dissemination

of high concentration of Leptospira bacteria accumulated locally during dry season [13,30,32].

Indeed, flooding and heavy rainfall cause increased runoff and washing of fecal material and

Leptospira into the environment, including bathing and drinking water [8,13,32].The BRT

model suggests that the risk of leptospirosis infection is higher within the ten weeks after the

first flooding of the year and slowly decreases until the next rainy season. If this is confirmed

early warning epidemiological tools based on remotely-sensed indicators could inform on,

quantify and monitor the first flooding of the year and guide timely and targeted public health

action.

Fig 3. Marginal effect curves of each explanatory variable of the BRT model. The sub-plots are ordered by the mean of their relative influence to the

BRT model, with these RI given in parentheses with each sub-plot.

https://doi.org/10.1371/journal.pone.0181044.g003

Remotely-sensed flooding indicators and leptospirosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0181044 July 13, 2017 10 / 15

https://doi.org/10.1371/journal.pone.0181044.g003
https://doi.org/10.1371/journal.pone.0181044


Our models (GLM and BRTs) should not be seen as tools to accurately predict leptospirosis

risks in Cambodia at this stage. Several limitations could explain the low performance of the

models assessed by cross-validation (AUC = 0.558 for GLM and 0.572 for BRT) despite a good

performance of the BRT model on the training data (AUC = 0.8). The leptospirosis data we

used were a partial byproduct of a study designed to study dengue [23]. The dataset we used

was not initially designed to undertake a spatial analysis of leptospirosis seroconversions. The

fever cases were not independent because children came from a limited number of villages.

Furthermore, one child could have several fever episodes during the study, potentially leading

to multiple inclusions in the initial study. Finally, the main limitation is the limited study area

of 42 km by 25 km in a single province of Cambodia.

In our study, we used an indicator of water presence/absence and did not take into account

the different classes of water such as surface water, waterlogged soils, flooded vegetation nor

did we take into account other information on the water such as temperature, salinity, turbid-

ity or depth that can have an impact on pathogen transmission [10]. As reviewed by Tran et al

[10], using different sensors can help to discriminate between different water classes, radar

remote sensing being potentially better at identifying several types of inundated land. Addi-

tional information about water is difficult to collect through remote sensing only [10]. Depth

of flooding may have played a role in our study because it can have an impact on bacteria dis-

semination and titers which determine the risk of infection for humans, with an increased risk

of infection for shallower inundations as observed in Cambodia for coliform bacteria [49]. As

already discussed, the results of our BRT model suggesting that the first flood of the year is

associated with an increased risk of leptospirosis may be related to this difference of bacteria

concentration in shallower water. This parameter could be taken into account by developing a

hydrologic model as done by Kazama et al [49].

In Senegal, Soti el al [50] combined remote sensing and hydrologic modeling to assess the

spatio-temporal dynamics of ponds in the Ferlo Region to better understand the epidemiology

of Rift Valley Fever, a vector-borne disease. Mechanistic models taking into account hydro-

logic connectivities are better at mapping the dispersion of pathogens with water flow. Remais

et al [51] improved the predictive power of their schistosomiasis transmission model in China

by including hydrological data. A spatially explicit model of cholera transmission developed by

Bertuzzo et al [52] helped understand the factors driving the annual dual-peak of cholera

observed in Bangladesh. Developing such mechanistic approaches or using different sensors to

discriminate between water classes would certainly improve our model, our knowledge and

our capacity to forecast waterborne diseases. It would, however, increase the complexity of any

early warning tool based on a model and consequently hinder its implementation by health

authorities. As highlighted by Lleo et al [8], the use of remote sensing data in health applica-

tions could be better promoted and a simple statistical model improving risk forecasting could

be a first step for health specialists unfamiliar with this technology. The development of a

hydrologic model to better understand the epidemiology of leptospirosis could then lay the

groundwork for further research work aiming at identifying the main drivers of leptospirosis

in Cambodia.

As highlighted by Hamm et al., the quality of remote sensing data needs to be assessed as

some parameters such as clouds can affect quality of the imaging [53]. The range of values cor-

responding to a specific element could also be affected and may be time and space-dependent.

It was therefore important to identify the range of values corresponding to the detection of

water bodies on the ground and to assess the sensitivity and specificity of the MNDWI indica-

tor to detect water in our area [54]. The MODIS images used are aggregated on eight days and

data quality is assessed and maximized, using correction for atmospheric gases and aerosols

and selection of the best pixels [55]. Further corrections could be made on these remote
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sensing data to increase their quality, but such additional technical work would certainly pre-

vent routine users like local and national health authorities to use them as an early warning

tool. Given the objective of this study, and since we are not exploring the mechanisms relating

flooding to leptospirosis, we did not use further corrections of the remote sensing data.

Having the flooding indicator as the most influent explanatory variable in the BRT and

GLM models in a small and homogenous study area is encouraging and one can expect an

improved performance of the indicator and of the models, when dealing with more contrasted

areas. Furthermore, a specifically designed study allowing for the use of other explanatory vari-

ables at a larger scale should increase the performance of the models.

If such improvements were possible, the use of MNDWI could help target risk areas to

design prevention plans or inform clinicians in a timely way of a locally increased risk of lepto-

spirosis, a potentially lethal disease which requires specific treatment. The MNDWI and

remotely-sensed indicators in general provide information on a very large scale. Satellite imag-

ing is freely and quickly available, and could contribute to an early-warning system based on

quasi real-time risk prediction. Health workers could thereby be informed of the higher pro-

portion of children expected to be infected by flood-related diseases in the subsequent weeks.

This could help planning and stock-piling of appropriate antibiotics for leptospirosis treatment

and better patient diagnosis and management. Such a surveillance and early warning system

could be most effective and useful for health workers if associated with surveillance for dengue,

the first differential diagnose of leptospirosis in tropical countries where both pathogens

circulate.

In conclusion, our study, aimed solely at assessing the performance of remotely-sensed

flooding indicators as risk indicators of flood-driven diseases, found a significant correlation

between leptospirosis and MNDWI as a proxy for flooding, even when using rainy season

data. Even though this correlation does not inform us on the underlying mechanisms and the

potential causal links, it can still be used practically to assist in epidemiological surveillance

and to provide early warning in a timely and adequate way. Despite limitations preventing us

from using our model for leptospirosis prediction at this early stage, our study suggests the

potential usefulness of flooding indicators and—of MNDWI in particular—for the analysis

and the development of tools to better predict the risk of leptospirosis and potentially other

flood driven diseases in Cambodia and other Southeast Asia settings.
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https://doi.org/10.1590/S0102-311X2001000700014

Remotely-sensed flooding indicators and leptospirosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0181044 July 13, 2017 14 / 15

https://doi.org/10.1016/j.trstmh.2010.07.002
https://doi.org/10.1016/j.trstmh.2010.07.002
http://www.ncbi.nlm.nih.gov/pubmed/20813388
https://doi.org/10.1016/S1473-3099(03)00830-2
https://doi.org/10.1016/S1473-3099(03)00830-2
http://www.ncbi.nlm.nih.gov/pubmed/14652202
https://doi.org/10.1038/nrmicro2208
http://www.ncbi.nlm.nih.gov/pubmed/19756012
https://doi.org/10.1007/978-3-662-45059-8_5
https://doi.org/10.1007/978-3-662-45059-8_5
http://www.ncbi.nlm.nih.gov/pubmed/25388133
https://doi.org/10.1371/journal.pntd.0003898
https://doi.org/10.1371/journal.pntd.0003898
http://www.ncbi.nlm.nih.gov/pubmed/26379143
https://doi.org/10.1093/qjmed/hcs145
http://www.ncbi.nlm.nih.gov/pubmed/22843698
https://doi.org/10.1371/journal.pntd.0004122
http://www.ncbi.nlm.nih.gov/pubmed/26431366
https://doi.org/10.1186/1471-2334-9-147
https://doi.org/10.1186/1471-2334-9-147
http://www.ncbi.nlm.nih.gov/pubmed/19732423
https://doi.org/10.1111/j.1365-3156.2006.01619.x
https://doi.org/10.1111/j.1365-3156.2006.01619.x
http://www.ncbi.nlm.nih.gov/pubmed/16640627
http://www.ncbi.nlm.nih.gov/pubmed/18541776
https://doi.org/10.1371/journal.pone.0151555
http://www.ncbi.nlm.nih.gov/pubmed/27043016
https://doi.org/10.1007/s13149-010-0043-2
https://doi.org/10.1007/s13149-010-0043-2
http://www.ncbi.nlm.nih.gov/pubmed/20306241
https://doi.org/10.4269/ajtmh.2012.11-0409
http://www.ncbi.nlm.nih.gov/pubmed/22302857
https://doi.org/10.4269/ajtmh.2012.11-0349
http://www.ncbi.nlm.nih.gov/pubmed/22665613
https://doi.org/10.1371/journal.pntd.0003843
https://doi.org/10.1371/journal.pntd.0003843
http://www.ncbi.nlm.nih.gov/pubmed/26379035
https://doi.org/10.1016/S1995-7645(12)60095-9
https://doi.org/10.1016/S1995-7645(12)60095-9
http://www.ncbi.nlm.nih.gov/pubmed/22647816
https://doi.org/10.1371/journal.pntd.0001669
http://www.ncbi.nlm.nih.gov/pubmed/22666516
https://doi.org/10.1371/journal.pone.0039672
https://doi.org/10.1371/journal.pone.0039672
http://www.ncbi.nlm.nih.gov/pubmed/22808049
https://doi.org/10.1590/S0102-311X2001000700014
https://doi.org/10.1371/journal.pone.0181044


33. Work EA Jr., Gilmer DS. Utilization of satellite data for inventorying prairie ponds and lakes. Photo-

gramm Eng Remote Sens. 1976; 42: 685–694.

34. White ME. Reservoir surface area from Landsat imagery. Photogramm Eng Remote Sens. 1978; 44:

1421–1426.

35. Rouse JW, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the great plains with

ERTS. 3rd ERTS Symposium; 1973. pp. 48–62.

36. Huete AR, Liu HQ, Batchily K, Van Leeuwen W. A comparison of vegetation indices over a global set of

TM images for EOS-MODIS. Remote Sens Environ. 1997; 59: 440–451. https://doi.org/10.1016/

S0034-4257(96)00112-5

37. Mcfeeters SK. The use of the Normalized Difference Water Index (NDWI) in the delineation of open

water features. Int J Remote Sens. 1996; 17: 1425–1432.

38. Hardisky MA, Klemas V, Smart RM. The influence of soil salinity, growth form, and leaf moisture on the

spectral radiance of Spartina alterniflora canopies. Photogramm Eng Remote Sens. 1983; 49: 77–83.

39. Clandillon S, Fraipont P, Yesou H. Assessment of the future SPOT 4 MIR for wetland monitoring and

soil moisture analysis: simulation over the Ried Center Alsace (France). European Symposium on

Remote Sensing II; 1995. pp. 102–111. 10.1117/12.227173

40. Xu H. Modification of normalised difference water index (NDWI) to enhance open water features in

remotely sensed imagery. Int J Remote Sens. 2006; 27: 3025–3033. https://doi.org/10.1080/

01431160600589179

41. Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008; 77:

802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x PMID: 18397250

42. R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statis-

ticalComputing, Vienna, Austria. URL http://www.R-project.org/.

43. Robert J. Hijmans, Steven Phillips, John Leathwick and Jane Elith. dismo: Species Distribution Model-

ing. R package version 1.0–15. http://CRAN.R-project.org/package=dismo. 2016.

44. Greg Ridgeway with contributions from others. gbm: Generalized Boosted Regression Models. R pack-

age version 2.1.1. http://CRAN.R-project.org/package=gbm. 2015.

45. Bhardwaj P, Kosambiya JK, Desai VK. A case control study to explore the risk factors for acquisition of

leptospirosis in Surat city, after flood. Indian J Med Sci. 2008; 62: 431–438. PMID: 19265232

46. Karande S, Bhatt M, Kelkar A, Kulkarni M, De A, Varaiya A. An observational study to detect leptospiro-

sis in Mumbai, India, 2000. Arch Dis Child. 2003; 88: 1070–1075. https://doi.org/10.1136/adc.88.12.

1070 PMID: 14670771

47. Leal-Castellanos CB, Garcia-Suarez R, Gonzalez-Figueroa E, Fuentes-Allen JL, Escobedo-de la Penal

J. Risk factors and the prevalence of leptospirosis infection in a rural community of Chiapas, Mexico.

Epidemiol Infect. 2003; 131: 1149–1156. PMID: 14959783

48. Suwanpakdee S, Kaewkungwal J, White LJ, Asensio N, Ratanakorn P, Singhasivanon P, et al. Spatio-

temporal patterns of leptospirosis in Thailand: is flooding a risk factor? Epidemiol Infect. 2015; 143:

2106–2115. https://doi.org/10.1017/S0950268815000205 PMID: 25778527

49. Kazama S, Aizawa T, Watanabe T, Ranjan P, Gunawardhana L, Amano A. A quantitative risk assess-

ment of waterborne infectious disease in the inundation area of a tropical monsoon region. Sustain Sci.

2011; 7: 45–54. https://doi.org/10.1007/s11625-011-0141-5

50. Soti V, Puech C, Lo Seen D, Bertran A, Vignolles C, Mondet B, et al. The potential for remote sensing

and hydrologic modelling to assess the spatio-temporal dynamics of ponds in the Ferlo Region (Sene-

gal). Hydrol Earth Syst Sci. 2010; 14: 1449–1464. https://doi.org/10.5194/hess-14-1449-2010

51. Remais J, Liang S, Spear RC. Coupling Hydrologic and Infectious Disease Models To Explain Regional

Differences in Schistosomiasis Transmission in Southwestern China. Environ Sci Technol. 2008; 42:

2643–2649. https://doi.org/10.1021/es071052s PMID: 18505010

52. Bertuzzo E, Mari L, Righetto L, Gatto M, Casagrandi R, Rodriguez-Iturbe I, et al. Hydroclimatology of

dual-peak annual cholera incidence: Insights from a spatially explicit model. Geophys Res Lett. 2012;

39: L05403. https://doi.org/10.1029/2011GL050723

53. Hamm NAS, Soares Magalhães RJ, Clements ACA. Earth Observation, Spatial Data Quality, and

Neglected Tropical Diseases. PLoS Negl Trop Dis. 2015; 9: e0004164. https://doi.org/10.1371/journal.

pntd.0004164 PMID: 26678393

54. Boschetti M, Nutini F, Manfron G, Brivio PA, Nelson A. Comparative Analysis of Normalised Difference

Spectral Indices Derived from MODIS for Detecting Surface Water in Flooded Rice Cropping Systems.

PloS One. 2014; 9: e88741. https://doi.org/10.1371/journal.pone.0088741 PMID: 24586381

55. MOD09A1 | LP DAAC:: NASA Land Data Products and Services [Internet]. [cited 26 Apr 2016]. Avail-

able: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09a1.

Remotely-sensed flooding indicators and leptospirosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0181044 July 13, 2017 15 / 15

https://doi.org/10.1016/S0034-4257(96)00112-5
https://doi.org/10.1016/S0034-4257(96)00112-5
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1111/j.1365-2656.2008.01390.x
http://www.ncbi.nlm.nih.gov/pubmed/18397250
http://www.R-project.org/
http://CRAN.R-project.org/package=dismo
http://CRAN.R-project.org/package=gbm
http://www.ncbi.nlm.nih.gov/pubmed/19265232
https://doi.org/10.1136/adc.88.12.1070
https://doi.org/10.1136/adc.88.12.1070
http://www.ncbi.nlm.nih.gov/pubmed/14670771
http://www.ncbi.nlm.nih.gov/pubmed/14959783
https://doi.org/10.1017/S0950268815000205
http://www.ncbi.nlm.nih.gov/pubmed/25778527
https://doi.org/10.1007/s11625-011-0141-5
https://doi.org/10.5194/hess-14-1449-2010
https://doi.org/10.1021/es071052s
http://www.ncbi.nlm.nih.gov/pubmed/18505010
https://doi.org/10.1029/2011GL050723
https://doi.org/10.1371/journal.pntd.0004164
https://doi.org/10.1371/journal.pntd.0004164
http://www.ncbi.nlm.nih.gov/pubmed/26678393
https://doi.org/10.1371/journal.pone.0088741
http://www.ncbi.nlm.nih.gov/pubmed/24586381
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09a1
https://doi.org/10.1371/journal.pone.0181044

