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Understanding how active dendrites are exploited for behaviorally relevant 

computations is a fundamental challenge in neuroscience. Grid cells in medial 

entorhinal cortex represent an attractive model system for addressing this question, as 

the computation they perform is clear: they convert synaptic inputs into spatially 

modulated, periodic firing. Whether active dendrites transform synaptic input into the 

dual temporal and rate codes characteristic of grid cell output is unknown. We show 

that dendrites of medial entorhinal cortex neurons are highly excitable and exhibit a 

supralinear input–output function in vitro, while in vivo recordings reveal membrane 

potential signatures consistent with recruitment of active conductances. By 

incorporating these nonlinear dynamics into grid cell models, we show that they can 

sharpen the precision of the temporal code and enhance the robustness of the rate code, 

thereby supporting a stable, accurate representation of space under varying 

environmental conditions. Our results suggest that active dendrites may therefore 

constitute a key cellular mechanism for ensuring reliable spatial navigation. 

Active, voltage-dependent conductances in neuronal dendrites transform the relationship 

between synaptic input and neuronal output1,2. The resulting enrichment of the integration 

capabilities of single neurons has long been suggested as being exploited for computations 

relevant to behavior3,4. However, the details of how specific active-dendritic mechanisms are 

involved in behavioral computations have proved to be elusive. Recent work has provided 

evidence that the active properties of dendrites are engaged in somatosensory and visual 

cortical neurons during sensory processing5–8. Moreover, dendritic nonlinearities also appear 

to be activated during behavioral tasks involving spatial navigation9–11. While these studies 

have provided important correlative evidence that dendritic mechanisms are engaged under 
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various circumstances, they do not provide a quantitative link for explaining how specific 

biophysical mechanisms can contribute to behavioral computations. 

Grid cells in medial entorhinal cortex (MEC) represent a particularly attractive model 

system for linking cellular and circuit mechanisms to a behaviorally relevant computation. 

Grid cells exhibit a striking spatial code, with firing fields that span the environment of a 

navigating animal in a periodic hexagonal pattern, and have thus been proposed as 

representing a neural mechanism for path integration12. Moreover, there exist several well-

developed single-cell and network models of grid cell generation13–19, providing a rigorous 

quantitative framework for understanding how particular biophysical mechanisms relate to the 

computation of spatial location. Layer 2 of MEC (MECII) contains the highest proportion of 

grid cells20,21, and stellate cells, which form most of the MECII principal cell population22, are 

likely grid cell candidates17,18,23,24. In stellate cells, the correlation between somatically 

recorded synaptic responses and the dorsoventral gradient in grid spacing in MECII25,26 has 

suggested that intrinsic voltage-gated conductances may be important for generating grid cell 

firing. However, very little is known about whether the dendrites of stellate cells are 

electrically excitable, and thus their contribution to grid cell firing is unclear. 

Here we have combined in vitro two-photon glutamate uncaging and in vivo patch-

clamp recording with modeling to assess the role of active dendrites in grid cell firing. We 

show that stellate cells have active dendrites that perform supralinear input–output 

transformations in vitro. We also identify electrophysiological signatures consistent with 

active dendritic integration in vivo, including membrane-potential-dependent boosting of 

excitatory postsynaptic potentials (EPSPs) and plateau potentials. We place our results in the 

context of single-cell and network models of grid cell firing and use modeling to show that 

active dendrites can promote the robustness of the grid cell rate code while sharpening the 

precision of the temporal phase precession code. Thus, dendrites of principal cells in MECII 

are highly excitable, and these active dendritic properties can enhance the accuracy and 

stability of the spatial map represented by grid cell firing. 

RESULTS 

Supralinear integration in dendrites of MECII principal neurons 

To assess how grid cells integrate synaptic inputs in single dendritic branches, we performed 

two-photon glutamate uncaging on dendritic spines of principal neurons in MECII (Fig. 1a). 

Activation of individual spines in MECII stellate cells produced glutamate uncaging-evoked 
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EPSPs comparable to physiological synaptic responses (Fig. 1b and Supplementary Fig. 1). 

Activating increasing numbers of spines along a single dendrite or on two nearby dendrites 

evoked responses that were larger than the arithmetic sum of the corresponding individual 

responses (65 ± 7% supralinearity for intervals of £ 1 ms; n = 34 dendritic branches; Fig. 1b,c 

and Supplementary Fig. 2). Since recent data suggest that some MECII pyramidal cells may 

also display grid cell firing24,27, we also carried out experiments on MECII pyramidal cells 

and obtained similar results (Fig. 1d and Supplementary Fig. 3). The degree of 

supralinearity in stellate cells did not significantly scale with distance from the soma 

(Supplementary Fig. 4) but was reduced to 9 ± 9% (n = 6) when the intervals between spine 

activations were extended to 8 ms, demonstrating that it depends on millisecond timing of the 

inputs (Fig. 1d). 

Dendritic spikes and supralinearity depend on Nav and NMDAR channels 

Activation of some dendritic branches produced clear signatures of dendritic spikes detected 

at the soma28,29. Dendritic spikes with fast and slow time-courses and distinct thresholds were 

observed (Fig. 2a), and application of pharmacological blockers revealed that these were 

generated by activation of voltage-gated sodium (Nav) channels and NMDA receptors 

(NMDARs), respectively (Fig. 2b and Supplementary Fig. 5). The NMDA receptor 

antagonist APV ((2R)-amino-5-phosphonovaleric acid) alone could also abolish fast spikes, 

indicating that NMDAR current was required to reach the threshold for Nav channel 

activation and that NMDARs and Nav channels thus acted cooperatively. This is also 

supported by the fact that a substantial fraction of fast spikes (43%) were followed by a slow 

spike, and many slow spikes (38%) were preceded by a fast spike. Both NMDAR channels, 

and to a lesser degree Nav channels, contributed to supralinearity (Fig. 2c). 

Testing the contribution of nonlinear dendritic integration under in vivo conditions 

To probe the contribution of dendritic nonlinearities in MECII stellate cells during more 

physiological in vivo-like conditions, we took advantage of the fact that the voltage profile 

underlying grid cell firing in vivo is represented by a ramp-like membrane potential 

depolarization17,18. We approximated this ramp-like depolarization in vitro by injecting a 

scaled current waveform that we had obtained from voltage-clamp recordings using the in 

vivo ramp as a voltage command (Online Methods). This allowed us to examine how in vivo-

like membrane potential dynamics influenced dendritic integration of synaptic inputs. Both 

supralinear summation and dendritic spikes were more pronounced when uncaging was 

performed during the in vivo-like ramps (Supplementary Fig. 6), suggesting that these active 
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events were likely to be engaged in vivo when an animal entered a grid firing field. Taken 

together, these results reveal that the dendrites of grid cells were highly excitable, exhibiting 

markedly nonlinear input–output functions in a manner that could transform the integration of 

synaptic inputs during navigational behavior. 

Signatures of active dendrites in stellate cell recordings in vivo 

To determine whether active dendritic integration occurs in grid cells in vivo, we searched for 

the signatures of supralinear dendritic integration, as identified in our slice recordings, in 

patch-clamp recordings from MECII neurons of mice navigating in virtual reality18 (Fig. 3). 

By examining the differentiated membrane potential traces (dV/dt), we identified large peaks 

that were below the voltage threshold for action potentials and that were preferentially 

clustered around the peak of theta membrane potential oscillations (Fig. 3a), at a similar theta 

phase as action potentials during grid field crossings17,18. These dV/dt peaks in vivo were 

comparable in amplitude to dV/dt peaks of glutamate uncaging-evoked EPSPs exhibiting 

dendritic spikes in vitro (Fig. 2a and Supplementary Fig. 7). The in vivo dV/dt peaks were 

correlated with large depolarizations in Vm with amplitudes of up to ~6 mV (Fig. 3b), 

consistent with them being EPSPs that were boosted by activation of voltage-dependent 

conductances. 

To probe the mechanisms underlying these dV/dt signatures in more detail, we used 

our experimental results to constrain a detailed compartmental model of MECII stellate cells 

that captures their measured passive, active and synaptic properties (Supplementary Fig. 8). 

Simulating grid cell firing in a model incorporating dendritic Nav and NMDAR channels 

reproduced the experimentally observed dV/dt signatures, including the correlation of dV/dt 

peak amplitudes with Vm (Fig. 3c).When dendritic Nav and NMDAR channels were removed 

from the model, these signatures were abolished (Fig. 3c). In our in vivo experimental data, 

the fastest-rising events occurred within the 90° phase-bin preceding the peak of theta 

membrane potential oscillations (MPOs; Fig. 3d,f). This phase-bin also contained a larger 

fraction of particularly fast events with maximal rates of rise resembling or exceeding the 

maximal rates of rise of fast dendritic spikes that we observed during our somatic in vitro 

recordings (Fig. 3f). These observations could also be faithfully reproduced by the model 

generating dendritic Na+ spikes in the presence of dendritic Nav channels but not in their 

absence (Fig. 3e,g). 

To further quantify the contribution of nonlinear dendritic conductances to grid cell 

firing, we compared NMDAR activation and dendritic input currents in detailed 
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compartmental models of stellate cells with active or passive dendrites (Supplementary Fig. 

9). These simulations showed that during grid cell firing, with Vm trajectories representative 

of our in vivo recordings, NMDARs were substantially recruited (Supplementary Fig. 9a) 

and dendritic input currents were nonlinearly amplified by active, voltage-dependent 

conductances (Supplementary Fig. 9b). Furthermore, the membrane potential distributions in 

putative dendritic recordings in vivo covered the nonlinear range of the NMDAR open-

probability curve, implying that NMDARs were nonlinearly engaged in vivo (Supplementary 

Fig. 10). In summary, we observed clear signatures of active dendritic integration in the 

membrane potential of MECII principal neurons during navigational behavior in vivo. 

Plateau potentials during putative dendritic in vivo stellate cell recordings 

Next, we looked for direct evidence for activation of regenerative events in stellate cell 

dendrites in vivo. Excitable dendrites have been shown to produce long-lasting regenerative 

plateau potentials in several cell types, such as neocortical pyramidal cells30 and hippocampal 

CA1 pyramidal cells in vitro31 and in vivo11,32. We identified similar distinctive signatures of 

excitable dendrites in putative dendritic patch-clamp recordings from MEC neurons in vivo 

(Fig. 4 and Supplementary Fig. 11). Dendritic recordings were identified by a range of 

characteristic features6,33 such as slower action potential rise times and higher input 

resistances (Supplementary Fig. 12). Distinct, long-lasting plateau depolarizations could be 

observed following action potentials in both putative dendritic and somatic recordings (Fig. 

4a,b). These plateau potentials occurred either spontaneously (Fig. 4a,b and Supplementary 

Fig. 13a) or could be evoked by current injection in putative dendritic recordings (Fig. 4b). 

We found that both the frequency (the percentage of action potentials followed by plateau 

potentials) and the duration of evoked plateau potentials were highly correlated with 

parameters that are also indicative of dendritic recordings (Fig. 4c), suggesting that they could 

be preferentially evoked in distal dendrites. While the frequency of evoked plateau potentials 

per action potential was more than an order of magnitude higher in putative dendritic than in 

somatic recordings from stellate cells in vivo (14.7 ± 7.2% of action potentials followed by 

plateau potentials in putative dendrites, n = 6, versus 0.4 ± 0.4% in soma, n = 6; P < 0.05), 

spontaneous plateaus occurred at comparable frequencies (1.9 ± 1.9% in putative dendrites, n 

= 6, versus 1.0 ± 1.0% in soma, n = 6; P = 0.22; Fig. 4d). Distinct plateau potentials could be 

evoked by current injections in 4 of 6 putative dendritic recordings but only in 1 of 6 putative 

somatic recordings (Fig. 4d). The results of these in vivo recordings indicate that plateau 

potentials could be evoked by strong, localized inputs to dendrites of grid cells and were 
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readily detectable at their site of origin in the dendrite. However, plateau potentials were rarer 

and less prominent in somatic recordings and appeared to be substantially attenuated as they 

propagated to the soma from their origin in the dendritic tree. We further probed the 

biophysical mechanisms underlying dendritic plateau potentials using our active 

compartmental model of stellate cells. Strong, localized synaptic inputs to a dendrite of the 

stellate cell model could produce plateau potentials near the site of synaptic input that were 

similar to those observed in our putative dendritic recordings (Supplementary Fig. 14a). 

These dendritic plateau potentials were strongly attenuated as they propagated to other 

dendrites and to the soma, making them readily detectable only close to the dendritic location 

of the active synaptic inputs (Supplementary Fig. 14a). To produce a plateau potential 

detectable at the soma, a large number of simultaneously activated strong synaptic inputs had 

to be distributed across the dendritic tree (Supplementary Fig. 14b). The rare occurrence of 

strong, synchronous activation of many synapses, along with the pronounced attenuation of 

plateau potentials along the dendritic tree, can therefore explain why they were only rarely 

observed as spontaneously occurring events. Thus, despite their low rate, the presence of 

dendritic plateau potentials in vivo provides strong evidence that the active dendritic 

conductances underlying nonlinear integration in vitro can be recruited by synaptic input in 

vivo. 

Slow supralinear integration promotes the robustness of the grid cell rate code 

To provide a quantitative framework for understanding the contribution of active dendrites to 

generating the grid cell rate code, we used a rate-based continuous attractor network (CAN) 

model. Given that NMDAR activation underpins the various types of dendritic nonlinearities 

we discovered in grid cells, we implemented NMDARs as a slow, cooperative, supralinear 

integration mechanism in an existing CAN model of grid cell firing13, which allowed us to 

efficiently explore a large range of parameters and noise amplitudes (Fig. 5 and 

Supplementary Fig. 9). Adding NMDARs to the CAN model substantially enhanced grid 

cell firing in the presence of noise, measured by a range of metrics (Fig. 5a–h). Across a wide 

range of noise amplitudes, NMDARs reduced network drift and improved the network’s 

velocity response, resulting in higher gridness scores (Fig. 5i,j). Simulations in which we 

independently incorporated either supralinearity or a slow time-constant indicated that both 

mechanisms must act in concert to improve network performance (Supplementary Fig. 15). 

The robustness of these findings was confirmed by a spiking attractor network model 

consisting of integrate-and-fire neurons34, which also produces the best velocity response and 
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the highest gridness scores when both mechanisms are engaged (Supplementary Fig. 16). 

Using actual animal trajectories to drive the rate-based model, we found that an NMDAR 

decay-time constant of ~50 ms produced a minimum in velocity error and a maximum in 

gridness (Fig. 5j). This optimum is remarkably consistent with the NMDAR decay-time 

constant we measured experimentally in stellate cells (46 ± 5 ms, n = 4; Supplementary Fig. 

17). Simulations using an artificially slowed animal trajectory (Fig. 5j) indicate that the 

optimum depends on a realistic animal velocity driving the network response. Thus, NMDAR 

kinetics optimized for animal velocity can produce marked robustness to noise in a CAN 

model of grid cell firing. 

Supralinear integration sharpens the precision of phase precession 

Finally, we investigated how the active dendritic conductances we revealed in stellate cells 

can contribute to the temporal phase precession code of grid cell firing35. To determine the 

precise spike timing produced by oscillatory synaptic inputs, we drove our detailed 

compartmental MECII stellate cell model (Supplementary Fig. 8) by realistic synaptic input 

patterns derived from a hybrid oscillatory-interference–CAN model based on in vivo 

recordings from grid cells18 (Fig. 6). While the model only produced weak phase precession 

in the absence of dendritic Nav channels (Fig. 6a–c), phase precession was strikingly precise 

when Nav channels were present in the dendrites (Fig. 6d–f). While the fast supralinearity 

provided by Nav channels was sufficient to sharpen phase precession even in the absence of 

distinct isolated regenerative events, the effect could further be enhanced if the model cell 

produced full-blown fast dendritic spikes (data not shown). Further analysis showed that 

dendritic Nav channels can sharpen phase precession by shortening the suprathreshold part of 

membrane potential oscillations, enabling precisely timed spikes across the full extent of a 

grid firing field (Supplementary Fig. 18). In agreement with this analysis, adjusting the 

width of grid fields by increasing excitatory drive in the model without dendritic Nav 

channels failed to improve phase precession, as more mistimed spikes were produced in the 

center of the grid field (Supplementary Fig. 19). Thus, our combined modeling results show 

that active dendritic conductances can both stabilize the rate code and sharpen the temporal 

code of grid cell firing. 

DISCUSSION 
We provide evidence that the dendrites of MECII principal cells are electrically excitable and 

exhibit a range of nonlinear dynamics. Our results reveal that the biophysical origins of 

dendritic nonlinearities in these cells—dendritic Nav and NMDAR channels—may underpin 
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the two key aspects of the grid cell code. Dendritic Nav channels restrict the time window for 

action potential generation in an oscillatory-interference model of phase precession, thereby 

improving the precision of the temporal code. NMDARs in turn improve the robustness of the 

grid attractor in a rate-based model of grid cell firing. Together, our results provide strong 

evidence that active dendrites can make a critical contribution to a key behaviorally relevant 

computation in the mammalian brain. Our simulations also provide a general framework for 

understanding how active dendritic computations can stabilize attractor networks. 

Active dendrites in MECII principal cells 

Although principal cells in MECII, which form a large part of the grid cell population, have 

been shown to exhibit a rich variety of nonlinear excitability in somatic recordings19,25,36, 

there has been no direct information available about the contribution of dendritic excitability 

to the active properties of grid cells. Our in vitro experiments reveal that the dendrites of both 

types of principal neurons in MECII, stellate and pyramidal cells, exhibited nonlinear input–

output functions and could trigger dendritic spikes mediated by both voltage-gated sodium 

channels and NMDA receptor channels. Moreover, they demonstrate that these nonlinearities 

could be further enhanced by in vivo-like membrane potential trajectories that underpin grid 

cell firing. 

Our in vivo experiments strengthen and complement our in vitro results and provide 

multiple signatures of nonlinear dendritic integration in MEC neurons during spatial 

navigation. First, EPSPs were boosted at the peak of the MPOs when the neuron was 

depolarized, consistent with our in vitro experiments, as well as with predictions from a 

model with active dendrites (Fig. 3). Second, comparing a stellate cell model with nonlinear 

or linear dendritic conductances, we found that dendritic nonlinearities were robustly 

activated during simulations of grid cell firing (Supplementary Fig. 9). Third, we observed 

nonlinear plateau potentials in putative dendritic whole-cell recordings from MECII neurons. 

We found that plateau potentials frequently occurred with dendritic but not somatic current 

injections, whereas spontaneous plateaus occurred with similar probability in somatic and 

dendritic recordings, indicating that the plateaus were of dendritic origin. Plateau potentials 

have been observed as a signature of dendritic excitability in other cell types30, particularly in 

CA1 pyramidal cells11,32, where dendritic plateau potentials can positively modulate existing 

or induce new place fields11. Together, our modeling and experimental data suggest that the 

dendrites of grid cells are electrically highly excitable and that the resulting nonlinearities can 

be engaged in vivo during grid cell firing in mice performing a spatial navigation task. 
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How do active dendrites improve grid cell firing? 

Our modeling results show that active dendrites can enhance both the rate and temporal code 

of grid cell firing. First, we show that incorporating a nonlinear NMDA conductance, with 

characteristics matching those underpinning the nonlinearities in our in vitro experiments, in a 

CAN model of grid cell firing can reduce network drift and improve the network’s velocity 

response, resulting in improved gridness. Our simulations show that this enhancement of 

gridness arises from a synergistic interaction between two cardinal features of the nonlinear 

NMDAR conductance. First, NMDAR activation depends nonlinearly on the amplitude of the 

synaptic inputs that a neuron receives, increasing the gain of the neural transfer function 

preferentially in active neurons receiving strong spatial inputs37. Second, the slow decay-time 

constant of NMDARs allows active neurons to average signals over a longer time (see also 

refs. 38–40), reducing the contribution of noise38 and stabilizing the attractor. Notably, the 

stabilizing effect of NMDARs depends on the noise amplitude (Fig. 5i). Thus, acute blockade 

of NMDARs in grid cells should most strongly disrupt grid firing in novel environments, 

where spatial inputs are expected to be imprecise41. 

Our detailed compartmental model indicates that active dendrites also enhance phase 

precession, the signature of the temporal code of grid cell firing. Our simulations show that 

the mechanism underlying this effect operates by curtailing the suprathreshold part of the 

membrane potential trajectory during membrane potential oscillations. This ensures that 

spikes can occur only within a narrow time window, sharpening the precision of spike timing 

and thus the robustness of phase precession across the entire grid firing field. Notably, the 

effect of active dendrites on phase precession does not require the activation of full-blown 

dendritic spikes: even a model exhibiting subthreshold recruitment of nonlinearities 

demonstrates enhanced phase precession. Moreover, the model can reproduce the 

experimentally observed phase precession of both spikes and theta MPOs18,19. The simplicity 

and robustness of this mechanism suggests that it may generalize to other phase-precession 

models relying on coincidence of oscillations, such as those that have been proposed for CA1 

pyramidal cells42–44. 

Our findings suggest that dendritic nonlinearities are key elements in the creation of a 

stable grid code and are therefore critical for navigation. This complements recent work 

proposing that dendritic nonlinear events may contribute to behaviorally relevant 

computations in single neurons5–8. In hippocampal place cells, in vivo two-photon imaging 

has revealed dendritic Ca2+ transients that are correlated with their place field properties9, and 



Publisher: NPGNY; Journal: NN: Nature Neuroscience; Article Type: Article 
 DOI: 10.1038/ 

Page 10 of 28 

intracellular recordings from place cells suggest that dendritic nonlinearities may contribute to 

defining the spatial tuning of a neuron10,11. Together with our in vivo results indicating that 

dendritic nonlinearities may also be engaged in MECII stellate cells during virtual navigation 

(Figs. 3 and 4), this suggests that active dendrites may provide a general mechanism for 

strengthening spatial representations at the single-cell level. Notably, the stabilizing role that 

we describe for active dendrites in a CAN may also generalize to other circuits that display 

attractor dynamics, both in the hippocampus45,46 and in other brain areas47. 

Why use active dendrites to enhance circuit computations? 

Active dendrites offer several key advantages over alternative mechanisms—such as tuning 

somatic and axonal excitability, or excitation–inhibition balance—for improving the signal-

to-noise ratio during grid cell firing. The nonlinear voltage-dependence of NMDAR activation 

exhibits exquisite sensitivity, being engaged already by a small number of synapses due to the 

high dendritic-input impedance (Supplementary Fig. 20)48. At the same time, since dendritic 

synapses are electrotonically remote from the axonal site of action potential generation, 

nonlinear integration can proceed independently of somatic spiking49,50. Moreover, by 

regulating the density of dendritic Nav channels and NMDARs, the threshold for supralinear 

integration can be widely adjusted over a large range of synaptic input frequencies to 

maximize the signal-to-noise ratio for grid cell firing. In contrast, changes in somatic and 

axonal excitability have only small effects on the shape of the input–output transfer function 

of MECII principal neurons36. Furthermore, dendritic nonlinearities provide versatility, 

permitting a range of flexible transfer functions depending on the combination of dendritic 

branches that are activated (Supplementary Fig. 2). This allows grid cells to gate relevant 

inputs and suppress irrelevant inputs (similarly to what has been suggested for place cells10). 

Finally, active dendrites may also provide a mechanism for shaping circuit wiring during 

development: early in the assembly of the entorhinal circuit, synaptic inputs that contact a 

nonlinear dendritic branch may be strengthened by engaging these nonlinearities and in turn 

define the grid properties of a neuron. 
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Editorial summary 
Combining electrophysiology and computational modeling, the authors show that the dendrites of entorhinal 
cortex stellate and pyramidal cells are electrically excitable and that this improves the robustness of grid cell 
firing. The results suggest that active dendrites are critical for spatial navigation, a fundamental computation in 
the brain. 

Figure 1  Supralinear synaptic integration in MEC principal neurons. (a) Two-photon image 

of a MECII stellate cell filled with Alexa Fluor 594 via somatic patch-clamp recording. Inset 

shows the selected dendrite and the uncaging locations (red spots). (b) Somatic voltage 

responses to increasing number of stimulated synapses (indicated in the inset in a). Top traces 

show arithmetic sums expected from the individual responses; bottom traces show recorded 

responses (15 spines, 0.6-ms stimulation interval). (c) The amplitudes of somatically recorded 

glutamate uncaging-evoked EPSPs (gluEPSPs) were markedly larger than the arithmetic sum 

of the individual responses (dashed line indicates unity). Top, single experiment (as in a and 

b); bottom, summary of 34 experiments. Grey lines represent individual experiments; the 

black line connects binned averages across experiments (red). Error bars represent s.e.m.. (d) 

Nonlinearity depends on the interval between uncaging events (*P < 0.05). No significant 

difference in the degree of supralinearity was found between stellate cells (SC) and pyramidal 

cells (PC) of MECII (at £1-ms stimulation intervals). Nonlinearity in stellate cells at different 

stimulation intervals: 8 ms, 9 ± 9% (n = 6); 4 ms, 54 ± 16% (n = 11); £1 ms, 65 ± 7% (n = 

34); one-way ANOVA for different stimulation intervals, P = 0.02, F = 4.22; nonlinearity in 

pyramidal cells at stimulation intervals; £1 ms: 48 ± 11% (n = 9; Mann-Whitney U test, P = 

0.18 compared to stellate cells). 
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Figure 2  Supralinear integration and dendritic spikes depend on voltage-gated sodium (Nav) 

and NMDA receptor channels. (a) Left: examples of fast (orange arrows) and slow (blue 

arrows) dendritic spikes. Right: plots of dV/dt against number of uncaging locations. Fast 

dendritic spikes cause a step-like increase in dV/dt (arrows). (b) Top: fast dendritic spikes are 

present in 21 ± 7% (n = 34) of all recordings and abolished when Nav channels are blocked 

with tetrodotoxin (TTX) and/or when NMDARs are blocked with APV ((2R)-amino-5-

phosphonovaleric acid). Bottom: slow dendritic spikes are present in 26 ± 7% (n = 34) of all 

recordings, still present in TTX (29 ± 17%; n = 7; Fisher’s exact test, P = 1.0) and abolished 

when NMDARs are blocked with APV. Uncaging interval £ 1 ms. Individual data points (not 

indicated in the figure) are either zeroes (no spikes were observed in a recording) or ones 

(spikes were observed in a recording). Bar graphs indicate the percentage of recordings 

containing spikes; error bars were calculated by Monte Carlo methods. (c) Application of 

TTX and APV reduces or abolishes supralinear dendritic integration. Grey dots represent 

individual recordings. Control: 65 ± 7% (n = 34); TTX: 36 ± 11% (n = 7; Mann-Whitney U 

test, P = 0.07 compared to control); APV: 11 ± 21% (n = 3; Mann-Whitney U test, P = 0.02 

compared to control). TTX+APV: 11 ± 5% (n = 3; Mann-Whitney U test, P = 0.02 compared 

to control). One-way ANOVA, P = 0.03, F = 3.16. 

Figure 3  Engagement of active dendritic conductances in MECII principal neurons in vivo. 

(a) Left: membrane potential (Vm; top), theta membrane potential oscillations (theta MPOs; 

middle, green trace) and differentiated membrane potential (dV/dt; bottom) during a firing 

field crossing in a MECII neuron (experimental data from Schmidt-Hieber and Häusser18). 

Grey dashed vertical lines indicate peaks (0° phase) of theta MPOs. Right: membrane 

potentials and differentiated membrane potentials at higher magnification for two episodes 

corresponding to the horizontal bars at the bottom of the traces on the left. Filled circles on 

dV/dt traces indicate peaks in dV/dt that are below (black) or above (red) the mean + 1.5 s.d. 

of all peaks within 90° bins of theta MPO phases. (b) Plot of peaks in membrane potential 

against corresponding peaks in dV/dt for the recording shown in a. Colors as in a. Green line 

represents a linear regression (r = 0.49; P < 10-5; n = 8,265 peaks). (c) As in b, for a detailed 

compartmental model of a MECII stellate cell with active (left; r = 0.45; P < 10-5; n = 14,411 

peaks) or passive dendrites (right; r = 0.31; P < 10-5; n = 25,228 peaks). See Online Methods 

for model details. (d) Plot of peaks in dV/dt against the phase of theta MPOs for the recording 

shown in a. Colors as in a. Yellow filled circles represent binned averages. (e) As in d, for 

compartmental model data with active (left) or passive dendrites (right) as in c. (f) Analysis of 
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n = 6 stellate cell recordings (data from Schmidt-Hieber & Häusser18). Peaks in dV/dt (top) 

and fraction of dV/dt peaks exceeding mean + 1.5 s.d. of all peaks within 90° bins of theta 

MPOs (bottom) are plotted against theta MPO phase. Black lines and symbols, average data. 

Error bars represent s.e.m. Colored lines and symbols show individual recordings. (g) As in f, 

for compartmental model data with active (black) or with passive dendrites (blue). 

Figure 4  Plateau potentials suggest that active dendritic conductances are engaged in vivo. 

(a) Example of a putative somatic recording from a MEC neuron in vivo. Plateau potentials 

(arrows) occur spontaneously (left, top trace shows animals speed, bottom trace shows 

membrane potential) but not during current injections (right, top traces show membrane 

potential, bottom traces show current injections). (b) Example of a putative dendritic 

recording from a MEC neuron in vivo. Plateau potentials (arrows) occur both spontaneously 

(left, top trace shows animals speed, bottom trace shows membrane potential) and upon 

current injections (right, top traces show membrane potential, bottom traces show current 

injections). Inset (top right) shows an enlarged view of an evoked plateau potential. (c) 

Frequency and duration of plateau potentials correlate with parameters that are characteristic 

of dendritic recordings. Plateau frequencies per action potential (top) and plateau durations 

(bottom) are significantly correlated with rise times of action potentials (left) and input 

resistance (right). Black lines represent linear regressions (n = 58 recordings). (d) Summary 

bar graphs of evoked and spontaneous plateau frequencies per action potential in (left) 

putative somatic (evoked, 0.4 ± 0.4%; spontaneous, 1.0 ± 1.0%, n = 6) and (right) dendritic 

recordings (evoked, 14.7 ± 7.2%; spontaneous, 1.9 ± 1.9%, n = 6). Filled gray circles 

represent individual recordings. Error bars represent s.e.m. 

Figure 5  Active dendrites in MECII neurons can enhance the robustness of the rate code of 

grid cell firing. (a,b) CAN model simulations were performed either in the absence (a) or the 

presence (b) of a slow supralinear integration mechanism, as provided by NMDARs (tNMDA = 

50 ms). (c,d) Left: animal trajectory (blue; data from Hafting et al.12) and CAN network 

prediction of animal position in the absence (c) (black) or in the presence (d) (red) of 

NMDARs are superimposed. Right: color-coded spatial rate maps for an example model 

neuron in the absence (c) or in the presence (d) of NMDARs. (e,f) Left: correlation between 

rotated autocorrelation maps plotted against the rotation angle. Simulations were performed in 

the absence (e) or in the presence (f) of NMDARs. Right: autocorrelation matrices of the 

spatial rate maps shown in c and d, respectively. (g) To quantify network drift, mean squared 

displacement is plotted as a function of simulation time interval in the absence of velocity 
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inputs in the absence (black) or in the presence (red) of NMDARs. (h) Absolute difference 

between animal velocity and optimally scaled network velocity plotted against time in the 

absence (black) or in the presence (red) of NMDARs. (i) From top to bottom: network 

diffusion coefficient in the absence of velocity inputs, summed squared velocity error and 

gridness, each plotted against noise s.d. for CAN network simulations with (red symbols) or 

without (black symbols) NMDARs. (j) The same quantities as in i plotted against tNMDA. 

Simulations were performed using either the original animal trajectory (red symbols) or a 

version that was slowed by a factor of 2 (blue symbols). In the simulations in a–h, noise s.d. = 

1.6, and error bars represent s.e.m. of 7 simulations, which were initialized with different 

pseudorandom number generator seeds.  

Figure 6  Active dendrites in MECII neurons can promote the precision of the temporal code 

of grid cell firing. (a,d) A detailed compartmental model of a MECII stellate cell was used to 

simulate grid cell firing in a hybrid CAN–oscillatory-interference model with passive (a) or 

active (d) dendrites (see Online Methods for details). Left: voltage-gated sodium conductance 

density plotted against dendritic distance from soma. Right: color-coded firing rate maps. 

(b,e) Example traces of simulated somatic membrane potential during a firing field crossing 

in the model with passive (b) and with active (e) dendrites. Raster plots at top show timings of 

excitatory velocity-controlled oscillators (VCOs, red) and inhibitory ramp inputs (blue). (c,f) 

While phase precession degraded in the model with (c) passive dendrites (n = 80 spikes), the 

model with (f) active dendrites (n = 153 spikes) produced clear phase precession of spikes 

with reference to the LFP. Red lines represent circular–linear regressions. 

ONLINE METHODS 

Slice preparation. 

Acute horizontal brain slices were prepared from 26–30-d-old C57/BL6 male and female 

mice. Animals were briefly anesthetized with isoflurane before decapitation. All procedures 

were performed under license from the UK Home Office in accordance with the Animal 

(Scientific Procedures) Act 1986. Slicing was performed in ice-cold sucrose solution, 

containing (in mM): NaCl 87, sucrose 75, glucose 25, NaHCO3 25, MgCl2 7, KCl 2.5, 

NaH2PO4 1.25 and CaCl2 0.5. For a period of 30 min immediately after slicing, slices were 

stored in preheated (32 °C) artificial cerebrospinal fluid (ACSF) with low Ca2+ and high Mg2+ 

concentrations, containing (in mM): NaCl 125, glucose 25, NaHCO3 26, MgCl2 7, KCl 2.5, 

NaH2PO4 1.25 and CaCl2 0.5. Slices were subsequently stored at room temperature (20-

25°C). Experiments were performed in ACSF, containing (in mM): NaCl 125, glucose 25, 
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NaHCO3 26, MgCl2 1, KCl 2.5, NaH2PO4 1.25 and CaCl2 2 at a temperature of 32–34 °C. 

After some recordings (Supplementary Fig. 3), the slices were fixed in 4% 

paraformaldehyde and immunohistochemical staining was performed using rabbit anti-

calbindin (ab11426, Abcam) as the primary antibody and donkey F(ab’)2 anti-rabbit IgG 

(Alexa Fluor 488, ab150069, Abcam) as the secondary antibody51,52. 

Electrophysiology and pharmacology. 

Somatic whole-cell patch-clamp recordings were obtained from stellate and pyramidal cells in 

layer 2 of medial entorhinal cortex. Stellate and pyramidal cells were identified by their 

somatodendritic morphology and their characteristic electrophysiological 

properties19,25,26,36,53–56. Current-clamp recordings were acquired with a MultiClamp 700B 

amplifier at a 50-kHz sampling rate using custom software written in Matlab. Patch pipettes 

of 5-MW resistance were filled with internal solution containing (in mM): KMeSO4 140, 

HEPES 10, KCl 7.4, MgCl2 0.3, EGTA 0.1, NaGTP 0.3, Na2ATP 3 and sodium 

phosphocreatine 1. Alexa Fluor 594 (50 µM) was added to this solution to visualize cell 

morphology. Series resistance of the recordings was usually less than 30 MW. In some 

recordings, 50 µM of D-APV and 0.5 µM of TTX were added to the regular ACSF solution to 

block NMDA receptors and voltage-gated sodium channels, respectively. All extracellular 

solutions were equilibrated with carbogen (95% O2 / 5% CO2) and had a pH of 7.3. Miniature 

EPSPs (mEPSPs; Supplementary Fig. 1) were measured in the presence of 0.5 µM TTX in 

the recording solution. The detection threshold for mEPSPs was when dV/dt exceeded 1 

mV/s. 

To produce membrane potential ramps in vitro that mimicked membrane potential 

dynamics in vivo (Supplementary Fig. 6), we first applied the mean in vivo membrane 

potential waveform that we had previously recorded from stellate cells during firing field 

crossings18 as a voltage clamp command in n = 5 stellate cells in vitro. The resulting clamp-

current waveform was then averaged across recordings and injected as a current-clamp 

command to produce an in vivo-like voltage ramp. For voltage-clamp recordings 

(Supplementary Fig. 17), pipettes were filled with internal solution containing (in mM): 

CsMeSO4 135, HEPES 10, EGTA 10, NaGTP 0.3, Na2ATP 2 and MgATP 2. Series 

resistance was less than 15 MW. EPSCs were evoked by extracellular stimulation in layer I of 

MEC while holding MECII stellate cells at a potential of +40 mV. NMDAR-mediated EPSCs 
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were isolated by blocking GABAA receptors with SR95531 (20 µM) and AMPA receptors 

with NBQX (10 µM). 

Two-photon imaging and uncaging. 

Simultaneous two-photon imaging and dendritic stimulation at single-synapse resolution by 

uncaging of MNI-caged-L-glutamate was performed with two Ti-sapphire lasers tuned to 810 

nm and 720–730 nm for imaging and uncaging, respectively. To visualize dendrites and 

dendritic spines, cells were loaded with a fluorescent dye (50 µM Alexa Fluor 594) added to 

the pipette solution. Healthy dendrites close to the surface of the slice were selected for 

uncaging. MNI-caged-L-glutamate (24 mM, Tocris) was dissolved in a solution containing (in 

mM): NaCl 125, glucose 25, KCl 2.5, HEPES 10, CaCl2 2 and MgCl2 1 and applied locally 

via a glass pipette (tip diameter ~10 µm). Multiple spines were selected in a randomized 

manner within a maximal distance of ~50 µm on a single dendritic branch. gluEPSPs were 

first evoked by stimulating each spine individually at 300-ms intervals. We then stimulated an 

increasing number of synapses at short time intervals (0.6–8 ms, as indicated), with a 10-s 

pause between each trial. To estimate the expected linear summation of gluEPSPs, we first 

shifted individual membrane potential traces according to the corresponding experimental 

stimulation interval (0.6–8 ms for each trace) before computing the sum. Uncaging laser 

exposure time was 0.5 ms. The laser power was adjusted to produce gluEPSPs that were 

comparable to sEPSPs recorded in the same cell (Supplementary Fig. 1). Uncaging timing 

and location were controlled by custom software written in Matlab. Experiments were 

terminated if photodamage to the dendrite was observed (for example, swelling of the 

dendrite) or depolarization of the membrane potential was detected. Recordings from neurons 

with photodamaged dendrites were excluded from analysis. Recordings were also excluded if 

the slice exhibited physical drift due to slice swelling or inconsistency of perfusion. This was 

detected either by imaging or by sudden large changes (usually decreases) in EPSP amplitude. 

Data analysis. 

Data analysis was performed with custom code written in Python57. Nonlinearity, D, of each 

experiment was quantified by 
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where Mi is the amplitude of the measured EPSP, Li is the amplitude of the EPSP constructed 

by linear summation of single synapse EPSPs, and n is the maximal number of synapses 

activated. Slow dendritic spikes were detected if the nonlinearity of the EPSP integral was 

33% larger than the nonlinearity of the EPSP amplitude. A fast dendritic spike was defined as 

a step-like increase (>50%) in a plot of maximal dV/dt against the number of uncaging 

locations (Fig. 2 and Supplementary Fig. 3). 

To examine whether signatures of active dendritic integration can be found in grid 

cells in vivo, we analyzed in vivo patch-clamp recordings from MECII neurons18. The full 

membrane potential (Vm) recording duration from n = 6 putative grid cells was used for this 

analysis. Peaks were identified in differentiated Vm traces (dV/dt) by detecting local maxima 

that exceeded 0.1 mV/ms within time windows of 200 µs. The analysis was restricted to 

subthreshold Vm by excluding parts of traces where dV/dt exceeded 5% of the maximal rate of 

rise of action potentials of each recording. Local Vm peaks corresponding to these dV/dt peaks 

were detected in high-pass-filtered Vm traces (fc = 10 Hz) within 5 ms following each dV/dt 

peak (Fig. 3b,c). dV/dt peaks were binned according to the phase of theta membrane potential 

oscillations (theta MPOs) during which they occurred. Theta MPOs were obtained by 

bandpass-filtering Vm between 5 and 10 Hz; 0° corresponds to the peak of theta MPOs. For 

each theta MPO bin with a width of 45° (as indicated), mean and s.d. of all dV/dt peaks were 

computed for each recording (Fig. 3d–g). Moreover, for each theta MPO bin with a width of 

90° (as indicated), dV/dt peaks that exceeded the mean of all dV/dt peaks within a given bin 

by 1.5 s.d. were computed for each recording (Fig. 3f,g). These particularly fast peaks are 

indicated by red symbols in Figure 3. According to these criteria, the lowest threshold for 

these fast peaks was typically a maximal rate of rise of ~0.4 mV/ms (Fig. 3d). Thus, these fast 

in vivo events were characterized by maximal rates of rise resembling or exceeding the 

maximal rates of rise of fast dendritic spikes recorded in vitro (typically ~0.4 mV/ms; Fig. 

2a). 

We analyzed plateau potentials across both somatic18 and putative dendritic in vivo 

patch-clamp recordings from MECII neurons. Plateau potentials were defined as sustained 

depolarizations following action potentials with a full-width-at-half-maximal amplitude 

exceeding 15 ms. These criteria were chosen to identify plateau potentials that closely 

resembled published examples (for example, Bittner et al.11). Action potentials were detected 

when dV/dt exceeded 30 mV/ms. We did not observe any obvious isolated plateau potentials 

without a preceding action potential in our data set. We analyzed a total of n = 58 recordings 



Publisher: NPGNY; Journal: NN: Nature Neuroscience; Article Type: Article 
 DOI: 10.1038/ 

Page 22 of 28 

that produced trains of action potentials in response to depolarizing 1-s current injections. 

Recordings were categorized into putative dendritic and putative somatic recordings 

according to input resistance (Rin) and 20–80% rise time of action potentials (t20–80)6 (putative 

somatic: t20–80 < 0.2 ms and Rin < 80 MW; putative dendritic: t20–80 > 0.3 ms and Rin > 120 

MW). The frequency of plateau potentials did not depend on recording parameters such as 

resting membrane potential or seal resistance (Supplementary Fig. 11), indicating that 

recording quality did not affect their occurrence. To measure action potential kinetics (Fig. 4 

and Supplementary Fig. 12), we used the first action potential that was evoked by the lowest 

suprathreshold sustained current injection. 

Data are presented as mean ± s.e.m., unless stated otherwise. Error bars for dendritic 

spike proportions represent the s.d. of bootstrap analyses of the experimental data set (1,000 

repeats). Statistical significance of continuous data was assessed using two-sided Mann-

Whitney U tests and Wilcoxon signed-rank tests for unpaired and paired data, respectively. 

Statistical significance of dendritic spike proportions was assessed using Fisher’s exact test. 

Analyses of variance (ANOVA) were performed when more than two groups were tested. 

Differences were considered statistically significant when P < 0.05. No correction for 

multiple comparisons was applied58. No statistical methods were used to predetermine sample 

sizes, but our sample sizes are similar to those reported in previous publications11,17,18. Data 

collection and analysis were not performed blind to the conditions of the experiments. 

Compartmental modeling. 

Studying phase precession required us to model the precise timing of action potentials 

produced by oscillatory synaptic inputs. To achieve realistic predictions of membrane 

potential trajectories, we therefore decided to use a detailed compartmental model 

implemented in NEURON59 (Figs. 3 and 6 and Supplementary Figs. 8 and 20). We used a 

reconstructed morphology of a mouse MEC stellate cell25 and HCN-channel gating kinetics 

based on experimental data from stellate cells60. Voltage-gated potassium (Kv) and sodium 

(Nav) channel kinetics were adopted from a CA1 pyramidal cell model61. Active conductance 

densities, axial resistivity (Ri), specific membrane resistance (Rm) and capacitance (Cm) were 

fitted to reproduce the experimentally determined mean f–I relationship, input resistance, sag 

ratio, sag time-constant, membrane time-constant, resting membrane potential and 

afterhyperpolarization amplitude using a genetic algorithm (NSGAII)62–64 (Supplementary 

Table 1). 
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Subthreshold synaptic input–output curves (Supplementary Fig. 8b) were produced 

by first finding all sites on the dendritic tree that were located 175 µm from the soma. We 

then performed simulations that closely followed our experimental protocol (Fig. 1): at each 

site, we distributed 20 synaptic conductances within 25 µm. We then activated individual 

synaptic conductance changes in isolation and computed the linear sums of the individual 

responses. Next, we stimulated an increasing number of synaptic conductance changes at 1-

ms intervals and plotted the amplitudes of the measured responses against the amplitudes of 

the linear sums. This procedure was repeated for each site to yield a set of input–output 

curves. The analysis of simulated data was identical to that of experimental data. 

To determine the effect of dendritic Nav channels on phase precession (Fig. 6 and 

Supplementary Fig. 19), we used a modeling and analysis strategy similar to one described 

previously18. In brief, we converted the synaptic inputs of rate-based neurons in a CAN model 

(see below) into discrete events driving synaptic conductance changes in our compartmental 

stellate cell model. Feedforward excitation was provided by six directional velocity-controlled 

oscillating (VCO) inputs that were only active when the current running direction matched the 

VCO’s preferred direction ± 90° (ref. 65). 

Rate-based modeling (Fig. 5 and Supplementary Fig. 15). 

Previous work has suggested that the mechanisms underlying the rate code of grid cell firing 

are best explained by a continuous attractor network (CAN) model17,18,66. We implemented a 

CAN model in a sheet of 128 × 128 neurons with periodic boundaries building on a previous 

implementation (courtesy of Y. Burak and I. Fiete13). This rate-based model allowed us to 

efficiently test the effect of a large range of parameters on network performance, which is 

essential for exploring the effects of a large range of noise amplitudes. The dynamics of rate-

based neurons was defined by 

for 0 
0 for 0
V i i

i
i

k V V
s

V
³ì

= í <î
 with  (2) 

( )( )( )NMDA
d 1 0.5  
d
i

i i i i i
V V k p I B
t

t x+ = + - + +  and  (3) 

 i ij j
j

I W s=å   (4) 

where si represents the firing rate of neuron i, Vi represents the membrane potential of neuron 

i, t = 10 ms is the integration time constant of the neural response, kNMDA = 0.4 (unless 
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indicated otherwise) is the relative strength of NMDARs, pi is the fraction of open NMDARs 

in neuron i (equations (8) and (9)), Ii is inhibitory recurrent input to neuron i, Bi is excitatory 

feedforward input to neuron i, Wij is the synaptic weight from neuron j to neuron i, and xi is 

colored synaptic noise (equations (10)–(12)). By subtracting 0.5 from pi, mean network firing 

rates were kept approximately constant across simulations. For a threshold-linear 

implementation of the model without NMDARs, we set kNMDA = 0. The gain of the neural 

transfer function, kV, was set to 0.88 (unless indicated otherwise), which minimized drift and 

velocity error for kNMDA = 0. This strategy was chosen to ensure that reductions of drift and 

velocity error by NMDARs could not be explained by a simple linear gain change. The 

implementation of NMDARs as a multiplicative term is consistent with predictions of 

NMDAR recruitment in a compartmental model (Supplementary Fig. 9). Bi was defined by 

( )1 ˆ  
ii BB A fa= + ×e v   (5) 

where ˆ
if
e is the unit vector pointing along neuron i's preferred direction if  (one of W, N, S or 

E), v is the animal velocity vector in m s–1, and a was set to 0.0825. The recurrent weight 

matrix was purely inhibitory in our implementation: 

( )0 ˆ  
iij i jW W l f= - -x x e  with  (6) 

( ) ( )2 2

0  x x
WW A e eg b- -= -x   (7) 

where xi is neuron i’s location in the neural sheet and ranges from (-64, -64) to (64, 64). In 

our implementation, we used l = 2, g = 1.02b, b = 3l–2 and l = 13. AB = 10 and AW = 10 are 

scaling factors that were chosen to compensate for the ‘notau’ option in the original 

implementation. As in Burak and Fiete13, we computed the animal velocity vector v from an 

experimentally determined rat trajectory12. 

It is currently unknown how spatially modulated excitatory and inhibitory inputs are 

distributed on the dendritic tree of grid cells. To implement a model that applies to a large 

range of potential synaptic input configurations, we therefore used a generalized approach in 

which we subject the sum of all synaptic inputs to a single function, which can take a 

nonlinear form. 

The dynamics of NMDAR open probability pi in neuron i was computed as follows: 
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( )NMDA
d  
d
i

i i
p p p V
t ¥t + =  with  (8) 

( )
NMDA

NMDA

11  
1

V c
m

p V
e

¥ -= -

+

  (9) 

where the steady-state open probability, p¥(V), was assumed to be a sigmoid function of 

membrane potential V with center cNMDA = 0.1 and slope mNMDA = 0.2, yielding a neural 

transfer function that qualitatively matched the experimentally determined dendritic input–

output curves. Unless indicated otherwise, tNMDA was set to 50 ms, in agreement with our 

experimental data (Supplementary Fig. 17). 

Synaptic noise, xi, was implemented as an Ornstein-Uhlenbeck process using an exact 

update rule for an integration time step, h67,68: 

, exc , inh  i i ix x x= -  with  (10) 

( ) ( ) ( )( ) exc/
, exc exc, 0 ,exc exc,0 exc 1 h
i it h t t e A Gtx x x x -+ = + - +  and  (11) 

( ) ( ) ( )( ) inh/
, inh inh, 0 ,inh inh,0 inh 2  h
i it h t t e A Gtx x x x -+ = + - +   (12) 

where xi,exc and xi,inh are excitatory and inhibitory synaptic noise, respectively; xexc,0 and xinh,0 

are average synaptic noise; texc and tinh are synaptic time constants; G1 and G2 are random 

numbers drawn from a normal distribution with zero mean; and unit s.d. Aexc and Ainh are 

amplitude coefficients given by 

( )exc2 /exc exc
exc 1  

2
hDA e tt -= -  and  (13) 

( )inh2 /inh inh
inh 1  

2
hDA e tt -= -   (14) 

where Dexc and Dinh are noise diffusion coefficients. Excitatory and inhibitory noise were 

assumed to be symmetric in our simulations, with texc = tinh = 2 ms. Noise diffusion 

coefficients and average synaptic noise were set as high as possible without disrupting the 

periodic activity bumps in the CAN when the original simulation parameters from Burak and 

Fiete13 were used (xexc,0 = xinh,0 = 1.2, Dexc = Dinh = 0.04, yielding a ratio similar to x0/D, as in 

Destexhe et al.67). 



Publisher: NPGNY; Journal: NN: Nature Neuroscience; Article Type: Article 
 DOI: 10.1038/ 

Page 26 of 28 

Integrate-and-fire neurons (Supplementary Fig. 16). 

An implementation of a CAN model using integrate-and-fire neurons was adopted from 

Pastoll et al.34. Topology and connectivity of the model were adopted from the original 

implementation: the network consisted of 68 × 58 excitatory and 34 × 30 inhibitory neurons 

interconnected in an ‘E-surround’ configuration34. Constant excitatory input currents to the 

excitatory neurons in the original model (Iext_e_const and Iext_e_theta) were replaced by 

mixed AMPAR/NMDAR-type synapses driven by Poisson spike trains at 1 kHz. The 

dynamics of the synapses was defined by 

AMPA
AMPA AMPA

d 0 
d
g g
t

t + =   (15) 

( )NMDA NMDA
NMDA NMDA

NMDA,decay

d   1  
d
g g x g
t

a
t

= - + -  and  (16) 

NMDA,rise
d 0 
d
x x
t

t + =   (17) 

where gAMPA and gNMDA are the AMPAR and NMDAR conductances, aNMDA = 0.5 defines 

NMDAR saturation, tNMDA,rise = 2 ms and tNMDA,decay = 100 ms are the rise and decay time 

constants of NMDAR, and x is the activation gating variable of NMDARs. For each 

presynaptic spike occurring at time t1, the synapse activity was updated from its previous state 

at time t0 according to the following equations: 

( ) ( ) ( )1 0  x t x t wp V¥= +  and  (18) 

( ) ( )AMPA 1 AMPA 0  g t g t w= +   (19) 

where w = 1 is the synaptic weight and p¥(V) is the steady-state open probability of the 

NMDAR (equation (9)). Total synapse conductance was computed as gAMPA + kNMDA gNMDA. 

The maximal total conductance was set to 2.3 nS. A version of an AMPAR/NMDAR-type 

synapse without Mg2+ block was implemented by setting p¥(V) = 1 in equation (18). 

Spatial rate maps of model neurons were discretized into 1-cm × 1-cm bins. No 

smoothing of the data was performed. To quantify spatial periodicity (‘gridness’), we first 

calculated the spatial autocorrelation for rate maps of each model neuron21. We then selected 

a centered ring-shaped region of interest from the autocorrelogram that included peaks closest 

to the center but excluded the central peak. We next rotated this ring in steps of 1° and at each 

step computed the correlation coefficient of the rotated with the original ring. We then 
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determined maximal correlation values at 60° and 120° rotation (rmax,60 and rmax,120) and 

minimal correlation values at 30°, 90° and 150° rotation (rmin,30, rmin,90 and rmin,150). Gridness 

was then determined as min(rmax,60, rmax,120) – max(rmin,30, rmin,90, rmin,150)21. Mean gridness 

values were computed for ten randomly selected model neurons. 

Code and data availability. 

Data analysis and simulation code are available from a private repository on GitHub 

(https://github.com/neurodroid/SH2017, access available upon request). The data that support 

the findings of this study are available from the corresponding authors upon reasonable 

request. 
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