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Sex is a neglected variable in infectious disease

Historically, we have overlooked sex as a variable in infectious disease research [1, 2]. For

example, while much of our knowledge comes from animal studies, many researchers rou-

tinely use only male animals [3]. One of the principal reasons for this is the argument that

female animals, undergoing cyclic hormonal fluctuations, introduce additional experimental

variation [4]. Sex bias is also a major challenge in clinical studies. In 1977, Food and Drug

Administration (FDA) guidelines for human studies recommended that women of reproduc-

tive age be excluded from early clinical trials (e.g., Phase I) [1, 5]. While more recent efforts

have resulted in greater inclusion of female subjects [5], the lasting consequence of this recom-

mendation is that many drug regimens and therapeutic approaches are based solely on infor-

mation gained from testing in male subjects [5–7]. Major adverse effects experienced by

female patients underline that single-sex studies cannot predict whether and how men and

women will respond differently to a drug, vaccine, or treatment [7].

It has become increasingly clear that sex broadly influences the host immune response [1, 2,

8]. Indeed, the influence of sexual dimorphism is likely underappreciated. The analysis of

more than 14,000 wild-type and 40,000 mutant mice revealed that approximately 10% of quali-

tative and more than 50% of quantitative phenotypes are influenced by sex in wild-type mice

[9]. Similarly, mutant phenotypes were impacted by sex in approximately 13% of qualitative

and 17% of quantitative traits analyzed [9]. At the gene expression level, modest but significant

differences exist between male and female liver, adipose, muscle, and brain tissue in mice [10].

In humans, as in experimental animal systems, what we now appreciate is that men generally

exhibit greater susceptibility, prevalence, and severity of infection compared with women,

which can be seen across a wide variety of pathogens, including parasitic, fungal, bacterial, and

viral infections [1, 2, 11, 12]. Exceptions to this generality, however, can be found in which sus-

ceptibility or severity to infection, for example, is more pronounced in women. Importantly,

what drives these differences is still poorly understood. By taking a closer look at two examples,

urinary tract infection (UTI) and influenza, we can begin to appreciate some of the many fac-

tors that likely drive these differences.

Do hormones shape susceptibility to UTI?

UTIs have a distinctive pattern in that it is women who exhibit increased susceptibility and

prevalence of infection, whereas men experience increased severity [13–15]. The prevalence of

bacteriuria, or bacteria in the urine, is approximately 10% in adult women and 0.1% or 1/1000

men [16]. Why men experience UTIs less frequently is often attributed to anatomical
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differences between men and women, including urethra length [16]. However, several lines of

evidence suggest that sex bias in UTI is driven not only by dissimilar urethra length [16] but

by sex-based variation in the levels of specific hormones, such as testosterone or estrogen,

between men and women over the course of a lifetime. For example, UTI incidence in male

infants is nearly twice that of female infants, and in children under age 2, 40% of UTI patients

are male [17, 18]. At the other end of the spectrum, the incidence of UTI in geriatric popula-

tions (>65 years) is roughly similar between men and women (14% in women vs 11% in men)

[19]. Indeed, the sex difference in UTI is most pronounced in nongeriatric adults [13], coin-

ciding with the highest levels of sex hormones. Thus, UTI risk and severity change over the

lifetime of females and males, suggesting that sex hormone levels or other sex differences con-

tribute to differing host responses.

Supporting this idea, the elimination of estrogen in an experimental setting by ovariectomy

leads to higher bacterial burden following uropathogenic Escherichia coli infection compared

with intact mice [20]. Estrogen supplementation augments expression of the antimicrobial

gene human β-defensin 3 and strengthens urothelial junctions in vitro, which may positively

impact barrier function in the bladder, protecting against infection [20]. Lastly, in a double-

blind clinical study, topical estrogen application reduced the incidence of recurrent UTI in

postmenopausal women, with benefit attributed to increased lactobacilli colonization and

decreased vaginal pH [21]. Taken together, these findings suggest that estrogen may play a

protective role against UTI, and its loss may make women more vulnerable to infection. Fur-

thermore, if hormones shape susceptibility to (uro)pathogens, hormone manipulation may

alter host immunity, and—in the case of UTI—potentially reduce incidence in women or both

sexes. Additional preclinical and clinical research is needed to address the influence of estro-

gen and to explore this treatment avenue for UTI.

Hormone manipulation alters the host response to influenza

Although supplemental estrogen appears to be protective in the case of UTI, hormone manip-

ulation—such as contraceptive use or hormone replacement therapy—likely has a more

nuanced impact on immunity. In an influenza model, direct comparison of the two sexes

reveals that female mice exhibit greater morbidity and mortality than male mice, potentially

because of elevated levels of cytokines, such as tumor necrosis factor (TNF)-α and C-C motif

chemokine ligand 2 (CCL2), in female mice [22]. Interestingly, a reduction in hormone levels

through gonadectomy decreases mortality in female mice and increases mortality in male

mice [22]. When gonadectomized mice are supplemented with exogenous hormone, testoster-

one does not impact mortality in male mice, whereas estrogen signaling via estrogen receptor

α leads to improved mortality [22]. This estrogen-mediated protection in female mice is

dependent upon alterations in cytokine levels and the recruitment of neutrophils at later stages

of infection [23]. Notably, estrogen supplementation results in very high levels of this hormone

compared with intact, untreated female mice [22], suggesting that estrogen therapy may pro-

tect women against influenza; however, this remains to be tested.

Specifically in female mice, progesterone treatment decreases cytokine-mediated inflamma-

tion, induces the expansion of T helper 17 (Th17) T cells, and promotes accelerated lung tissue

healing through the expression of the tissue repair molecule amphiregulin during primary

influenza infection [24]. In addition to progesterone, the synthetic progestin analog levonor-

gestrel, used in oral contraceptives, limits morbidity while reducing serum antibody titers

against a primary flu infection [25]. Despite reduced antibody titers, animals challenged with

an influenza drift variant, encoding minor changes in sequence compared with the original

virus, are protected regardless of the hormone treatment received [25]. By contrast, challenge
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with a heterologous influenza virus induces greater immune pathology and mortality, poten-

tially mediated by decreases in virus-specific CD8+ T cells in progesterone- or levonorgestrel-

treated mice compared with placebo-treated animals [25]. Together, these findings suggest

that women using progesterone-based contraception may experience more severe responses to

subsequent flu infection from season to season.

Finally, testosterone supplementation in aged male mice reduces clinical symptomology

and mortality following influenza infection [26]. Interestingly, testosterone does not impact

viral titer, pulmonary damage, or antibody production, leaving in question the exact mecha-

nisms of its action in this model [26]. Taken together, given that the vast majority of women in

the United States will use hormonal contraceptives at some point in their lifetime [27] and that

hormone replacement therapy is used in many clinical settings in both men and women, these

findings merit additional preclinical and human studies. The findings also support that treat-

ment options for those suffering from infection should take into account not only the sex of

the patient but their contraceptive and hormonal status.

Nonhormonal sex-biasing differences influence host–pathogen

interactions

Sex differences in infection can be mediated by more than hormonal influence [1]. The X

chromosome expresses a number of immune-related genes, such as toll-like receptor 7 (TLR7)

and Interleukin-1 receptor-associated kinase 1 (IRAK1), as well as a number of immune-asso-

ciated microRNAs [28]. While X inactivation, or silencing of one X chromosome, in women

would be expected to provide dosage compensation of X-linked genes, certain regions of the X

chromosome escape inactivation [28, 29]. This can lead to higher transcription levels of spe-

cific genes, such as TLR7, leading to sex-specific responses to viral infection [28–30]. The Y

chromosome also influences immune gene expression, regulation, and susceptibility to both

noninfectious autoimmune diseases and infection [31]. For example, the Y chromosome medi-

ates susceptibility to cocksackievirus independently of sex hormone expression [32]. Moving

away from sex chromosomes, an analysis of eosinophil infiltration into lymph nodes following

Leishmania major infection revealed that four autosomal loci control eosinophil numbers [33].

Of these loci, three appear to be influenced by sex, with one of the three regulating eosinophil

infiltration only in infected male mice [33]. Additional work will be needed to determine the

mechanisms behind these phenotypes.

How can sex differences be more prominently addressed in

research?

As diverse sex-based mechanisms clearly have a profound impact on disease susceptibility,

severity, and response, the challenges of considering both sexes in infectious disease research

must be addressed. The simplest step for researchers to take is reporting the sex of the animals,

cells, or cell culture models used. The journal Endocrinology embraced this idea in 2012, speci-

fying that the methods section of submitted manuscripts must indicate the sex of animals used

or the sex of the animal from which primary cultures were derived [34]. Additional editors

have advocated for the inclusion of sex reporting in submitted manuscripts; however, not all

have mandated that this information is absolutely required [35]. Specifying the sex of the ani-

mal used, as well as clearly reporting whether only one sex was used in research studies, will

highlight findings that may not be amenable to generalization to both sexes. Furthermore,

some of the perceived reasons for excluding a particular sex may not be as relevant as originally

thought. A recent meta-analysis of nearly 300 studies found that phenotypic variability is not

greater in female animals compared with male animals, even when estrous cycle staging is not
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employed, dispelling the belief that female mouse studies are intrinsically more variable [36].

Efforts such as this analysis should help allay concerns and encourage researchers in fields that

predominantly rely upon male animals (e.g., neuroscience, physiology, pharmacology, and

endocrinology [3]) to consider female animal models.

Indeed, greater efforts to include male and female animals should be made when feasible or

warranted. For example, with a single exception utilizing a surgical model of infection [37], no

studies have directly addressed the sex bias in UTI. It is the opinion of several leaders in the

field of sex-based differences that the inclusion of male and female animals in preclinical stud-

ies will ultimately lead to reduced costs and greater knowledge at the clinical stage [38]. Despite

these obvious benefits, the inclusion of both sexes is not always an option because of con-

straints such as increased associated costs. Additionally, as research builds on published stud-

ies, findings that contradict the literature or reveal that specific phenotypes are not maintained

in the opposite sex may face greater publishing challenges. While it will be difficult to over-

come this type of challenge, specific mechanisms, such as the National Institutes of Health

(NIH)’s administrative supplement for research on sex/gender influence, are aimed at support-

ing the increased costs associated with testing in both sexes (PA-17-078).

Finally, the inclusion of women in clinical trials has increased dramatically through the

efforts of the FDA and NIH [5]. Policies such as the NIH Revitalization Act—recognizing that

the exclusion of women from early-stage clinical trials has led to a deficit in the understanding

of women’s health as well as sex-based differences—have emphasized that sufficient numbers

of women must be included in clinical research and that studies should include specific analy-

ses of sex-based differences [5]. The biggest challenge, however, is that many studies are not

powered for separate analyses of men and women, which can lead to the erroneous conclusion

that no differences exist between the sexes [35]. Going forward, efforts aimed at the inclusion

of both sexes in animal and human studies, with sufficient power to analyze potential sexual

dimorphism, will advance our understanding of host–pathogen interactions and lead to tar-

geted therapies to safely combat infectious diseases in men and women.
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