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Abstract

We model outcomes of voluntary prevention using an imperfect vaccine, which
confers protection only to a fraction of vaccinees for a limited duration. Our
mathematical model combines a single-player game for the individual-level deci-
sion to get vaccinated, and a compartmental model for the epidemic dynamics.
Mathematical analysis yields a characterization for the effective vaccination cov-
erage, as a function of the relative cost of prevention versus treatment; note that
cost may involve monetary as well as non-monetary aspects. Three behaviors
are possible. First, the relative cost may be too high, so individuals do not get
vaccinated. Second, the relative cost may be moderate, such that some individ-
uals get vaccinated and voluntary vaccination alleviates the epidemic. In this
case, the vaccination coverage grows steadily with decreasing relative cost of vac-
cination versus treatment. Unlike previous studies, we find a third case where
relative cost is sufficiently low so epidemics may be averted through the use of
prevention, even for an imperfect vaccine. However, we also found that disease
elimination is only temporary—as no equilibrium exists for the individual strat-
egy in this third case—and, with increasing perceived cost of vaccination versus
treatment, the situation may be reversed toward the epidemic edge, where the
effective reproductive number is 1. Thus, maintaining relative cost sufficiently
low will be the main challenge to maintain disease elimination. Furthermore,
our model offers insight on vaccine parameters, which are otherwise difficult to
estimate. We apply our findings to the epidemiology of measles.
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1. Introduction

The 20th century has witnessed tremendous achievements in infectious dis-
ease prevention, especially with the development of effective preventive vac-
cines [1], often far less costly than treatment [2]. Still, the preference between
prevention and treatment remains a dilemma. Some studies found no prefer-5

ence [3–5], others a preference for prevention [6, 7], or a preference for treat-
ment [8, 9], or that preference for prevention versus treatment depends on the
circumstances [10, 11].

The prevention of treatable infectious diseases still poses challenges for public
health authorities [12]. Faced with infection risk, individuals may decide to use10

prevention, or else get treated if they acquired infection. Whereas treatment
is generally well accepted by infected individuals, prevention may have a wide
range of acceptability profiles for the susceptible. Individual-level perceptions
of risk, as well as weighing pros and cons of prevention versus treatment, may
differ from the recommendations of the public health authority [13], for a variety15

of reasons [14, 15].
The decision to use voluntary vaccination and its impact on disease transmis-

sion has been theoretically studied using mathematical models with two compo-
nents: one describing the population-level epidemiology and another describing
the strategy by which an individual makes his choice of whether or not to get20

vaccinated [16–39]. Both compartmental models [16–18, 28, 33–39] and social
networks [19–22] have been used as the population-level model component. For
the individual-level component, imitation dynamics [22, 23, 39], “wait and see”
strategies [38], social distancing strategies [24, 25], maximization of the utility of
prevention [16, 26–31] and inductive reasoning [33–36] have been studied. The25

role of altruism for the individual-level strategy has also been considered [32].
Several modeling studies discuss the impact of public misperceptions about vac-
cination programs on vaccination uptake [16, 22, 23, 27, 28].

The main research direction of the modeling work has been individual and
group behavior in the dilemma of whether or not to get vaccinated [16–20, 22–30

32, 37–39]. Another direction has been vaccination subsidies and incentives [21,
33–36]. A review of recent literature can be found in Ref. [40].

The purpose of the current work is to assess the performance of a voluntary
prevention program, utilizing an imperfect vaccine, which confers protection
only to a fraction of vaccinees for a limited duration. We show that voluntary35

vaccination with an imperfect vaccine may temporarily eliminate epidemics. We
apply our findings to the measles epidemiology.

2. Model

We propose a mathematical model describing the interplay between volun-
tary vaccination and treatment during the course of an epidemic. In particular,40

our model addresses the setup where vaccination is available as a prevention
method against childhood infectious diseases. However, we assume that the
vaccine is imperfect [41, 42]. We consider two aspects of vaccine failure and
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introduce appropriate parameters. First, the vaccine may not take for all vacci-
nees; the fraction of vaccinees for which the vaccine yields an immune response45

is called vaccine efficacy. This has been largely used to model voluntary vac-
cination [27–29, 32, 38, 39]. In this case, the key epidemiological concept is
the effective vaccination coverage [43, 44], the fraction of the population that
acquires immunity due to vaccination. Second, even if the vaccinee acquires an
immune response, this may not result in lifelong immunity. That is, the vacci-50

nee acquires a limited duration of immunity, a feature much less studied in the
modeling of voluntary vaccination [20].

We describe epidemic dynamics using an SEIR-type system of ordinary dif-
ferential equations. Recovery may be reached naturally or through treatment,
which may be either symptomatic or therapeutic. Furthermore, we involve an55

individual-level model of decision-making about whether or not to get vacci-
nated. We assume that individuals make their decisions by judging pros and
cons for vaccination versus treatment, and have a sense of the imminence of
getting infected and then treated. According to game theory, such a decision-
making process may be modeled as a non-cooperative game, where individuals60

act in their own interest to maximize the utility of vaccination versus treatment.
However, an individual’s decision is indirectly influenced by those of others: the
sum of all individuals’ decisions determines the proportion of the population
that gets vaccinated, which, in turn, affects the epidemic progression and the
probability of acquiring infection. The game model is intertwined with the65

model of epidemic dynamics. Model analyses assume that the resolution of the
dilemma of vaccination versus treatment yields stable disease epidemiology.

2.1. The compartmental model

We make further assumptions for our deterministic SEIR-type model. The
vaccination program is constantly in place, regardless of whether or not there is70

an epidemic. Treatment is available in unlimited supply, and no decision-making
is involved about when to start treatment. Complete recovery is possible, with
the benefit of lifelong immunity. These assumptions lead to the following ordi-
nary differential equations of SEIR type:

dV

dt
= εp π − (ρ+ µ)V,

dS

dt
= (1 − εp)π + ρ V − βI

N
S − µS,

dE

dt
=
βI

N
S − (ν + µ)E,

dI

dt
= νE − (σ + γ + µ) I,

dR

dt
= (1 − ξ)σ I + γ I − µR,

dT

dt
= ξ σ I − µT.

(1)
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Newborns can remain susceptible (S) or acquire vaccine-induced immunity75

(V ), in which case they may become susceptible thereafter, as vaccine-induced
immunity wanes. Recently infected individuals (E) pass through a latent stage
of infection. Then, they become infectious (I) and can recover either naturally
(R) or through treatment (T ). The total population size is given by N =
V + S + E + I +R+ T .80

The probability of getting vaccinated is denoted by p and the vaccine pa-
rameters are ε, the vaccine efficacy, and ρ, the rate of waning of vaccine-induced
immunity. The parameter π stands for the inflow of newborns, µ is the disease-
unrelated death rate, β stands for the disease transmissibility, ν for the pro-
gression through the latency stage, σ is the rate at which individuals start85

treatment, ξ represents the treatment efficacy and γ is the natural recovery
rate. All variables and parameters are positively defined.

The model has two equilibria: a disease-free state (DFS) where

VDFS =
εpπ

ρ+ µ
, SDFS =

ρεpπ

µ(ρ+ µ)
+

(1 − εp)π

µ
, (2)

and EDFS = IDFS = RDFS = TDFS = 0, and an endemic state (ES) where all
the equilibrium components are non-zero90

VES =
εpπ

ρ+ µ
, SES =

π

µR0
, IES =

π

β
(R∗ − 1),

EES =
σ + γ + µ

ν
IES, RES =

(1 − ξ)σ + γ

µ
IES, TES =

ξσ

µ
IES,

(3)

where

R∗ =

(
1 − εpµ

ρ+ µ

)
R0, (4)

and

R0 =
βν

(ν + µ)(σ + γ + µ)
. (5)

R∗ is called the effective reproduction number, representing the expected
number of secondary cases produced by a single infectious individual within a
disease-naive population. It is important to note that, in a population undergo-95

ing disease prevention, R∗ depends on the level of disease susceptibility. In our
case, R∗ is a function of p, the probability of getting vaccinated. The SEIR-
type model (1) undergoes a transcritical bifurcation [45] at R∗ = 1. If R∗ > 1,
then ES will be reached; otherwise, R∗ ≤ 1 and DFS will be reached. R0 is the
basic reproduction number [45–47], obtained from the model in the absence of100

prevention (i.e., p = 0). To quantify the impact of vaccination on epidemics,
we analyze R∗(p) given that there is an epidemic in absence of vaccination; i.e.,
R0 > 1.

Using Eqs. (2) and (3), the endemic prevalence of the infectious disease can
be written as105

Π(p) =

{
ΠDFS(p), if R∗ ≤ 1,

ΠES(p), if R∗ > 1;
(6)
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where

ΠDFS(p) =
IDFS + EDFS

NDFS
= 0, (7)

and

ΠES(p) =
IES + EES

NES
=
µ

β

(
1 +

σ + γ + µ

ν

)(
R∗(p) − 1

)
. (8)

A critical vaccination coverage, pc, may be defined using R∗(pc) = 1 or, equiv-
alently, ΠES(pc) = 0, and verifies

εpc =

(
1 +

ρ

µ

)(
1 − 1

R0

)
. (9)

A similar formula is provided in Ref. [41, Eq. (8)]. In the case of a perfect vaccine110

(i.e., ρ = 0 and ε = 1), Eq. (9) recovers a well-known result; see Refs. [46, p. 87]
and [47, ch. 6].

A diagram of disease prevalence at the equilibria of the SEIR-type model (1),
as a function of p, is shown in Fig. 1. ES is always stable (attracting), while
DFS is unstable (repelling) for p < pc and stable for p > pc. It is important115

to note that, in the general case where the vaccination coverage is a function
of time, disease-free dynamics, where E = I = R = T = 0, is possible for all
values of R0.

0

1

1pc

ΠES(p)

ΠDFS(p)

Π

p

Figure 1: The endemic prevalence, Π, as a function of the vaccine coverage, p. If R∗ ≤ 1
(p > pc), the system reaches the disease-free state (DFS) where ΠDFS = 0. On the other
hand, if R∗ > 1 (p < pc), the system reaches the endemic state (ES) with endemic prevalence
ΠES. We note that DFS still exists for p < pc, but it is unstable.

2.2. The single-player game

We assume vaccination to be voluntary. The pros and cons of vaccination120

versus treatment perceived by a typical individual may be biased and involve
monetary and/or non-monetary aspects [15] such as: price, undesired vaccine
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effects, accessibility of vaccination, vaccination schedule, time spent to get vac-
cinated, disease morbidity, secondary effects induced by (symptomatic or/and
therapeutic) treatment, etc. In game theory, they are generally expressed as125

cost. A utility function is employed to make the balance of all the cost with
respect to vaccination versus treatment, as described below. Game theory pos-
tulates that the individual-level decision of whether or not to get vaccinated
maximizes the utility of vaccination. Mathematically, this is expressed by max-
imizing the utility function. As a result, we obtain the probability that a typical130

individual gets vaccinated, depending on cost and vaccine and epidemiological
parameters. In turn, this yields the voluntary vaccination coverage. Hence, the
addition of game theory to the SEIR-type model (1) makes explicit that the
vaccination coverage is not a parameter of the model that may be easily tuned.
Rather, the relative cost of vaccination versus recovery is a more tunable pa-135

rameter, as we will see below.
We assume that individuals address the matter of vaccination as long as they

acknowledge an epidemic threat in the absence of vaccination (i.e., R0 > 1).
Otherwise, individuals do not get vaccinated. We also assume that individuals
have a sense of the probability of acquiring infection when there is an epidemic140

threat. We express this probability using the endemic prevalence of the infec-
tious disease, Π, defined by Eqs. (6)–(8).

The balance of cost is as follows. To prevent getting infected under epidemic
threat, an individual would pay the cost of vaccination, cp, with probability p of
getting vaccinated, and the cost of recovery, cr, with probability (1− εp)Π(p) of145

getting infected. A similar account of costs may be found in Ref. [23, Eqs. (2.1)
and (2.2)]. The utility function of vaccination versus treatment when R0 > 1
becomes:

U(p; cp, cr) = −p cp − (1 − εp) cr Π(p), (10)

where cp and cr are positive. Introducing the relative cost of vaccination versus
recovery r = cp/cr and rescaling the utility function U(p; r) by cr, we obtain150

U(p; r) = −p r − (1 − εp) Π(p). (11)

3. Results

By maximizing the utility function U(p; r) for the individual player, we ob-
tain an expression of the probability for an individual to get vaccinated as a
function of the relative cost of vaccination versus recovery. We denote this
probability by p̂(r).155

Case 1: R∗ > 1. The probability p̂(r) is a solution of ∂U(p; r)/∂p = 0 and
verifies

εp̂(r) =


rb − r

r̃
, if ra < r < rb,

0, if r ≥ rb,
(12)
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where

r̃ =
2εµ2

(ν + µ)(ρ+ µ)

(
1 +

ν

σ + γ + µ

)
, (13)

and

rb = r̃

[
1 − 1

2R0
+

ρ

2µ

(
1 − 1

R0

)]
. (14)

The restriction R∗(p̂) > 1 yields r > ra, where160

ra = r̃

[
1

2R0
− ρ

2µ

(
1 − 1

R0

)]
. (15)

Equations (14) and (15) yield ra < rb whenever R0 > 1. A threshold for the
probability for an individual to be effectively vaccinated is immediately obtained

εp̂(ra) =

(
1 +

ρ

µ

)(
1 − 1

R0

)
, (16)

retrieving Eq. (9) for pc.

Case 2: R∗ ≤ 1. In this case, 0 ≤ r ≤ ra and the endemic prevalence is zero;
cf. Eq. (7). Utility reaches the maximum value of zero at p̂(r) = 0; cf. Eq. (11).165

Along with Eq. (4), this implies R∗ = R0 > 1 and leads to contradiction. We
conclude that the game theoretic assumption of an equilibrium resolution of the
vaccination-versus-treatment dilemma is not tenable. There exists no equilib-
rium coverage for voluntary vaccination once the epidemic has been averted;
p̂(r) does not have a stable equilibrium when R∗ ≤ 1.170

The results on voluntary vaccination coverage are summarized in Fig. 2.
Given the vaccine efficacy, ε, the domain of the function εp̂(r), representing the
probability of effective vaccination, is divided into three regions. Region (c) cor-
responds to r ≥ rb, where individuals find the relative cost of vaccination versus
treatment too high and do not get vaccinated; i.e., R∗ = R0 > 1. Region (b)175

corresponds to ra < r < rb, where some individuals adopt prevention and the
epidemic is alleviated; i.e., R0 > R∗ > 1. Region (a) corresponds to 0 ≤ r ≤ ra
and R∗ ≤ 1. Individuals will get vaccinated in sufficient numbers to avert the
epidemic, as long as they have the motivation to do so. However, according to
our model, a long-term motivation based on disease prevalence does not exist.180

This situation may be reversed if an incentive is used and individuals perceive
a net gain from being vaccinated (i.e., r is allowed to take negative values) when
R∗ ≤ 1. Straightforward calculations show that, in this case, p̂(r) = 1 maximizes
the utility of vaccination, independently of the perceived gain.

Figure 1, intended for the SEIR-type model (1), remains illustrative for the185

two-component model using game theory, as well. Just as before, ES exists for
the region 0 ≤ p < p̂(ra) = pc (i.e., R∗ > 1) and is stable. However, DFS exists
only for p = 0 and is unstable, as we assumed R0 > 1.

The equilibrium structures uncovered in Figs. 1 and 2 invite to a discussion
about vaccine parameters. From the point of view of public health, the first190
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0

1

ra rb

εp̂

r

(a) (b) (c)

εp̂(ra)

Figure 2: The probability that individuals get effectively vaccinated, εp̂(ε, r), as a function of
the relative cost of vaccination versus treatment, r. The domain is divided into three regions.
In region (c), individuals do not get vaccinated due to the high cost of vaccination versus
treatment. Region (b) corresponds to the case where lower cost encourages some individuals
to adopt vaccination and, as a result, the epidemic is alleviated. For region (a), the relative
cost is significantly reduced. However, the interplay between vaccination and treatment there
does not lead to steady disease epidemiology.

and key desideratum is the ability to prevent epidemics; i.e., pc ≤ 1. This yields
(cf. Eq. (9))

ε

1 + ρ/µ
≥ 1 − 1

R0
, (17)

and guarantees the existence of region (a) in Fig. 2, where epidemics may be
temporarily prevented. From Eq. (15), we obtain that ra > 0 if and only if

R0 − 1

µ
<

1

ρ
. (18)

That is, region (a) exists if and only if the duration of vaccine-induced immunity,195

1/ρ, is larger than (R0 − 1) expected lifetimes, 1/µ.
The second desideratum is that region (a) be as large as possible in terms

of the relative cost of vaccination versus treatment, to leave room for ample
variation in cost. It can be shown that

0 ≤ ra ≤ µ

R0(µ+ ν)

(
1 +

ν

σ + γ + µ

)
. (19)

Furthermore, we have ∂ra/∂ε > 0 and ∂ra/∂ρ
−1 > 0; i.e., ra increases with im-200

proving the efficacy and induced duration of immunity of the imperfect vaccine.

3.1. Application to measles

Measles is a very contagious infectious disease, for which only symptomatic
treatment and treatment to improve disease outcomes (e.g., vitamin A) are
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available [48–50]. Recovery from infection is believed to lead to lifelong im-205

munity [50]. However, measles can be prevented through vaccination, which
induces long-term protection [51, 52]. Before the vaccine was developed, infec-
tion with measles virus was nearly universal during childhood [50]. The average
number of secondary infections generated by index cases in fully susceptible
populations was estimated at R0 = 5–18 [46, p. 70] or 12.5–18 [42].210

Mass vaccination campaigns ran in many countries once the vaccine was li-
censed in the 60’s, and were continued by national programs for the vaccination
of children. Measles vaccine schedules varied across time and countries [51].
Initially, the recommendation was to administer one dose at 8–9 months of age.
Then, the recommended age for vaccination was raised to 12–15 months in some215

countries, mainly high-income countries, to overcome the inhibitory effect of ma-
ternal antibodies on vaccine efficacy [51]. Among children initially vaccinated
after 12 months of age, vaccine efficacy is at least 95%, while it can be lower for
children vaccinated before 12 months of age [51]. Starting with the 1980s, most
countries introduced a routine second dose of measles vaccine to further reduce220

the number of children left susceptible after primary vaccination and increase
vaccine efficacy. Hence, the second dose is not considered as a booster [51].
The age for the second dose varies across countries: the second dose is either
administrated few months apart from the first dose (e.g., France, Austria, Ger-
many, Brazil, Australia) or a few years apart (e.g., USA, UK, Italy, Sweden,225

Finland), around the age of school enrollment [51, 53, 54]. The implementation
of measles vaccination programs has led in many settings to the elimination of
endemic transmission of measles, at least temporarily [51, 55, 56], even before
adopting routine two-dose schedules [57].

We apply our modeling results to the epidemiology of measles vaccination.230

Because we assume that vaccination occurs shortly after birth, our results ap-
ply best for countries where the time interval between measles vaccine doses
is relatively short. We propose that measles elimination for current vaccina-
tion programs is ongoing as described for region (a) in our model; see Fig. 2.
Reaching this region was possible because, when vaccination programs were im-235

plemented, the relative cost of vaccination versus treatment (i.e., r) for measles
was most certainly perceived as low by individuals, for the following main rea-
sons: measles was endemic, parents witnessed measles-related morbidity and
mortality, public health authorities would make vaccines freely available or sub-
sidized them, and decline of measles incidence would provide direct evidence240

of vaccination success. However, our results also show that there is no stable
equilibrium in region (a). This implies that measles epidemiology is evolving to-
ward the border between regions (a) and (b). The transition may, however, take
a long time because national vaccination programs only induce small changes
in vaccination coverage, compared to mass vaccination campaigns. This tran-245

sition occurs because, as high levels of coverage are achieved, individuals may
perceive a larger cost of vaccination versus treatment (i.e., higher r) and lose
motivation to vaccinate their children. Indeed, when measles is not endemic,
most parents do not witness measles-related morbidity and mortality. Further-
more, vaccine rumors/controversies [13] may lead to vaccine hesitation [15] and250
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lower vaccination coverage. A decrease below the critical coverage, p̂(ra), may
lead to epidemic resurgence [50, 58], and thus to a transition from region (a) to
region (b), where the disease is endemic and individuals will find, once more,
the motivation to vaccinate.

Our theoretical findings offer insight on vaccine parameters when the epi-255

demic was eliminated at least temporarily through voluntary vaccination. We
consider countries where measles vaccination programs have led to the elim-
ination of measles using a one-dose routine vaccination schedule (e.g., some
countries in the Americas [57]) or two doses administered in a relatively short
period of time (e.g., Australia [56]). In this case, according to Eq. (18), measles260

vaccination provides immunity for at least (R0 − 1) expected lifetimes. The
current value of R0 is not known, but we may assume that R0 remains in the
range of 5 to 18, as before the vaccination campaigns. We may thus conclude
that measles vaccine provides immunity for a duration much longer than the
expected lifetime (4–17 times the expected lifetime). The duration of immunity265

of current measles vaccines is difficult to determine directly, as it requires long-
term studies. A 15-year observational study in China [59] reported that the
negative conversion rate of measles vaccinated individuals was 8.1–20.0% over
14 years, which leads to an estimated 63–166 years for the duration of vaccine-
induced measles immunity. This is in qualitative agreement with our modeling270

results.

4. Discussion

In this paper, we used game theory and ordinary differential equations to
address the dilemma of prevention versus treatment. In particular, we focused
on a classic SEIR-type model for childhood infectious diseases subject to both275

vaccine prevention and treatment.
We found that voluntary vaccination may lead toward epidemic elimina-

tion if two conditions are met. First, the duration of vaccine-induced immunity
should be sufficiently long; we derived a mathematical formula for this duration,
depending on the basic reproduction number of the epidemic, R0. Second, the280

relative cost of prevention versus treatment must be sufficiently low; we found
a threshold cost, ra. Disease elimination may occur when a high-performance
vaccine is made available, at low cost, in an endemic setting where individuals
witness disease-related morbidity and mortality, as well as the benefits of vacci-
nation, as disease incidence declines. All together, this yields a low relative cost285

of prevention versus treatment (i.e., lower than ra), resulting in a vaccination
coverage high enough to avert the epidemic. However, our modeling results
show that disease epidemic elimination is only temporary; this is captured by
the absence of an equilibrium for the effective coverage when R∗ < 1. Indeed,
as vaccination coverage increases, leading to less epidemic adversity, individuals290

may also lose their initial motivation to vaccinate. Hence, with epidemic elim-
ination, the perception of cost in the dilemma of prevention versus treatment
may change and increase up to ra. In turn, this causes a decrease in vaccination
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coverage and reverses disease elimination to the situation where R∗ = 1. Pre-
vious results consider this to be the maximum long-term impact of voluntary295

vaccination [16, 18, 60]. However, it is very important to note that, once the
epidemic is averted (in region (a)), the dynamics toward the situation where
R∗ = 1 may be slowed down significantly, owing to continuous effort from the
public health authority to maintain a low cost for vaccination.

These findings have implications for prevention and public health programs.300

For the condition on vaccine quality to be met, it is essential to develop one-shot
highly effective vaccines that provide long-lasting immunity. For the condition
on the relative cost of prevention versus treatment, we have to distinguish two
epidemiological phases: the initial phase, when the vaccine is made available
in presence of endemic disease, and the elimination phase, when vaccination305

continues after reaching high coverage. The cost for a highly effective vaccine
introduced when the disease is endemic may be easily perceived as low. However,
once the epidemic is eliminated, maintaining a low perceived cost for vaccination
may become a complex issue, which will depend on the setting [15]. Witnessing
almost no epidemic adversity, individuals may lose motivation to vaccinate.310

In addition, with the increased vaccination coverage, they may be particularly
aware of adverse effects [61] and susceptible to vaccine rumors/controversies [13].
In this case, maintaining a low relative cost of prevention versus treatment may
be a difficult and long-running task, requiring multi-scale actions.

Costs associated with vaccine accessibility and uptake, encountered by both315

individuals and health professionals, may act as important barriers [15] and
should be reduced. They include monetary cost of the vaccines, as well as
time spent on accessing vaccination, communicating about the safety profile,
and administrative burden. Furthermore, vaccination incentives could be im-
plemented [62–64]. For instance, modest non-monetary incentives [63, 65] and320

conditional cash transfers [62, 64] have been used to increase the vaccination
coverage. However, this type of incentives proved effective only for low-and-
middle-income settings [62, 66]. In addition, dialogue-based interventions (e.g.,
social mobilization, communication through mass and social media, etc.) and
reminders (e.g., telephone calls or letters) have been used to encourage vaccina-325

tion [65].
We propose three additional interventions to maintain a low cost for vacci-

nation. First, vaccination in high-income settings might be encouraged using
health insurance policies. For instance, the health insurance provider may offer
a progressive reduction of the insurance premium (and/or increase of benefits)330

along with the completion of the vaccination schedule. Second, the public health
authority should acknowledge in the media the participation and success of pre-
vention programs in search for continuous public support. Involving civil society
representatives and other relevant stakeholders as full participants in vaccine
recommendation and policy, as it was recently done in France [67], may help335

improving mutual understanding and trust around vaccination. Third, recalling
information about disease sequelae, and their statistics, using epidemiological
data on childhood diseases from countries where vaccine coverage are low, may
help individuals to perceive better the aim of prevention, and maintain a fair
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perception of prevention cost. This also requires providing clear information340

about vaccine adverse effects, based, for example, on statistics elaborated from
the notification of adverse effects by health professionals and parents.

In addition, using the basic reproduction number, our model provides a
lower bound estimate for the duration of vaccine-induced immunity against epi-
demic diseases controlled through vaccination. This may be a particularly im-345

portant result, since the duration of vaccine-induced immunity is not precisely
known for most vaccines [42]. Measuring long-standing vaccine-induced immu-
nity (years) requires long-term follow-up of large numbers of vaccinated indi-
viduals (e.g., [59]). Nonetheless, a precise estimation of the duration of vaccine-
induced immunity is key to optimize immunization schedules, guide vaccination350

policy and enhance public trust in vaccines. Along with traditional epidemiol-
ogy methods, mathematical modeling may offer valuable insight in estimating
this vaccine parameter.

In conclusion, we used a game-theoretic model to discuss the dilemma of
prevention versus treatment. We demonstrated the circumstances under which355

non-cooperative, self-interested individuals arrive to alleviate, and potentially
eliminate, an epidemic through the use of an imperfect vaccine. Maintaining a
low relative cost of prevention versus treatment will be the main challenge to
maintain disease elimination unless incentives are considered.
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[30] D. Sykes, J. Rychtář, A game-theoretic approach to valuating toxoplasmo-470

sis vaccination strategies, Theoretical Population Biology 105 (2015) 33–38.
doi:10.1016/j.tpb.2015.08.003.

[31] C. Molina, D. J. D. Earn, Game theory of pre-emptive vaccination before
bioterrorism or accidental release of smallpox, Journal of the Royal Society
Interface 12 (2015) 20141387. doi:10.1098/rsif.2014.1387.475

[32] E. Shim, G. B. Chapman, J. P. Townsend, A. P. Galvani, The influence of
altruism on influenza vaccination decisions, Journal of The Royal Society
Interface 9 (74) (2012) 2234–2243. doi:10.1098/rsif.2012.0115.

[33] R. Vardavas, R. Breban, S. Blower, A universal long-term flu vaccine
may not prevent severe epidemics, BMC Research Notes 3 (2010) 92.480

doi:10.1186/1756-0500-3-92.

[34] R. Vardavas, R. Breban, S. Blower, Can influenza epidemics be prevented
by voluntary vaccination?, PLOS Computational Biology 3 (5) (2007) e85.
doi:10.1371/journal.pcbi.0030085.

[35] R. Breban, Health newscasts for increasing influenza vaccination coverage:485

An inductive reasoning game approach, PLOS One 6 (12) (2011) e28300–
10. doi:10.1371/journal.pone.0028300.

[36] R. Breban, R. Vardavas, S. Blower, Mean-field analysis of an inductive
reasoning game: Application to influenza vaccination, Physical Review E
76 (3) (2007) 31127. doi:10.1103/PhysRevE.76.031127.490

[37] S. Bhattacharyya, C. T. Bauch, R. Breban, Role of word-of-mouth for pro-
grams of voluntary vaccination: A game-theoretic approach, Mathematical
Biosciences 269 (2015) 130–134. doi:10.1016/j.mbs.2015.08.023.

15



[38] S. Bhattacharyya, C. T. Bauch, “Wait and see” vaccinating behaviour dur-
ing a pandemic: a game theoretic analysis, Vaccine 29 (33) (2011) 5519–495

5525.

[39] B. Wu, F. Fu, L. Wang, Imperfect vaccine aggravates the long-standing
dilemma of voluntary vaccination, PLoS One 6 (6) (2011) e20577.
doi:10.1371/journal.pone.0020577.

[40] F. Verelst, L. Willem, P. Beutels, Behavioural change models for infec-500

tious disease transmission: A systematic review (2010-2015), Journal of
the Royal Society Interface 13 (125). doi:10.1098/rsif.2016.0820.

[41] A. R. Mclean, S. M. Blower, Imperfect Vaccines and Herd Immunity to
HIV, Proceedings of the Royal Society B: Biological Sciences 253 (1336)
(1993) 9–13. doi:10.1098/rspb.1993.0075.505

[42] S. A. Plotkin, W. A. Orenstein, P. A. Offit, Vaccines: Sixth Edition, Else-
vier, University of Pennsylvania, Philadelphia, United States, 2012.

[43] M. Ng, N. Fullman, J. L. Dieleman, A. D. Flaxman, C. J. L. Murray,
S. S. Lim, Effective Coverage: A Metric for Monitoring Universal Health
Coverage, PLoS Medicine 11 (9). doi:10.1371/journal.pmed.1001730.510
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