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HIGHLIGHTS 

 

 VHHs against GFAP have been obtained  by Ribosome display after immunization of 

one alpaca with GFAP  

 VHHs against GFAP have been obtained  by phage display after immunization of 

another alpaca with a human brain extract containing GFAP 

 All the VHHs were closely related and one VHH was found to be strictly identical in 

both studies.  

 

 

 

ABSTRACT 

The two most used methods to select camelid single-domain antibody-fragments 
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(VHHs) are: displaying their repertoires on the surface of filamentous bacteriophages 

(phage display) or linking them to ribosomes (ribosome display). In this study, we 

compared specific VHHs isolated from two different immune libraries coming from 

two different alpacas by using these two selection methods.  

Three anti-GFAP (glial fibrillary acidic protein) VHHs were derived from an 

immune library obtained by ribosome display after immunization of one alpaca with 

purified GFAP, a protein expressed by astroglial cells. In parallel, three other anti-

GFAP VHHs were derived from an immune library by phage display after 

immunization of another alpaca with a human brain tissue extract containing GFAP. 

All the VHHs were closely related and one VHH was found to be strictly identical in 

both studies. This highlights the selection pressure exerted by the camelid immune 

system to shape the paratope of an antibody against a defined antigen. 

 

Keywords.: Anti GFAP VHH, VH, VHH, phage display, ribosome display. 

 

 

1. Introduction 

Besides producing conventional tetrameric antibodies, camelids also display 

functional antibodies composed of homodimerized heavy chains. These antibodies 

lacking light chains, interact with antigens by the virtue of only one single variable 

domain of the heavy chain, referred to as VHH to distinguish it from VH of 

conventional antibodies [1]. VHHs possess a number of advantages for antibody 

engineering when compared with the conventional antibody fragments (Fab: 

Fragment antigen-binding or scFv: Single-chain variable fragment). VHHs are highly 

soluble and can be expressed at high levels in the periplasm and the cytoplasm of E. 

coli and eukaryotic cells [2,3]. Due to their relatively small size (14-17 kDa), VHHs 

offer also many advantages in terms of structural analysis and in diagnostic 

applications requiring tissue penetration [2–9]. Achour I et al, 2008 [10] demonstrated 
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that a single immunoglobulin heavy chain locus in alpaca chromosome 4 contains all 

of the genetic elements required for generation of the two types of antibodies.  

Phage and ribosome display are ideal tools of widespread use for the selection of 

different antibody fragments [11,12]. Phage display was first described by Smith [13] 

and McCafferty et al [14] used it successfully for the selection of antibodies for the 

first time in 1990. Compared with other display technologies, phage display possesses 

many advantages: robustness, simplicity and stability of the phage particles and the 

selection can be performed on cell surface, tissue sections and in vivo [15–18]. 

However, phage-display libraries sizes are restricted to 1010-1011 by the efficiency of 

bacterial transformation. In vitro display technologies have since been developed as 

an alternative, the most widely used being ribosome display [19]. Hanes et al 

successfully selected antibody fragments by using this method in 1998 and 2000 

[20,21]. Despite many improvements made recently, ribosome display is still 

challenging to perform for selection on cell surfaces or against non-purified antigens. 

On the other side, a strong advantage of ribosome display over phage display, is that 

the encoded DNA does not need to be imported into a host because DNA 

amplification and protein synthesis occurs totally in vitro. As a consequence, 

ribosome display libraries can allow more diversity with possibly more than 1013 

binders [12].  

Here we wanted to compare VHHs directed against the same protein obtained from 

two immune libraries by using the two pre-cited most-used selection techniques for 

antibody screening. The antigen of interest was GFAP (glial fibrillary acidic protein), 

a well-known marker of astrocytes. Two alpacas were immunized either with a human 

brain extract that contained GFAP as well as numerous other proteins/peptides, or 

with purified human GFAP. Then immune libraries were prepared from each animal. 

Using phage display or ribosome display applied to the two respective different 

immune libraries, we have selected closely related anti-GFAP VHHs. Unexpectedly 

one common VHH was isolated from these two different libraries. This emphasizes 

the strength of selection pressure exerted by the camelid immune system to shape the 

paratope of an antibody against a defined and highly specific antigen and highlights 
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that selection of a relevant VHH against an epitope is not always dependent on the 

selection method. 

2. Materials and methods 

2.1. Immunization 

Postmortem brain tissue (hippocampal region) from a patient with Alzheimer’s 

disease was obtained from the NeuroCEB brain bank. This bank is associated to a 

brain donation program run by a consortium of patient associations and declared to 

the Ministry of Research and Universities, as requested by French Law. An explicit 

written consent was obtained for the brain donation in accordance with the French 

Bioethical Laws. A brain homogenate was performed with this brain sample 

according to Mercken M et al 1992 [22]. Briefly, tissues are homogenized in 10 mM 

Tris, 1 mM EGTA, 0.8% NaCl, 10% sucrose buffer containing protease and 

phosphatase inhibitors (Pierce), followed by centrifugation at 27,000 g for 20 min. 1% 

Beta-mercaptoethanol and 1% N-Laurylsarcosine is added to the supernatant and the 

mixture is incubated for 2.5 h at 37°C. After centrifugation at 100,000g for 35 min, 

the pellet is homogeneized in PBS (Phosphate-buffered saline) at a concentration of 1 

mg/ml. This human brain extract is referred to as Sg4697. One alpaca was injected 

with 90 µl of the mixture mixed with 90 µl of Freund complete adjuvant for the first 

immunization, and with 90 µl of Freund incomplete adjuvant for the following 

immunizations. Another alpaca was previously immunized with purified human 

GFAP (USBiological) [8]. In France, an ethical approval is not required for 

immunization of camelids with Freund (in-) complete adjuvant. The immune 

responses were monitored by titration of serum samples by ELISA on coated GFAP. 

The bound alpaca antibodies were detected with polyclonal rabbit anti-alpaca IgGs 

[23]. The same procedure was performed on a murine brain extract. The extract was 

referred to as mWT45.  

2.2. Library construction, selection and expression of VHH 

The blood of the animal immunized with the human brain extract was collected. The 

selection of cDNA coding only for VHH were realized according to Lafaye et al, 
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2009, 1995 [23,24]. The vhh genes were then cloned into phagemid vector pHEN1 by 

using primers contained enzymatic NcoI and NotI restriction sites at the 5’ and 3’ends, 

respectively. The size of the library was 3x108 cfu. 

Phage display protocols were performed as described in Lafaye et al, 2009 [23]. 

Briefly1013 phage-VHH diluted in PBS were used to perform a panning cycle by 

using saturated Nunc immunotubes (InterMed) coated with human brain extract (10 

µg/ml). To increase the stringency, different blocking buffers for each panning were 

used: 2% skimmed milk as saturating agent for the first round; 5% BSA (Bovine 

Serum Albumin) and Odyssey blocking buffer (LI-COR Biosciences) diluted at ¼ for 

the second and third one. 

Sixty-one individual clones were randomly chosen and tested by ELISA against 

Sg4697 and BSA. The DNA corresponding to the positive VHHs was sequenced by 

GATC Biotech. The sequences were processed with DNA strider and analyzed using 

ClustalW2-Multiple Sequence Alignment of EMBL-EBI.  

The blood of the animal immunized with GFAP was collected and selection of cDNA 

coding for VHH was performed as described earlier. The vhh population was 

converted to ribosome display format using PCR and transcribed to mRNA [8]. 

Selection of ternary complexes involving mRNA, ribosome and functional VHH was 

performed on GFAP as described by Perruchini et al, 2009 [8]. 

The VHH sequences were analyzed at the genomic level using IMGT (International 

ImMunoGeneTics information system) alpaca genomic database.  

To summarize, the VHHs A12, G110, C5F7, C7G7, B70, B7, G11 and H8 were 

obtained by phage display, the VHHs E9, E3 and A10 were obtained by ribosome 

display. 

Specific vhh genes were subcloned in a modified pASK-IBA2 vector (Genosys Iba) 

containing the NcoI and NotI restriction sites. pASK-IBA2 allows the periplasmic 

expression of a strep-tag at the C-terminal end in frame with the VHH. Transformed E. 

coli XL2-Blue ultracompetent cells expressed VHHs in the periplasm after induction 

by anhydrotetracycline (200 µg/l) for 16 h at 20°C. After centrifugation, cells were 

resuspended in 100 mM Tris-HCl pH 8, 150 mM NaCl, 1 mM EDTA, then lysed by 
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polymyxin B sulfate (1mg/ml Fluka) for 1 h at 4°C, the periplasmic extract being 

obtained after centrifugation. Purified VHHs were obtained by Strep-Tactin 

Sepharose column (Iba) according to the manufacturer’s instructions.  

2.3. ELISA  

Microtitre plates (Nunc) were incubated with 1 µg/mL of GFAP diluted in PBS 

overnight at 4°C. Plates were washed 4 times with PBS containing 0.1% (w/v) 

Tween-20 (buffer A) and saturated with buffer A containing 0,5% (w/v) gelatin 

(buffer B) for 30 min. Sera were then added. Plates were incubated for 1 h at 37°C 

and washed prior the addition of rabbit anti-alpaca Ig followed by peroxidase –

conjugated goat anti-rabbit Igs (ICN biomedicals). 

A competition assay was performed to determine VHH-binding sites. Various 

concentrations of His-Tagged VHH H8/E9 was incubated into wells coated with 

GFAP for 1 h at 37°C. Plates were washed and strep-tagged VHHs (H8/E9, B7 and 

G11) were added. After additional incubation for 1 h at 37°C, the presence of the 

strep-tagged VHHs was revealed by the addition of an home-made anti-strep tag mAb 

(eBioscience) followed by peroxidase–conjugated goat anti mAb (ICN biomedicals). 

2.4. Western Blot 

To control the VHH specificity by WB, 10 µl of diluted (1:10) Sg4697 human and 

mWT45 mouse brain extracts and 1µg of human GFAP (USBiological) were used. 

Protein samples were treated at 70°C for 10 min in reducing conditions. Following the 

separation by polyacrylamide gel electrophoresis (PAGE) using NuPAGE Novex 4-

12% Bis-Tris gels, semi-dry transfer onto Hybond-C (Amersham) was performed, the 

membranes were blocked in a 4% skimmed milk solution. Purified strep-tagged 

VHHs (1 µg/ml) were used as primary antibodies at 4°C overnight. An in-house anti-

strep tag mouse mAb (C23-21) was added at 1 µg/ml and incubated for 1h at 37°C. 

Peroxydase-labeled goat anti-Mouse Ig 1:10000 (Vector) was added and incubated for 

1h at 37°C. Finally, peroxidase activity was visualized using a chemiluminescent kit 

(Amersham).  

2.5. Immunohistochemistry 

Adult C57BL6 mice were euthanized by intraperitoneal injection of sodium 



7 
 

pentobarbital (CEVA). Brains were then fixed by intracardiac perfusion of 4% 

paraformaldehyde in PBS, and postfixed in the same fixative overnight at 4°C. Forty 

micrometer-thick coronal brain sections were then prepared in PBS using a vibratome 

(Leica VT1000S). The sections were pretreated for 10 min with 1% hydrogen 

peroxide to neutralize endogenous peroxidase. Non-specific binding was blocked by 

incubation of the sections for 40 min with Odyssey blocking buffer (LI-COR 

Biosciences) supplemented with 0.2% Triton X-100. The sections were then 

incubated with 1 µg/ml VHH-Strep-tag overnight at 4°C in the same blocking buffer. 

After washing in PBS 0.2% Triton, sections were then incubated with biotinylated 

anti-strep tag mAb C23-21 at 1 µg/ml for 1h, followed by ABC complex (Vector) for 

30 min, and then with DAB (Diaminobenzidine) at 0.5mg/ml as chromogen. After 

DAB processing, sections were collected on superfrost glass slides, air dried at room 

temperature overnight, and then dehydrated by placing the slides in graded ethanol 

solutions (5 min in 70% and 90% ethanol respectively and 5 min in 100% ethanol 

twice) and xylene (5 min 3 times), and finally mounted in Eukitt mounting medium 

(O. Kindler GmbH).  

2.6. Measurement of VHH affinity 

Affinity was measured in solution [8,25]. Briefly, VHH samples were incubated 

overnight with increasing amounts of GFAP (Millipore) at concentrations ranging 

from 10-11 to 10-7 M. The remaining free antigen binding sites were then quantified by 

ELISA using an anti-His tag mAb, followed by an anti-mouse -galactosidase 

conjugate and 4-methylumbelliferyl  -D galactoside substrate. Fluorescence was read 

at 460 nm after excitation at 355 nm. KD was estimated from the slope of the 

regression curve obtained by plotting the reciprocal of the fraction bound antibody 

versus the reciprocal of the molar concentration of the antigen. 
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3. Results  

3.1. Obtention of VHHs using phage or ribosome display and 
comparison of their sequences 

One alpaca was immunized with human brain extract from an Alzheimer’s patient 

presenting severe brain neuroinflammation, including reactive astrogliosis. A VHH 

phage display library was prepared and the selection of clones was performed against 

the same human brain extract. After 3 rounds of panning, 221 clones were tested in 

ELISA against the brain extract and BSA (a non-relevant antigen) to discriminate 

specific from non-specific clones. Sixty-one clones were identified as positive, 34 

were sequenced, revealing only 8 different sequences, A12, G110, C5F7, C7G7, B70, 

B7, G11 and H8 (Fig. 1). 

 A12 appeared most frequently with 19 occurrences and G110 was found 5 times. 

C5F7 and C7G7 appeared both 3 times. B70 was detected only once. B7, G11and H8 

(one occurrence each) share the same CDRs. 

We analyzed the biochemical properties of these VHHs obtained from the phage 

display library. After cloning in pASK vector and periplasmic expression, the purified 

VHHs with a strep-tag at the C- terminus were obtained. Until now, for A12, B70, 

C7G7, G110 and C5F7 no accurate antigen target has been identified in 

immunohistochemistry using mouse brain tissue.  

Interestingly, we found that the new VHHs B7, H8 and G11 obtained by phage 

display are closely related to the anti-GFAP VHHs previously isolated after ribosome 

display screening. Indeed, another alpaca was immunized with purified human GFAP. 

Lymphocytes and VHH corresponding DNA were isolated, the VHH-coding mRNA 

sequences were selectively amplified. Three VHHs (E9, E3 and A10) with a high 

affinity for GFAP and their corresponding cDNA were selected by ribosome display 

[8] (Fig. 2). Also, one VHH with strictly identical sequence was isolated by the two 

procedures (H8 and E9 [8], respectively) (Fig. 1).  

As the recovery of a same VHH from two different animals with two different 

methods was totally unexpected we then analyzed the polyclonal serum of both 

alpacas for their ability to recognize GFAP by ELISA (Fig. 3). Notably, the serum of 
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the alpaca immunized with the brain extract did recognize GFAP, although with a 

slight reactivity, while the polyclonal serum of the alpaca immunized with GFAP 

presented a high titer of anti-GFAP, as expected. In parallel we used a polyclonal 

serum taken from a third alpaca which had never been immunized with human GFAP. 

No GFAP recognition was observed with this serum. The low titer of GFAP-specific 

antibodies in the serum of the animal immunized with human brain extract also 

emphasized the efficiency of the phage display selection method to recover minor 

clones. 

 

3.2.  Biochemical characterization of the anti GFAP VHHs 

Western blot experiment was performed with VHHs H8/E9, B7 and G11. Three 

samples were analysed: human brain extract (Sg4697), C57B/6 adult wild type mouse 

brain extract (mWT45) and the purified GFAP. WB analysis showed that the different 

VHHs labelled several bands between 35 and 55 kDa in human brain extract (Fig. 4A). 

Similar outcomes had already been observed by immunoblot using anti-GFAP 

antibodies on human brain extract, due to different isoforms of the protein in humans 

[8,26]. The VHHs labelled one band just below 55 kDa in mouse brain extract, in 

accordance with the fact that only one main isoform is expressed in mice (Fig. 4A). 

They also recognized the GFAP protein as a positive control (Fig. 4B).  

To determine whether the VHHs recognized the same epitope, competition among the 

3 VHHs for binding to GFAP was carried out as described in “Materials and 

Methods”. The binding of strep-tagged VHHs decreased as a function of increasing 

concentrations of the his-tagged VHH H8/E9 (Fig 5), suggesting that VHHs recognize 

the same epitope, or at least closely related epitopes, on GFAP.  

H8/E9, B7 and G11 obtained either after immunization with purified human GFAP or 

with human brain extract strongly and specifically immunodetected GFAP in 

astrocytes in mouse brain tissue (Fig. 6), which was normally expected, as mouse 

GFAP protein showed 91% sequence identity to that of human [27].  

The affinity of VHHs obtained by the two methods was measured by ELISA [8,25]. 

A10, E9, H8 and G11 had affinities in the nanomolar range while the affinity of E3 
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was in the micromolar range and B7 had an affinity of 7.1x10-10 M, 8-fold higher than 

the affinity of VHH H8 and VHH E9 respectively (Table 1).  

For E3, the presence of a proline at position 25 instead of a serine probably induced a 

modification of the CDR1 loop as proline is usually found in sharp turns [8,28]. This 

modification could alter E3 functionality as reflected by the sharp decrease of its 

affinity for GFAP. B7 had a higher affinity when compared to other VHHs. The 

differences between B7 and both VHHs H8 and E9 were Leu11, Glu13 and Ala89 in 

B7 instead of Ser11, Gln13 and Glu89 in H8/E9 (Fig. 1), This was associated to 

local charge modifications in B7: an extra negative charge introduced at position 

13 and a negative charge removed at position 89. These features might positively 

influence VHH binding by modifying the structure of CDRs or by involving some 

amino acids of framework (FR) in interacting with the antigen.  

3.3. Obtaining VHHs with VH characteristics 

The gene segment families were identified by a search for similarities in IMGT. The 

nucleotide sequence of VHHs showed a 90% sequence similarity with a single V gene 

referred to as IGHV3S31 (accession number AM939730 [10]) which is classified as a 

VH gene [10] The junction segment JH of VHH corresponded to IGHJ4 genetic 

element [29]. No D gene was found according to IMGT analysis. 

Obtaining VH from immune VHH libraries was unexpected, but some studies 

demonstrated that a minority (5-10%) of VHH originates from VH germline genes, 

which have been identified together with canonical VHH in immune libraries [7,30]. 

In FR2 regions, VH possess the conserved Val37, Gly44, Leu45 and Trp47, which are 

clustered in space and these VH amino acid hallmarks form a hydrophobic bond with 

the VL [31,32]. In VHH, these amino acids are often substituted (Val37Phe or 

Val37Tyr, Gly44Glu, Leu45Arg and Trp47Gly) [33]. We found for all anti-GFAP 

VHHs Gly44 and Trp47 which are VH conserved amino acids. At positions 37 and 45, 

instead of a valine and a leucine we respectively found a leucine and an isoleucine 

which are closely related amino-acids (Fig. 1). Moreover Trp118 was substituted by 

an arginine, a feature usually observed when conventional VH3 genes recombine with 

a D-JH and are expressed as homodimeric IgG [34,35]. 
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4. Discussion 

Similar VHHs directed against GFAP were isolated with two different selection 

methods and from two different animals immunized with two different antigenic 

preparations based on GFAP-containing human brain extract vs purified GFAP (Fig. 2) 

 

We can exclude possible contamination between the two immune libraries, first 

because experiments were not performed simultaneously. The selection of H8 by 

phage display is recent while the selection of VHH E9 by ribosome display with the 

other immune library was made previously [8]. Also the selection of the two 

antibodies was performed using a completely distinct process with no common 

reagents or common steps.  

 

Using an immune library is an important factor for successful selection and retrieval 

of high affinity antibodies [15]. Following the immunization with an antigen, the 

specific B cells will proliferate and undergo affinity maturation for the antigen. 

Mature immunoglobulins (Igs) result from a maturation process in which multiple 

recombinations and mutations occur. It is estimated that in humans the repertoire of 

Igs expressed by naive B cells could contain as many as 1011 different Igs. Moreover, 

somatic hypermutation brings in point mutations into the rearranged V-region genes 

of activated B cells, generating further diversity that can be selected by its enhanced 

antigen binding properties [36]. As camelids share similar VDJ recombination process 

with humans during B cell ontogeny[10], we could expect comparable diversity for 

homodimeric camelid IgGs. Among all variants generated during this maturation, 

only the best ones are selected. Despite the wide variety possibilities it is surprising 

that closely related VHHs could be selected. Pellis M et al, 2012 [15] succeeded to 

select similar HIV-I integrase –specific VHHs by using concurrently bacterial-two-

hybrid selection system (BH VHHs) and conventional phage display panning (PD 

VHHs) but selections were performed using a unique immune library. The 

comparison between 13 BH VHHs sequences and 12 PD VHHs sequences reveals 
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that 5 of BH VHHs are extremely similar to PD VHHs, some VHHs obtained from 

these two different selection methods have the same CDR3. Even more, one BH VHH 

and one PD VHH share an exactly identical sequence.  

 

In our case it is astonishing that all six VH/VHHs share almost the same FRs and 

CDRs with only a few amino-acid modifications, that demonstrates only one vh/vhh 

gene was selected and the affinity maturation of these VH/VHHs go through almost 

an identical process. So the recovery of closely related VHHs from 2 different 

libraries derived from 2 animals with 2 selection techniques, at least in our case could 

not be just a coincidence. It emphasizes the existence of an immunodominant epitope 

within GFAP, which could be recognized by only a very limited number of VH/VHH 

possibilities.  
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Figure legends 

 
Fig. 1. Sequence of anti-GFAP VHHs obtained by concurrent phage/ribosome 

display methods. Dotted lines indicate identical sequences. CDRs were determined 

according to IMGT. * indicated VH hallmarks present in FR2. 
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Fig. 2. Overview of the selection of the GFAP specific VHHs by phage display 

and ribosome display. 
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Fig. 3. Polyclonal serum titration on GFAP. 
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Fig. 4. Western Blot analysis of recombinant VHHs H8/E9, B7 and G11 A:) on 

human (Sg 4697) and mouse (mWT45) brain extracts, and B:) on purified GFAP. 
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Fig. 5. Competition for binding to GFAP between the different VHHs. 

Polystyrene plates were coated with GFAP. His tagged VHH E8/H9 at different 

concentrations was added, followed by strep-tagged VHH H8/E9, B7, and G11 and 

revealed by an anti-strep tag mAb. 
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Fig. 6. Immunolabeling of astrocytes by VHHs on mouse brain sections.  

Immunostaining with E9 (obtained by ribosome-display) and with H8, B7, G11 

(obtained by phage-display). (A, B, C & D) Protoplasmic astrocytes with short 

ramifications. (E, F, G & H) Fibrous astrocytes with thin and long processes. 
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Table 1. Affinity of VHHs determined by ELISA using GFAP as target antigen. 

 

 VHHs Affinity 

(nM) 

B7 0.71 

G11 4.6 

H8/E9 5.6 

E3 > µM 

A10 3.1 


