B. Surek, M. Wilhelm, and W. Hillen, Optimizing the promoter and ribosome binding sequence for expression of human single chain urokinase-like plasminogen activator in Escherichia coli and stabilization of the product by avoiding heat shock response, Applied Microbiology and Biotechnology, vol.34, issue.4, pp.488-494, 1991.
DOI : 10.1007/BF00180576

J. A. Bernstein, A. B. Khodursky, P. H. Lin, S. Lin-chao, and S. N. Cohen, Global analysis of mRNA decay and abundance in Escherichia coli at singlegene resolution using two-color fluorescent DNA microarrays, Proc. Natl Acad. Sci. USA 99, pp.9697-9702, 2002.

H. Chen, K. Shiroguchi, H. Ge, and X. Xie, Genome-wide study of mRNA degradation and transcript elongation in Escherichia coli, Mol. Syst. Biol, vol.11, issue.808, 2015.

R. C. Brewster, D. L. Jones, and R. Phillips, Tuning Promoter Strength through RNA Polymerase Binding Site Design in Escherichia coli, PLoS Computational Biology, vol.4, issue.12, p.1002811, 2012.
DOI : 10.1371/journal.pcbi.1002811.s006

URL : https://doi.org/10.1371/journal.pcbi.1002811

M. Djordjevic and R. Bundschuh, Formation of the Open Complex by Bacterial RNA Polymerase???A Quantitative Model, Biophysical Journal, vol.94, issue.11, pp.4233-4248, 2008.
DOI : 10.1529/biophysj.107.116970

S. R. Wigneshweraraj, P. C. Burrows, K. Severinov, and M. Buck, Stable DNA Opening within Open Promoter Complexes Is Mediated by the RNA Polymerase ?????-Jaw Domain, Journal of Biological Chemistry, vol.13, issue.43, pp.36176-36184, 2005.
DOI : 10.1016/S0092-8674(00)81515-9

A. G. Sabelnikov, B. Greenberg, and S. A. Lacks, An Extended ???10 Promoter Alone Directs Transcription of theDpnII Operon ofStreptococcus pneumoniae, Journal of Molecular Biology, vol.250, issue.2, pp.144-155, 1995.
DOI : 10.1006/jmbi.1995.0366

M. Djordjevic, Promoter Elements: ???15 Motif as a Complement of the ???10 Motif, Journal of Bacteriology, vol.193, issue.22, pp.6305-6314, 2011.
DOI : 10.1128/JB.05947-11

C. Bustamante, S. B. Smith, J. Liphardt, and D. Smith, Single-molecule studies of DNA mechanics, Current Opinion in Structural Biology, vol.10, issue.3, pp.279-285, 2000.
DOI : 10.1016/S0959-440X(00)00085-3

M. Rief, H. Clausen-schaumann, and H. Gaub, Sequence-dependent mechanics of single DNA molecules, Nat. Struct. Biol, vol.6, pp.346-349, 1999.

A. L. Markley, M. B. Begemann, R. E. Clarke, G. C. Gordon, and B. Pfleger, sp. strain PCC 7002, ACS Synthetic Biology, vol.4, issue.5, pp.595-603, 2015.
DOI : 10.1021/sb500260k

G. Z. Hertz and G. D. Stormo, [2] Escherichia coli promoter sequences: Analysis and prediction, Methods Enzymol, vol.273, pp.30-42, 1996.
DOI : 10.1016/S0076-6879(96)73004-5

P. B. Horton and M. Kanehisa, An assessment of neural network and statistical approaches for prediction of E.coli Promoter sites, Nucleic Acids Research, vol.20, issue.16, pp.4331-4338, 1992.
DOI : 10.1093/nar/20.16.4331

I. Moll, S. Grill, C. O. Gualerzi, and U. Blasi, Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control, Molecular Microbiology, vol.43, issue.1, pp.239-246, 2002.
DOI : 10.1093/nar/28.22.4488

J. Ma, A. Campbell, and S. Karlin, Correlations between Shine-Dalgarno Sequences and Gene Features Such as Predicted Expression Levels and Operon Structures, Journal of Bacteriology, vol.184, issue.20, pp.5733-5745, 2002.
DOI : 10.1128/JB.184.20.5733-5745.2002

URL : http://jb.asm.org/content/184/20/5733.full.pdf

R. L. Vellanoweth and J. C. Rabinowitz, The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo, Molecular Microbiology, vol.12, issue.9, pp.1105-1114, 1992.
DOI : 10.1016/B978-0-12-274160-9.50025-4

S. W. Seo, Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency, Metabolic Engineering, vol.15, pp.67-74, 2013.
DOI : 10.1016/j.ymben.2012.10.006

H. M. Salis, E. A. Mirsky, and C. A. Voigt, Automated design of synthetic ribosome binding sites to control protein expression, Nature Biotechnology, vol.98, issue.10, pp.946-950, 2009.
DOI : 10.1038/msb4100173

D. Na and D. Lee, RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression, Bioinformatics, vol.26, issue.20, pp.2633-2634, 2010.
DOI : 10.1093/bioinformatics/btq458

J. B. Kinney, A. Murugan, C. G. Callan, . Jr, and E. C. Cox, Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence, Proc. Natl Acad. Sci. USA, pp.9158-9163, 2010.
DOI : 10.1093/nar/15.5.2343

S. Kosuri, Composability of regulatory sequences controlling transcription and translation in Escherichia coli, Proc. Natl Acad. Sci. USA, pp.14024-14029, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01422313

T. Van-rossum, S. W. Kengen, and J. Van-der-oost, Reporter-based screening and selection of enzymes, FEBS Journal, vol.32, issue.13, pp.2979-2996, 2013.
DOI : 10.3109/07388551.2011.593503

W. C. Hines, Y. Su, I. Kuhn, K. Polyak, and M. J. Bissell, Sorting Out the FACS: A Devil in the Details, Cell Reports, vol.6, issue.5, pp.779-781, 2014.
DOI : 10.1016/j.celrep.2014.02.021

S. Aymanns, S. Mauerer, G. Van-zandbergen, C. Wolz, and B. Spellerberg, High-Level Fluorescence Labeling of Gram-Positive Pathogens, PLoS ONE, vol.63, issue.Pt 6, p.19822, 2011.
DOI : 10.1371/journal.pone.0019822.t002

L. Garcia-morales, L. Gonzalez-gonzalez, M. Costa, E. Querol, and J. Pinol, Quantitative Assessment of Mycoplasma Hemadsorption Activity by Flow Cytometry, PLoS ONE, vol.50, issue.1, p.87500, 2014.
DOI : 10.1371/journal.pone.0087500.s006

D. S. Johnson, A. Mortazavi, R. M. Myers, and B. Wold, Genome-Wide Mapping of in Vivo Protein-DNA Interactions, Science, vol.272, issue.3, pp.1497-1502, 2007.
DOI : 10.1074/jbc.272.3.1929

B. Van-steensel, J. Delrow, and S. Henikoff, Chromatin profiling using targeted DNA adenine methyltransferase, Nature Genetics, vol.27, issue.3, pp.304-308, 2001.
DOI : 10.1038/85871

G. J. Filion, Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila Cells, Cell, vol.143, issue.2, pp.212-224, 2010.
DOI : 10.1016/j.cell.2010.09.009

URL : https://doi.org/10.1016/j.cell.2010.09.009

J. Weiner, R. Herrmann, and G. Browning, Transcription in Mycoplasma pneumoniae, Nucleic Acids Research, vol.28, issue.22, pp.4488-4496, 2000.
DOI : 10.1093/nar/28.22.4488

T. Maier, Quantification of mRNA and protein and integration with protein turnover in a bacterium, Molecular Systems Biology, vol.55, issue.1, p.511, 2011.
DOI : 10.1007/s00114-006-0106-1

E. Yus, Transcription start site associated RNAs in bacteria, Molecular Systems Biology, vol.1577, p.585, 2012.
DOI : 10.1126/science.1177263

URL : http://msb.embopress.org/content/msb/8/1/585.full.pdf

V. Llorens-rico, M. Lluch-senar, and L. Serrano, Distinguishing between productive and abortive promoters using a random forest classifier in Mycoplasma pneumoniae, Nucleic Acids Research, vol.43, issue.7, pp.3442-3453, 2015.
DOI : 10.1093/nar/gkv170

P. V. Mazin, Transcriptome analysis reveals novel regulatory mechanisms in a genome-reduced bacterium, Nucleic Acids Research, vol.42, issue.21, pp.13254-13268, 2014.
DOI : 10.1093/nar/gku976

C. M. Ghim, S. K. Lee, S. Takayama, and R. J. Mitchell, The art of reporter proteins in science: past, present and future applications, BMB Reports, vol.43, issue.7, pp.451-460, 2010.
DOI : 10.5483/BMBRep.2010.43.7.451

C. Ludwig, M. Claassen, A. Schmidt, and R. Aebersold, Estimation of Absolute Protein Quantities of Unlabeled Samples by Selected Reaction Monitoring Mass Spectrometry, Molecular & Cellular Proteomics, vol.11, issue.3, p.13987, 2012.
DOI : 10.1038/nmeth.1408

B. Bae, A. Feklistov, A. Lass-napiorkowska, R. Landick, and S. A. Darst, Author response, eLife, vol.58, p.8504, 2015.
DOI : 10.7554/eLife.08504.019

M. D. Bashyam and A. K. Tyagi, Identification and analysis of " extended -10 " promoters from mycobacteria, J. Bacteriol, vol.180, pp.2568-2573, 1998.

S. Halbedel, Transcription in Mycoplasma pneumoniae: Analysis of the Promoters of the ackA and ldh Genes, Journal of Molecular Biology, vol.371, issue.3, pp.596-607, 2007.
DOI : 10.1016/j.jmb.2007.05.098

W. Sde, S. Sant-'anna, F. H. Schrank, and I. S. , Unveiling Mycoplasma hyopneumoniae promoters: sequence definition and genomic distribution, DNA Res, vol.19, pp.103-115, 2012.

D. Kim, Comparative Analysis of Regulatory Elements between Escherichia coli and Klebsiella pneumoniae by Genome-Wide Transcription Start Site Profiling, PLoS Genetics, vol.8, issue.8, p.1002867, 2012.
DOI : 10.1371/journal.pgen.1002867.s013

M. Guell, Transcriptome Complexity in a Genome-Reduced Bacterium, Science, vol.28, issue.22, pp.1268-1271, 2009.
DOI : 10.1093/nar/28.22.4488

S. W. Seo, Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels, Scientific Reports, vol.8, issue.1, p.4515, 2014.
DOI : 10.1371/journal.pcbi.1002612

J. T. Winkelman, P. Chandrangsu, W. Ross, and R. L. Gourse, Open complex scrunching before nucleotide addition accounts for the unusual transcription start site of E. coli ribosomal RNA promoters, Proc. Natl Acad. Sci. USA, pp.1787-1795, 2016.

F. Greil, C. Moorman, and B. Van-steensel, [16] DamID: Mapping of In Vivo Protein???Genome Interactions Using Tethered DNA Adenine Methyltransferase, Methods Enzymol, vol.410, pp.342-359, 2006.
DOI : 10.1016/S0076-6879(06)10016-6

E. Yus, Impact of Genome Reduction on Bacterial Metabolism and Its Regulation, Science, vol.12, issue.1-2, pp.1263-1268, 2009.
DOI : 10.1159/000096470

D. G. Gibson, H. O. Smith, C. A. Hutchison, J. C. Venter, and C. Merryman, Chemical synthesis of the mouse mitochondrial genome, Nature Methods, vol.7, issue.11, pp.901-903, 2010.
DOI : 10.1093/nar/22.22.4673

J. R. Wisniewski, A. Zougman, N. Nagaraj, and M. Mann, Universal sample preparation method for proteome analysis, Nature Methods, vol.6, issue.5, pp.359-362, 2009.
DOI : 10.1074/mcp.M600380-MCP200

Y. Ding, In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features, Nature, vol.66, issue.7485, pp.696-700, 2014.
DOI : 10.1016/0092-8674(81)90020-9

S. A. Mortimer, C. Trapnell, S. Aviran, L. Pachter, and J. B. Lucks, SHAPE-Seq: highthroughput RNA structure analysis, Curr. Protoc. Chem. Biol, vol.4, pp.275-297, 2012.
DOI : 10.1002/9780470559277.ch120019

D. N. Perkins, D. J. Pappin, D. M. Creasy, and J. S. Cottrell, Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis, vol.447, issue.18, pp.3551-3567, 1999.
DOI : 10.1016/S0014-5793(99)00235-5

M. Lluch-senar, Defining a minimal cell: essentiality of small ORFs and ncRNAs in a genome-reduced bacterium, Molecular Systems Biology, vol.11, issue.1, p.780, 2015.
DOI : 10.15252/msb.20145558

D. Quang and X. Xie, EXTREME: an online EM algorithm for motif discovery, Bioinformatics, vol.30, issue.12, pp.1667-1673, 2014.
DOI : 10.1093/bioinformatics/btu093

URL : https://academic.oup.com/bioinformatics/article-pdf/30/12/1667/17345824/btu093.pdf

M. A. Beer and S. Tavazoie, Predicting Gene Expression from Sequence, Cell, vol.117, issue.2, pp.185-198, 2004.
DOI : 10.1016/S0092-8674(04)00304-6

URL : https://doi.org/10.1016/s0092-8674(04)00304-6

B. Demeler and G. W. Zhou, promoter prediction, Nucleic Acids Research, vol.19, issue.7, pp.1593-1599, 1991.
DOI : 10.1093/nar/19.7.1593

R. M. Dirks and N. A. Pierce, A partition function algorithm for nucleic acid secondary structure including pseudoknots, Journal of Computational Chemistry, vol.350, issue.13, pp.1664-1677, 2003.
DOI : 10.1007/BF02459506

H. Han and X. Jiang, Overcome Support Vector Machine Diagnosis Overfitting, Cancer Informatics, vol.13, issue.1, pp.145-158, 2014.
DOI : 10.4137/CIN.S13875

URL : http://insights.sagepub.com/redirect_file.php?fileId=6106&filename=4565-CIN-Overcome-Support-Vector-Machine-Diagnosis-Overfitting.pdf&fileType=pdf