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The contribution of host genetic and nongenetic factors to immu-
nological differences in humans remains largely undefined. Here,
we generated bacterial-, fungal-, and viral-induced immune tran-
scriptional profiles in an age- and sex-balanced cohort of 1,000
healthy individuals and searched for the determinants of immune
response variation. We found that age and sex affected the tran-
scriptional response of most immune-related genes, with age effects
being more stimulus-specific relative to sex effects, which were
largely shared across conditions. Although specific cell populations
mediated the effects of age and sex on gene expression, including
CD8+ T cells for age and CD4+ T cells and monocytes for sex, we
detected a direct effect of these intrinsic factors for the majority of
immune genes. The mapping of expression quantitative trait loci
(eQTLs) revealed that genetic factors had a stronger effect on
immune gene regulation than age and sex, yet they affected a
smaller number of genes. Importantly, we identified numerous
genetic variants that manifested their regulatory effects exclusively
on immune stimulation, including a Candida albicans-specific master
regulator at the CR1 locus. These response eQTLs were enriched in
disease-associated variants, particularly for autoimmune and inflam-
matory disorders, indicating that differences in disease risk may result
from regulatory variants exerting their effects only in the presence of
immune stress. Together, this study quantifies the respective effects
of age, sex, genetics, and cellular heterogeneity on the interindividual
variability of immune responses and constitutes a valuable resource
for further exploration in the context of different infection risks or
disease outcomes.

human immune variation | gene expression | genetics | sex | age

Unraveling the contributions of host and environmental factors
to interindividual variability in immune responses is crucial to

understand immune pathology (1). Immunological research has
largely neglected the concept of interindividual heterogeneity,
but there is now growing biomedical interest in studies of the
variation of the immune response and its determinants in healthy
populations (2)—a strategy known as systems or population im-
munology (1, 3, 4). Recent cohort-based studies have shed light on
how host genetic and nongenetic factors, including environmental
variables (e.g., annual seasonality, nutrition, latent infections) and
variation of the commensal microbiota, drive the plasticity of im-
mune responses. For example, intrinsic factors, such as age and
sex, have an impact on cellular and molecular phenotypes, such as
immune cell and protein levels (5–12), and genetic variants also
account for a significant fraction of the observed variation of these
immune traits (5, 6, 8, 13–16).

In terms of gene expression, immune responses vary markedly
between individuals and populations (17–22), but the extent of
this variation and its drivers are only beginning to be clarified (1,
3, 23). Recent whole-blood studies have shown that age and sex
strongly affect gene expression in the basal state (12, 24, 25).
Likewise, genetic variation is an important source of variability in
gene expression (20, 26–28). The mapping of expression quan-
titative trait loci (eQTLs; genetic variants that affect gene expression
variation) has become an important approach in translational
medicine (29), as regulatory variants are increasingly recognized
as contributing to complex disease risk (22, 23, 26–28, 30, 31).
eQTLs are particularly informative in studies of immune phenotypes,
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in which interactions between genetic and environmental factors,
such as infection, may be required for phenotypic manifestations
(23, 32). In this context, thousands of eQTLs that only appear
after immune challenge (i.e., response eQTLs) have been iden-
tified over the last years (17–19, 21, 22, 33, 34), establishing
putative functional links between expression phenotypes and
organismal traits, such as immunity to infection (23, 26, 32).
Furthermore, recent data suggest that immune-related response
eQTLs play an important role in the genetic architecture of
human diseases (35).
Despite the major contribution of systems immunology studies

to the increased comprehension of human immune system var-
iation (4), important questions remain to be systematically ex-
plored. The investigation of how intrinsic factors impact gene
expression variation on infection is missing, yet this is critical to
understand the observed inequalities among individuals of dif-
ferent ages and sexes in immune responses and disease risk (36,
37). Furthermore, most studies have focused on isolated cell
types treated with single agonists and have not quantified jointly
the influence of the genetic and nongenetic drivers of gene ex-
pression variation on immune stimulation or infection in a multi-
cellular environment.
In this study, we adopted an integrative approach, combining

genetic, transcriptomic, and cytometric data. We generated 7,000
immune transcriptional profiles for whole-blood samples, after
stimulation with a wide range of microbes, from 1,000 healthy
individuals of European ancestry stratified by age (20–69 y old,
200 per decade) and sex (500 women, 500 men). This balanced
experimental design (Fig. S1) provided a unique opportunity to
delineate the respective effects of age, sex, and genetic factors
and of inherent variation in immune cell populations on the
interindividual variability of immune responses to infection. In
doing so, our study lays the foundations for future precision
medicine clinical strategies that may stratify patient groups based
on age, sex, or genetic background.

Results
Distinctive Transcriptional Responses to Bacterial, Fungal, and Viral
Challenges. We stimulated whole blood with three bacteria,
Escherichia coli, Staphylococcus aureus, and Bacillus Calmette–
Guérin (BCG); a fungus, Candida albicans; a live virus, influenza
A virus (IAV); and a superantigen, staphylococcal enterotoxin B
(SEB) (Fig. S1). To limit the burden of multiple testing, we quan-
tified the expression of 560 immune-related genes before and after
immune stimulation in the 1,000-donor cohort using NanoString
hybridization arrays, which produce highly reproducible transcrip-
tional data (38). Furthermore, we measured the proportions of eight
major immune cell types (i.e., neutrophils, CD19+ B cells, CD4+

T cells, CD8+ T cells, CD4+CD8+ T cells, CD4−CD8− T cells,
natural killer (NK) cells, and CD14+monocytes) in all individuals by
standardized flow cytometry.
Immune stimulation altered the expression of 87–92% of the

genes tested (Dataset S1), with most genes being up-regulated
[paired t test; false discovery rate (FDR) < 0.01] (Fig. 1A and
Dataset S2). The direction of expression changes was globally
shared across stimuli, with IAV inducing the most distinctive re-
sponse (Fig. 1B). Principal component analysis confirmed these
observations (Fig. 1C); principal component 1 (PC1) was driven
mainly by genes induced by all stimuli other than IAV, reflecting a
bacterial signature, whereas PC2 was driven by IAV-induced genes,
reflecting a strong type 1 IFN signature (Fig. S2 A and B).
PC2 further distinguished C. albicans-induced genes from those
stimulated by E. coli and SEB, whereas PC3 separated the genes
induced by E. coli from those stimulated by C. albicans and SEB
(Fig. 1C and Fig. S2C). Thus, all stimuli, except BCG and S.
aureus, triggered distinguishable transcriptional responses, the
largest differences being observed between viral and bacterial/
fungal challenges.
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Fig. 1. Distinct transcriptional responses to bacterial, viral, and fungal in-
fections. (A) Number of genes presenting differential expression on immune
stimulation. (B) Number of genes presenting common patterns of expression
changes across stimulation conditions. Only expression patterns common to
at least five genes are presented. (C) Principal component analysis of im-
mune gene expression profiles in the nonstimulated state and on immune
simulation. NS, nonstimulated control.
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Widespread Effects of Age and Sex on Gene Expression Variation on
Immune Stimulation. We investigated the effect of age on transcrip-
tional responses to immune activation. For each gene, in each
condition, we regressed its expression on age, while adjusting for
sex, blood cell composition, and technical variables. The expression
of 473 genes was linearly correlated with age in at least one con-
dition (FDR < 0.01) (Dataset S3 and Table S1), with 267 being
affected by age only on immune stimulation, highlighting the im-
portance of examining induced transcriptional profiles. Unlike
previous reports of increased gene expression variance with age in
different species (39–41), we found no statistical support for age-
dependent changes in expression variance in our age-balanced co-
hort (Breusch–Pagan test; FDR < 0.01).
To test for nonlinear associations between gene expression

and age, we used ANOVA and stratified the cohort into five age
groups. The results obtained were similar to those for the re-
gression analysis for all conditions, except for IAV (Fig. 2A). The
20- to 29-y-old age group displayed a response to IAV that was
different from all other groups, this difference being most
marked relative to the 30- to 39-y-old age group (Fig. 2B). The
relevance of the age groups selected was confirmed by testing
alternative age stratification strategies (SI Materials and Methods
and Fig. S3). We found 87 and 119 genes displaying increased
and decreased expression, respectively, in the 20- to 29-y-old age
group compared with 30- to 39-y-old individuals (Tukey Honest
Significant Differences test; P < 0.05) (Fig. 2B and Dataset S4).
Genes with increased expression were enriched in functions re-
lating to innate immune responses as annotated in the innateDB
database (P = 6.5 × 10−3; e.g., type 1 IFNs), whereas genes with
decreased expression included genes with known roles in
antibody-associated responses (e.g., FCGRT, CR1). Interestingly,
the detected age differences echo a recent study that reported
similar gene expression differences in H1N1 vaccine recipients
under the age of 35 y old (42).
We then explored the stimulus specificity of age effects for

each of the 467 genes presenting age-dependent expression
(FDR < 0.01, except for IAV because of the nonlinear effect).
We found that the effect of age was often stimulus-specific, with
40% of genes presenting age-dependent expression in only one
or two conditions (Fig. 2C and Dataset S3). An example is shown
for SEB stimulation, which displayed increased IL-13 expression
and a parallel decrease in IL-4R (IL-13 receptor) expression as a
function of age (Fig. 2D).
As age is associated with increased pathogen infection, in par-

ticular with CMV that is known to have a broad influence on im-
mune variation (5), we tested whether CMV seropositivity could
explain the detected age-dependent expression changes. When
comparing the proportions of variance explained by age in two linear
regression models with and without CMV as an independent vari-
able, no significant differences were detected between the models
(Fig. S4). Although we cannot rule out that infection with other
pathogens could mediate, at least partially, some age-specific effects,
our results indicate that infection with CMV does not explain the
widespread effects of age on microbial-induced gene expression.
Next, we investigated the influence of sex on immune response

variation by regressing gene expression on sex, while adjusting
for age, blood cell heterogeneity, and technical variables. We
found 509 genes with expression that was sex-dependent in at
least one condition (FDR < 0.01) (Dataset S3 and Table S1),
with 181 being affected by sex only after stimulation. More genes
displayed higher expression in women than in men across all
conditions, this difference being significant for BCG, S. aureus,
SEB, and C. albicans (test for one proportion; P < 0.01). Fur-
thermore, 33 genes displayed differences in expression variance
between the sexes in at least one condition (Levene test;
FDR < 0.01) (Dataset S5). When assessing the stimulus speci-
ficity of sex effects, we found that these were often shared across
stimuli; 45% of genes presented sex-specific differences in expres-

sion in more than six conditions (Fig. 2E and Dataset S3). Two key
examples are CD14 (encoding the LPS coreceptor), which was
more strongly expressed in men, and ICOS (encoding CD278,
which down-regulates T-cell activation), which was more strongly
expressed in women, for all stimuli (Fig. 2F).
Together, our findings suggest an important contribution of

age and sex to immune response variation, with the effects of age
on transcriptional variability being highly dependent on the in-
fectious stimulus used and those of sex being largely shared
across microbial challenges.

Unraveling the Direct and Indirect Effects of Age and Sex on Gene
Expression. As both age and sex influence blood cell composition
(43), we next investigated whether their effects on gene expres-
sion are mediated by the eight major cell populations studied
using structural equation modeling (44). For each gene with an
age-related expression pattern, we built a model with eight in-
direct effects (one for each cell type) and one direct effect of age,
while adjusting for sex, the genetic factors identified below, and
technical variables (Fig. S5A). An analogous model was built for
sex (Fig. S5B). The outcome of these models is such that, for any
given gene, direct and/or indirect effects of age and sex may be
observed simultaneously.
We found that, in the absence of stimulation, the expression of

85% of genes was directly affected by age (Fig. 3 A and B and
Dataset S6) and that this was the only (i.e., total) effect observed
for 53% of genes (Fig. 3B). The expressions of 44 and 17% of
genes were influenced by age through a decrease with age in the
proportions of CD8+ and CD4−CD8− T cells, respectively (the
mediation of the other cell types was not statistically significant).
These indirect, cell-mediated effects were often coupled with
direct effects of age (Fig. 3B). Thus, only for a very small number
of genes could the total effect of age on expression be explained
by cellular composition. On immune stimulation, age affected
expression through the same cell populations, but the CD8+

T-cell mediation was generally less marked than in the absence
of stimulation (Fig. 3B).
Similarly, the expression of 76% of genes was directly affected

by sex in the absence of stimulation (Fig. 3 A and C and Dataset S7),
this being the only effect observed for 55% of genes (Fig. 3C). The
expressions of 26 and 21% of genes were indirectly affected by sex
because of a decrease in the proportion of CD4+ T cells in men and
a decrease in monocytes in women, respectively. After stimulation,
sex effects were also mediated by CD4+ T cells and monocytes, and
the mediation effect of monocytes was observed for a larger pro-
portion of genes (29–49%) compared with nonstimulated cells
(21%), reflecting that many of our stimuli activate monocytes.
Overall, although specific cell populations can mediate the

effects of age and sex on immune-related gene expression, our
analyses detected a direct effect of these intrinsic factors for the
majority of immune genes affected, suggesting that age and sex
effects are often mediated by mechanisms other than those af-
fecting blood cell heterogeneity.

Mapping the Genetic Basis of Transcriptional Responses to Microbial
Challenges. To investigate the contribution of genetic factors to
immune gene expression variation, we mapped eQTLs through
tests for associations between genome-wide SNPs (minor allele
frequency >0.05) and 560 expression traits. Individuals were
genotyped using the HumanOmniExpress and the HumanExome
BeadChips that, after imputation using the 1,000 Genomes refer-
ence panel (45), yielded a final dataset of 5,265,361 SNPs. We used
a linear mixed model to account for possible relatedness and pop-
ulation structure in our cohort, which was further adjusted for age,
sex, blood cell heterogeneity, and technical variables.
We first mapped local, likely cis-acting eQTLs (within 1 Mb of

each gene) and detected 239 genes presenting an eQTL in at
least one condition (P < 2.3 × 10−8, Bonferroni-adjusted P < 0.05)
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(Fig. 4, Datasets S8–S14, and Table S2). A large proportion of
eQTLs was either detected in all conditions (28%) or specific to a
single condition (27%) (Fig. 5A) as illustrated by the shared eQTLs
at CTSC and IFIT2 and the condition-specific eQTLs at TRAF4,
IL7R, and TLR3 (Fig. 5 B and C). Notably, the latter cases represent
response eQTLs, of which a total of 104 were identified, indicating
gene–environment (G × E) interactions.

We then searched for master regulatory regions by mapping
trans-eQTLs (i.e., variants regulating the expression of distant
genes or gene networks; >1 Mb away from the transcriptional
start/end site). We further verified that the detected trans-effects
of each eQTL did not result from heterogeneity in immune cell
subpopulations (SI Materials and Methods). In the absence of
stimulation, we identified four trans-eQTLs (P < 1.7 × 10−11,
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five decades of life. (C) Specificity of age
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expression across conditions. Numbers in the
circle sectors (1–7) denote the numbers of
stimuli for which the expression of the corre-
sponding genes was sex-dependent. (F) Ex-
pression differences between men and women
for CD14 and ICOS, common to all conditions.
Gene expression is presented as normalized
gene counts. The legend with color-coding
applies to C–F. F, female; M, male; NS, non-
stimulated control.
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Bonferroni-corrected P < 0.05), the strongest of which was located
in the FCGR3A/HSPA6 region and regulated GBP5, STAT1,
FCGR1A, GBP1, and IRF1. We found that trans-regulation had a
stronger effect after stimulation, particularly with E. coli, BCG,
C. albicans, and SEB (Fig. 4, Datasets S15–S21, and Table S2). The
strongest trans-eQTL was detected for the TLR1/6/10 locus, which
regulated 105 genes after stimulation with E. coli, 80 genes after
stimulation with BCG, 7 genes after stimulation with S. aureus,
and 13 genes after stimulation with SEB. On E. coli stimulation,
individuals with the TT genotype (rs4833095, T-allele fre-
quency =0.79) displayed lower expression for many inflammatory
response genes (e.g., IL1B, IL6, IL12B) and higher expression for
regulatory response genes (e.g., TGFB1, TGFBI, IL1RAP) (Dataset
S22). This variant is in strong linkage disequilibrium (r2 = 0.89) in
Europeans with an SNP detected as a trans-eQTL after the stimu-
lation of monocytes with Pam3CSK4 (19).
We also identified a strong trans-eQTL located near the CR1

locus, which regulated 34 genes specifically on C. albicans stim-
ulation (Figs. 4 and 6). Individuals with the CC genotype
(rs12567990, C-allele frequency =0.81) (Fig. 6C) had lower levels
of expression for 16 genes, including genes involved in the IFNγ-
related response (IFNG, STAT1, JAK2, CXCL10), and higher
expression of 18 genes, including several encoding cell surface
proteins (CLECL5A, FCGRT, CD14, IL-13RA1) and signaling
molecules (e.g., DUSP4).
As previous studies have reported that genetic variants can

impact gene expression at the steady state in an age- or sex-
specific manner (46, 47), we explored how these intrinsic factors
affect eQTLs on immune stimulation. We included in the linear
mixed model an interaction term, separately for sex (SEX × SNP)
and age (AGE × SNP), and screened all variants within 1 Mb of
each gene. We detected only one significant AGE × SNP in-
teraction affecting the expression of SPP1 after stimulation with
E. coli (rs28628889; P = 1.3 × 10−8, Bonferroni-corrected P < 0.05)
(Fig. S6A) and no significant SEX × SNP interaction. Our analysis
had sufficient power to detect loci displaying strong interactions with
sex and age but limited power to detect intermediate and weak
interactions (Fig. S6 B and C), suggesting that there are no major
differences in the genetic control of immune gene expression be-
tween subjects of different ages and sexes.
Collectively, our eQTL analyses revealed that a substantial

fraction of the interindividual variation in gene expression can be

attributed to local or trans-acting genetic factors, many of which
manifest their effects only in the presence of an immunological
challenge.

Immune Response eQTLs Are Enriched in Disease Risk Variants. Be-
cause a functional role of regulatory variants in disease risk is in-
creasingly recognized (22, 23, 26, 27, 30, 31, 35), we examined the
extent to which the detected eQTLs were enriched in genome-wide
association study hits (Dataset S23 and Table S3). We found that
local and trans-eQTLs in the nonstimulated and response states
were enriched in disease-associated variants with respect to random
sets of SNPs sampled from all variants tested in local eQTL and
trans-eQTL mapping, respectively (resampling P < 0.05). For ex-
ample, in the absence of stimulation, we confirmed that NOD2
genetic variation, which has been associated with leprosy (48, 49),
affects mRNA levels for this gene (50). We also found that a
TNFSF15-TNFSF8 variant, contributing to inflammatory bowel
disease risk (51), strongly affects TNFSF8 mRNA levels (P = 3.7 ×
10−15), while having only a moderate effect on TNFSF15 (P = 6.5 ×
10−4), identifying TNFSF8 as the probable causal gene.
Remarkably, the observed enrichment in disease-causing variants

was stronger for response eQTLs than for eQTLs in the absence of
stimulation (4.0–7.3× vs. 3.5×, respectively) (Table S3). Several re-
sponse eQTLs at IRF5, ITGAM, and IKZF1 have been associated
with systemic lupus erythematous, the pathogenesis of which is
linked to an aberrant regulation of innate and adaptive immune
response genes (52). Likewise, three loci associated with self-
reported allergy and other immune diseases (51, 53) were re-
sponse eQTLs (Dataset S23), controlling the expression of SMAD3,
PTGER4, and IKZF3 after stimulation with BCG, C. albicans, and
IAV, respectively. The strong trans-eQTL that we detected at CR1
(rs12567990) on C. albicans stimulation (Fig. 6) has also been
associated with interindividual variability in biomarkers of in-
flammation (erythrocyte sedimentation rate) (54).
Overall, our results indicate that the identification of the genetic

factors controlling transcriptional responses to microbial challenges
can shed light on the etiology of organismal traits related to in-
fection, inflammation, and autoimmunity.

Quantifying the Impact of Genetic and Nongenetic Factors on Immune
Response Variation. Finally, we quantified the respective impacts
of age, sex, blood cell heterogeneity, and genetics on transcriptional
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Fig. 4. Local and trans-genetic factors associated with gene expression variation. The genomic position of the regulatory SNP is presented on the x axis,
whereas that of the gene for which expression variation is associated with the regulatory variant is presented on the y axis. The numbers along the x and y
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response variation. The largest proportion of gene expression
variance was explained by heterogeneity in blood cell composition
both in number of genes affected (>400 per condition) and in
mean proportion of the variance explained (∼18% across genes
and conditions) (Fig. 7A and Dataset S24). Age and sex also
contributed to the expression variance of a large number of genes
(>200 and >300 per condition, respectively), but their individual
influences were weak (∼2 and ∼4%, respectively). Conversely,
genetic factors affected the expression of a smaller gene set
(∼140 per condition for local eQTLs and <40 for trans-eQTLs),
but their influence was stronger than those of age or sex: ∼10 and
∼7% for local and trans-eQTLs, respectively. The contribution of
trans-genetic factors was stronger for E. coli and BCG than for
the other stimuli, affecting ∼100 genes and explaining ∼10% of
their expression variance (Fig. 7A). The genetic component was
generally the strongest contributory factor other than heteroge-
neity in blood cell composition for genes with expression varia-
tion associated with genetic factors (Fig. 7B and Fig. S7).
Leaving aside these broad patterns, the respective contribu-

tions of nongenetic and genetic factors to immune response
variation differed considerably at the individual gene level both
within pathways and between stimuli as illustrated by the type 1
IFN and TLR-MyD88 pathways (Fig. 7C). Cellular composition
had a stronger impact on expression variation for receptors, such
as IFNAR1/2 and TLR1/2/4, than for downstream molecules,
with the exception of TyK2 and MyD88. The impact of genetics
also varied considerably between genes: the expression of IFNAR1
was under the control of a local eQTL, whereas that of IFNAR2
was regulated by a stimulus-specific trans-eQTL. The impact of
genetics was particularly strong on TLR1 expression, where it
accounted for up to 21% of the total variance. Age and sex gen-
erally had weak effects on gene expression, but several interesting
differences were apparent, such as the impact of age on STAT1
and that of sex on STAT2 (Fig. 7C).
Together, our analyses indicate that the main source of im-

mune response variation, at least at the transcriptional level, is
whole-blood cellular heterogeneity. Age and sex influence the
expression of a wide range of genes, but their effect sizes are
moderate, whereas genetic factors acting locally or distantly have
stronger effects but on a smaller number of immune genes.

Discussion
Using a systems immunology approach in a 1,000-individual healthy
cohort specifically designed for the comprehension of the diversity
of the human immune system (55), our study represents a systematic
investigation of the respective contributions of age, sex, genetics, and
cellular heterogeneity to variation in transcriptional responses to
immune activation. We found that the variation of immune cell
populations in whole blood was the main driver of interindividual
differences in immune responses, accounting for ∼18% of the total
variance in gene expression. The effects of age and sex were
overall moderate (<5% of the total variance), consistent with re-
ports based on steady-state expression (24, 25, 56), but they were
widespread among immune genes and were generally not medi-
ated by immune cell composition. We also found that age effects
were more stimulus-specific compared with those of sex. Al-
though future studies with increased power and the inclusion of
donors more than 70 y of age may provide a more nuanced view
of their respective effects, our results suggest that the microbial
specificity of age effects may be driven by environmental expo-
sures that change throughout life, whereas sex effects are more
constant. The detected differences of age effects across stimuli
echo recent studies, in which immune cell frequencies were
found to be more similar between younger than older monozygotic
twins (5) and older individuals presented more heterogeneous
immunotypes (i.e., cell populations, cell signaling, and antibody re-
sponses) than younger donors in unrelated individuals with ages
between 8 and 89 y old (11).

A

B

C

Fig. 5. Stimulus specificity of immune response eQTLs. (A) Specificity of
local eQTLs across stimulation conditions. Numbers in the circle sectors (1–7)
denote the numbers of stimuli for which the expression of the correspond-
ing genes was associated with a nearby genetic variant. (B) Cases of CTSC
and IFIT2 presenting local eQTLs across all seven conditions. The eQTL ef-
fect at CTSC differed between nonstimulated and stimulated conditions.
(C) Cases of TRAF4, IL7R, and TLR3 presenting local response eQTLs specific
to E. coli, SEB, and IAV stimulations, respectively, highlighting G × E inter-
actions. Gene expression is presented as normalized gene counts. MAF, mi-
nor allele frequency; NS, nonstimulated control.
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We show that genetic factors affect fewer genes than age or
sex but that their effect sizes are stronger (∼10% of the total
variance) (3, 57). Although the contribution of genetic factors to
expression variance can reach even higher values for specific
genes or pathways, our findings are in accordance with the
moderate influence of genetics in shaping the variation of other
immune traits, such as cell proportions (5–7, 15). We neverthe-
less detected local and trans-eQTLs for 43 and 42%, respectively,
of the immune genes studied. About 100 genes presented an
immune response eQTL, enabling the identification of G × E
interactions in the context of infection.
We also identified master regulators of immune responses,

including the trans-eQTL at TLR1/6/10, which we previously
detected in monocytes (19). We now extend the description of
this trans-effect to whole-blood responses to E. coli, BCG, and
to a lesser extent, S. aureus and SEB, highlighting this locus as a
major source of immune response variation to bacterial chal-
lenges in Europeans. Likewise, the detected trans-eQTL at the
CR1 locus reveals a source of variation related to responses to
C. albicans. CR1 is a receptor for the C3b and C4b split prod-
ucts, opsonins formed as a result of complement system acti-
vation. Both C. albicans and BCG trigger C3 and C4 cleavage,
but only opsonized C. albicans engages CR1 (58). We found that
CR1 variation regulated the strength of induced IFNγ re-
sponses, downstream signaling pathways (JAK2/STAT1), and
subsequent chemokine induction (CXCL10/CXCL9). The trans-
eQTL SNP also had a local effect on CR1 expression (Fig. 6A),
but this effect could not account for all of the variance of the
trans-effect, perhaps reflecting differential temporal regulation
as previously observed for the IFNB1 gene (18). CR1 variants
have been previously associated with differences in erythro-
cyte sedimentation rate (54, 59), which increases during fun-
gal infections. This highlights the need for studies evaluating
the clinical impact of CR1 variation on susceptibility to
fungal infections.
Our age- and sex-stratified cohort allowed us to explore if

interactions between these intrinsic variables and the numerous
genetic factors identified affect immune responses. With the
exception of an AGE × SNP interaction for E. coli-induced
SPP1 expression, we found no interactions of age or sex with
genetic factors, contrary to recent reports (46, 60). This dis-
crepancy may stem from our focus on immune functions and
suggests that the effects of genetic variants on immune gene
expression are constant across age groups and between sexes.
Consistent with this view, previously reported interactions be-
tween age, sex, and genetics did not affect immune genes (with
the exception of NOD2) (46, 60) or were not identified in whole
blood (57).
A nonnegligible fraction of immune response variance re-

mains presently unexplained. Hence, the contribution of other
determinants requires additional investigation, including the ef-
fects of environmental exposures, epigenetic modifications, in-
teractions with the microbiota, or more complex genetic control
(57). In this context, our quantification of the effects of genetic
factors on immune response variance (i.e., ∼10% on average)
should be considered as a conservative estimate, especially if one
considers the many regulatory variants with small effect sizes that
our analyses cannot detect.
Our study also presents some limitations. Gene expression

variation was assessed at 560 immune genes, providing a partial
view of the impact that nongenetic and genetic factors have on
gene expression sensu lato. This choice was based on the ro-
bust, highly reproducible gene expression measurements gen-
erated by the NanoString arrays in whole blood, avoiding
technical variability introduced by amplification steps (38). It
was also our strategy to deliberately focus on the expression
variation of only immune genes to limit the burden of multiple
testing. The use of RNA sequencing will make it possible to

extend these analyses to a wider array of genes and layers of
transcriptional variability, such as potential differential isoform
usage on infection. Furthermore, analyses of other immune
system measurements after stimulation (proteins and metabo-
lites after microbial challenges, antibody responses to vaccines,
etc.) are necessary to provide a more comprehensive view of
the different intermediate phenotypes that constitute the hu-
man immune system.

A

B

C

Fig. 6. Stimulus-specific trans-acting eQTL at the CR1 locus. (A) Local
eQTL at CR1 acting specifically in response to C. albicans stimulation.
(B) rs12567990 was significantly associated, in trans, with the expression of
IFNG and CLEC5A only after C. albicans stimulation. Gene expression is
presented as normalized gene counts. (C) Network of the 34 genes sig-
nificantly trans-regulated by the CR1 locus (P < 1.7 × 10−11). The size of
the nodes is proportional to −log10(p) of the association between
rs12567990 and gene expression. Colors indicate the direction of the change
in expression associated with the C allele (frequency = 0.81). NS, non-
stimulated control.
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Despite these perceived limitations, the use of gene expression
variation and its genetic determinants remains a powerful tool
for systems immunology studies, as variants affecting gene expres-
sion, in particular after immune stimulation (35), are increasingly
recognized as contributing to ultimate organismal phenotypes
(22, 26, 27, 30, 31). This notion is strongly supported by the cases
of G × E interactions detected in this study, as response eQTLs
exhibited a stronger enrichment in risk variants for human dis-
eases, such as autoimmune and inflammatory disorders, than
eQTLs in the nonstimulated state.
Overall, this study provides an assessment of how intrinsic and

genetic factors drive interindividual differences in transcriptional
responses to bacterial, fungal, and viral challenges. Our dataset is
freely accessible via a web-based browser (misage.pasteur.fr/),
making it possible to query and visualize the contribution of these
factors to immune response variation. It also constitutes a valuable
resource for additional exploration in the context of different in-
fection risks or disease outcomes in human populations.

Materials and Methods
The cohort consists of 1,000 healthy volunteers (500 men and 500 women)
aged 20–69 y old equally distributed across five decades of life who were
selected based on stringent inclusion and exclusion criteria (55). The study
was approved by the Comité de Protection des Personnes—Ouest 6 and
the Agence Nationale de Sécurité du Médicament and is sponsored by the
Institut Pasteur (ID-RCB no. 2012-A00238-35). The study protocol was
designed and conducted in accordance with the Declaration of Helsinki
and good clinical practice as outlined in the International Conference on
Harmonisation of Technical Requirements for Registration of Pharma-
ceuticals for Human Use (ICH) Guidelines for Good Clinical Practice (https://
www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/
E6/E6_R1_Guideline.pdf), and all subjects gave informed consent. Stimu-
lations were performed on 1 mL whole blood for 22 h using TruCulture
tubes (61), and flow cytometry analyses were performed with an eight-
color cytometry panel (62). Gene expression was performed using the
Human Immunology v2 Gene Expression CodeSet, which contains 594 gene
probes that encompass major immune pathways and functions, such as the
TLR, Jak-STAT, and MAPK signaling pathways, cytokine–cytokine receptor
interactions, apoptosis, and the complement and coagulation cascades.
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Fig. 7. Expression variance explained by age, sex,
genetics, and blood cell composition. (A) Mean vari-
ance, across genes, explained by age, sex, genetics,
and the proportions of CD45+ cell populations in the
absence of stimulation and in the six stimulation
conditions. The sizes of the circles correspond to the
number of genes affected by each factor in each
condition. (B) Proportion of the expression variance
explained by age, sex, genetics, and proportions of
CD45+ cells for all genes expressed in response to
E. coli stimulation. (C) Proportion of the expression
variance explained by the different intrinsic and
heritable factors for the genes of the type 1 IFN and
TLR-MyD88 pathways. The order of stimuli on the x
axis is the same as on A. The legend with color-
coding applies to A–C. NS, nonstimulated control.

E496 | www.pnas.org/cgi/doi/10.1073/pnas.1714765115 Piasecka et al.

http://misage.pasteur.fr/
https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E6/E6_R1_Guideline.pdf
https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E6/E6_R1_Guideline.pdf
https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E6/E6_R1_Guideline.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1714765115


For each gene in each stimulated condition, a paired t test was used to
compare expression levels in stimulated and nonstimulated states, con-
trolling for FDR. Seven multiple regression models were built to estimate
the effects of age and sex on gene expression. Structural equation mod-
eling (44) was used to investigate the ways in which the different cell
populations mediate the effects of age and sex on gene expression. DNA
genotyping was performed using the HumanOmniExpress-24 BeadChip and
the HumanExome-12 BeadChip (Illumina). After imputation using the 1,000
Genomes Project imputation reference panel (45), a final dataset of
5,265,361 SNPs was obtained. eQTLs mapping was performed with a linear

mixed model implemented in GenABEL (63). Interaction effects between
variables (genetics, sex, and age) on gene expression were estimated using
ProbABEL v.0.4.5 (64).

Detailed information about the experimental methods and statistical
analyses may be found in SI Materials and Methods.
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