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Introduction

Discovered by Richard Altmann in the 1840s, mitochondria 
are thought to derive from the invasion of a pre-eukaryotic 
cell by an alphaproteobacterium of the Rickettsiales order. 
The monophyletic origin of mitochondria suggests that this 
invasion was a unique event and their advent was critical 
for eukaryotic evolution. This is reflected by the multitude 
of vital functions mitochondria are responsible for, such as 
energy production, the biogenesis of essential cellular com-
ponents, apoptosis, or innate immune signaling. In line with 
this, mitochondrial dysfunction correlates with a wide vari-
ety of pathologies, in particular neurodegenerative disease 
and cardiac dysfunction [1].

Mitochondria are dynamic organelles

Mitochondria are particularly complex organelles, envel-
oped by two membranes: the outer mitochondrial membrane 
(OMM) and the inner mitochondrial membrane (IMM), 
which enclose two compartments, the intermembrane space 
and the matrix. The matrix harbours the mitochondrial DNA 
(mtDNA), a highly reduced version of the alphaproteobacte-
rial mitochondrial ancestor’s genome. In mammalian cells, 
mitochondria are not isolated, bacteria-like organelles, but 
rather form a dynamic network. Mitochondrial dynamics and 
the resulting overall morphology of the network are deter-
mined by fusion and fission events and by mitochondrial 
movement, both of which are highly dependent on the cell 
type and on the functional state of mitochondria.

Mitochondria move along cytoskeletal tracks but the 
extent of their motility is very variable and both species 
and cell type dependent [2]. For example, mitochondria 
appear almost immotile in muscle cells, but motility is 
crucial for mitochondria distribution in highly polarized 
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cells, such as neurons, where mitochondrial activity is 
required at the synapse. In this context the kinesin KIF5, 
along with dyneins and the mitochondrial adaptors Miro 
and Milton, mediate mitochondria movement along 
microtubules in higher eukaryotic cells [3], while mito-
chondria movement mainly relies on actin microfilaments 
in budding yeast [4].

Mitochondrial fusion and fission often occur simultane-
ously and in a balanced manner within a cell, and an increase 
in either activity leads to hyperfused or fragmented mito-
chondria (Fig. 1). The complex membrane system of mito-
chondria is a challenge for fusion and fission and requires 
specialized molecular machineries on the OMM or IMM. 
It is interesting to note that the key proteins known to date 
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Fig. 1  Mitochondrial fusion and fission. a Mitochondria tether-
ing via homotypic (Mfn1–Mfn1 and Mfn2–Mfn2) and heterotypic 
(Mfn1–Mfn2) mitofusin interactions promotes OMM fusion, while 
inner membrane fusion is promoted by OPA1. b Schematic repre-
sentation of mitochondrial fission. Enlargements of OMM and IMM 

fusion events that occur during mitochondrial fusion and fission. c 
Immunofluorescence showing changes in mitochondrial morphology 
(red) and Drp1 localization (green) in response to different perturba-
tions. Adapted from [182, 190, 202]
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to mediate mitochondrial fusion and fission are all nuclear-
encoded, large GTPases, pointing to a common evolutionary 
origin (Fig. 2a). This may not be surprising, as despite dif-
ferences in the membrane topology, both mitochondrial fis-
sion and fusion require the merging of membranes (Fig. 1a, 
b, inset), which is achieved through membrane remodeling 
proteins. Different model organisms including yeast, Dros‑
ophila and C.elegans have greatly contributed to our under-
standing of the molecular mechanisms that underlie mito-
chondrial fusion and fission. In this review, we will focus on 
mammalian cells, summarizing mitochondrial fusion and 
highlighting several recent discoveries that significantly 
expanded our knowledge on mitochondrial fission.

Molecular basis and physiological roles 
of mitochondrial fusion

During mitochondrial fusion, the outer and inner membranes 
of two mitochondria fuse in a regulated manner. This per-
mits content exchange and enables cross-complementation 
of mitochondrial DNA molecules, preventing the accumu-
lation of mutant DNA in a specific mitochondrion [5, 6]. 
Although content exchange allows the mitochondrial net-
work to adapt to the metabolic demand in a concerted man-
ner (reviewed in [7]), it does not always lead to a completely 
homogeneous mitochondrial population within a single cell, 
and the mitochondrial membrane potential can vary among 
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Fig. 2  Domain structure of Drp1, its modifications and receptors. 
a The family of mitochondrial dynamics proteins and their bacterial 
ancestor, the bacterial dynamin-like protein BDLP. Abbreviations: 
paddle domain (PAD) and pleckstrin homology domain (PH), both 
responsible for lipid binding; proline-rich domain (PRD), tetratrico-
peptide (TPR) and coiled–coiled (CC) domains are involved in pro-
tein–protein interactions; GTPase effector domain (GED); insert B 
domain (Ins B); transmembrane domain (TM). b full-length human 
Drp1 (isoform 1, 736 aa). Numbers indicate the start of a new 
domain. Posttranslational modifications are colour-coded, and the 

modified amino acids have been indicated, except for ubiquitination 
and O-GlcNAcylation (grey), for which sites have not yet been identi-
fied. A few commonly used mutants are shown in black: K38A (dom-
inant-negative), G350D (impaired in higher order oligomerization), 
A395D (natural mutation, impaired in tetramerization and higher 
order oligomerization). c Drp1 is recruited to the OMM via multiple 
transmembrane receptors. MiD51 and Mff are able to oligomerize 
and to interact with each other in the same fission foci. The SAMM50 
protein has been shown to interact with the MITOS complex in the 
IMM
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different mitochondria [8]. Mitochondrial fusion appears 
particularly important during stress and starvation condi-
tions, where it is thought to maximize the efficiency of mito-
chondrial metabolism through the sharing of metabolites in 
the matrix (reviewed in [9]). Interestingly, although bacteria 
are not known to fuse, filamentous bacteria do exist (e.g. 
syncytial Streptomyces or septated filamentous cyanobacte-
ria). Such filament formation can be induced by mutation in 
cell division proteins, or upon stress or nutritional changes, 
conditions potentially also encountered by the alphaproteo-
bacterial mitochondrial ancestor.

In present-day mitochondria fusion is an active process 
that is mediated by Mitofusin 1 and Mitofusin 2 in human 
cells (Mfn1 and Mfn2, Fzo1 in yeast [10, 11]). These par-
tially redundant large GTPases are embedded in the OMM, 
where they promote mitochondrial fusion (Fig. 1a). Mito-
fusins form hetero-oligomers, promote mitochondrial tether-
ing similar to SNARE proteins and mediate GTP-dependent 
fusion [12]. Recently, it has been reported that mitofusins 
fold both in fusion-competent and fusion-incompetent 
conformations to regulate mitochondrial tethering [13]. 
An additional mechanism has been recently described for 
mitochondrial network formation, which would involve 
mitochondrial tubulation by kinesin KIF5B in concert 
with mitofusin-mediated fusion [14]. Recently, part of the 
Mfn1 structure has been solved and found to resemble that 
of bacterial dynamin-like proteins, uncovering an interest-
ing evolutionary relationship [15, 16]. While Mfn1 has a 
higher GTPase activity and is ubiquitously expressed [17], 
Mfn2 displays tissue-specific expression [18] and has been 
linked to the type 2a subset of Charcot–Marie–Tooth dis-
ease, a group of hereditary peripheral neuropathies that can 
be caused by defects in several of the proteins regulating 
mitochondrial dynamics [19]. Interestingly, both mitofusins 
are essential for embryonic development in mice, where they 
play an important role in the maintenance of mitochondrial 
DNA (mtDNA) and oxidative phosphorylation [20, 21] and 
may also have additional protein-specific functions [22]. In 
addition, Mfn2 plays a role in ER–mitochondria tethering 
[23]. ER–mitochondria contact sites are crucial for interor-
ganellar communication, including calcium signaling inte-
gration and lipid biogenesis [24, 25], and are emerging as an 
important player in mitochondrial fission (detailed below).

Although to a large extent coordinated, fusion of the 
OMM and IMM can occur sequentially, as suggested by the 
isolation of fusion intermediates in vitro and in vivo [26, 
27]. This points to the presence of an IMM fusion machin-
ery. A key molecule for IMM fusion is Optic Atrophy 1 
(OPA1, Mgm1 in yeast), a three-membrane-pass protein that 
faces the intermembrane space (Fig. 1a) and is mutated in 
autosomal dominant optic atrophy [28, 29]. In contrast to 
Mitofusins, OPA1 does not need to be present on appos-
ing membranes to mediate fusion [30]. In addition, OPA1 

participates in the shaping of cristae, IMM invaginations 
whose remodeling plays an important role in the release 
of the proapoptotic mitochondrial inner membrane-associ-
ated protein cytochrome c during apoptosis [31]. OPA1 is 
highly regulated, both through differential splicing [32], and 
through proteolytic processing, which leads to long IMM-
anchored OPA1 and short, soluble OPA1. The AAA-protease 
YME1L and the inner membrane metalloprotease OMA1 are 
involved in OPA1 processing [33]. Although both long and 
short OPA1 forms are found in OPA1 supercomplexes, long 
OPA1 appears to be required for fusion, while short OPA1 
may play a role in IMM fission [34]. In mammals, a drop in 
the mitochondrial membrane potential and other stress fac-
tors block fusion and stimulate OPA1 processing by OMA1 
[33]. OMA1 activation may, therefore, represent a key point 
of regulation, as its activation under stress conditions can 
result in complete conversion of long OPA1 to short OPA1, 
definitively preventing mitochondrial fusion until new OPA1 
is synthesized. Although OPA1 regulation and function have 
been characterized in detail, further research is needed to 
uncover mechanistic details of the inner membrane fusion 
and fission processes, which may involve additional players.

Mitochondrial fission: division for survival?

Mitochondrial fission divides the organelle into two often 
not equally sized daughter mitochondria (Fig. 1b). The 
best-characterized mitochondrial division machinery relies 
on dynamin-related protein 1 (Drp1/DNML1/DLVP/Dym-
ple, Dnm1 in yeast), which is regulated at multiple levels. 
Knockout studies in mice showed that deletion of Drp1 is 
embryonically lethal, indicating that mitochondrial fission 
is an essential process [35, 36]. Tissue-specific knockout 
approaches and in vitro studies demonstrated that mitochon-
drial fission deficiencies result in respiratory defects [37]. 
At the cellular level, mitochondrial fission is important for 
organelle distribution during mitosis [38] and for proper 
distribution of mitochondria to neuronal synapses, where 
localized energy production supports synaptic functions 
[36, 39]. Interestingly, organellar and cellular quality con-
trol mechanisms have been linked to mitochondrial dynam-
ics. At the organellar level, mitochondrial fission has been 
implicated in mitophagy, the autophagic process by which 
defective mitochondria are selectively degraded [40, 41]. 
Such defective mitochondria are characterized by a loss in 
the inner membrane potential, and are thereby recognized 
by the Pink1/Parkin system. Parkin then mediates ubiqui-
tination of several OMM-associated proteins, which are 
then recognized by different ubiquitin-binding mitophagy 
receptors, targeting the whole mitochondrion for autophagic 
degradation (for recent reviews see [42, 43]). Limiting mito-
chondrial size through fission seems to be a prerequisite for 
mitochondria engulfment into autophagosomes [40, 44]. The 
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extent to which Drp1 is an active player in mitophagy or not 
is, however, still debated [40, 43, 45–49].

In addition to mitophagy, mitochondrial fission has been 
shown to occur during apoptosis and to promote the release 
of the proapoptotic protein cytochrome c from the inter-
membrane space [50]. However, later studies indicated that 
apoptosis can proceed in Drp1-depleted cells [35, 36, 51, 52] 
and that fission does not necessarily correlate with apopto-
sis. In the following, we will summarize recent findings in 
mitochondrial fission, with a particular focus on the role of 
the cytoskeleton during the fission process.

New insights into Drp1‑dependent mitochondrial 
fission

The dynamin‑related protein Drp1

Dynamins are evolutionarily conserved, versatile molecules 
that are regulated by oligomerization and conformational 
changes to mediate membrane remodeling. A key protein in 
mitochondrial fission is Dynamin-related protein 1, which is 
conserved in opisthokonts (animals and fungi) and plants [53, 
54]. Drp1 was first identified by several laboratories through 
the homology of its GTPase domain with that of endocytic 
dynamins [55–60]. Similar to endocytic dynamins, Drp1 mul-
timerizes to form spirals on the mitochondrial outer mem-
brane and hydrolyzes GTP, which cause a conformational 
change, enabling spiral compaction and resulting in mitochon-
drial constriction [61, 62]. Alternative splicing can produce 
up to eight different Drp1 isoforms, with cell type-specific 
expression patterns [59, 63, 64]. The best-characterized is iso-
form 3, which lacks 31 amino acids in the insert b domain [59, 
63–66]. Drp1 has an apparent molecular weight of ~ 80kD 
and is composed of four domains (Fig. 2b): a GTPase domain 
(containing an insert A in the neuronal isoform), a mid-
dle domain, a variable domain (also called insert B), and a 
GTPase effector domain (GED), whose C-terminal coiled 
coil mediates multimerization [67]. The mechanochemical 
core of the protein comprises the GTPase, middle and GED 
domains and is sufficient to cause liposome constriction [60]. 
In contrast to dynamin, Drp1 lacks the pleckstrin homology 
domain that mediates binding to phosphoinositide-containing 
membranes, such as the inner leaflet of the plasma membrane 
(Fig. 2a). This may account for the fact that Drp1 does not 
localize to clathrin-coated pits [59] and its depletion/mutation 
does not affect the secretory pathway [68]. However, Drp1 
was recently shown to play a role in endocytic vesicle forma-
tion in hippocampal neurons, suggesting that recruitment of 
Drp1 to different cellular structures may be regulated through 
cell type-specific mechanisms [69].

Role of lipids in mitochondrial fission

For a long time thought to be only structural components 
of cellular membranes, lipids are now well recognized 
as active players in membrane remodeling. In addition 
to serving as recruiting or activating factors for proteins, 
lipids can affect membrane dynamics by lowering the 
energy barrier for fusion and fission, two energetically 
unfavorable processes. Here we briefly summarize the role 
of phospholipids in Drp1-mediated mitochondrial fission 
(see [70] for a comprehensive review on mitochondrial 
lipids).

The signature of mitochondrial membranes is the pres-
ence of cardiolipin (CL). CL is an atypical conical lipid 
and indirect evidence has implicated conical lipids in 
the generation of membrane curvature, which is required 
for both membrane fusion and fission [71]. CL is found 
primarily in the IMM, where it constitutes almost 20% 
of the total lipid content [72], but is also present in the 
OMM, in particular at IMM/OMM contact sites [73, 74]. 
Recent studies have shown that CL binds Drp1 at four 
lysines located in the variable domain [75]. Additionally, 
CL appears to recruit Drp1 to the OMM and stimulates 
the GTPase activity [76, 77]. This stimulation occurs only 
at concentrations matching those of IMM/OMM contact 
sites, suggesting that these specialized domains can serve 
as a platform for Drp1 recruitment and activation. Con-
versely, a recent report showed that Drp1 regulates CL 
clustering in liposomes, inducing a CL phase transition, 
which in turn triggers membrane constriction and fission 
[78]. An interesting recent report added a new layer of 
complexity to this picture, showing that mitochondrial 
phosphatidic acid (PA) can bind Drp1 and inhibit its 
GTPase activity [79]. PA is formed on the OMM by the 
action of mitochondrial phospholipase D (mitoPLD), a 
membrane-tethered enzyme, which utilizes CL as a sub-
strate. The ability of Drp1 to interact with mitoPLD sug-
gests that recruitment of the latter could be a way to bal-
ance Drp1 activation.

Drp1‑dependent mitochondrial fission as a multistep 
process

Surprisingly, Drp1, the key player of mitochondrial fission 
not only targets mitochondria, but also the ER [59, 80, 81] 
and peroxisomes [82]. This raises the question as to how 
differential targeting of Drp1 is achieved. Several studies 
showed that mitochondrial fission is a multistep process, 
in which specific targeting of Drp1 to the OMM relies 
on its numerous posttranslational modifications and on its 
transmembrane receptors in the OMM.
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Drp1 regulation by posttranslational modifications

Phosphorylation

Since mitochondria cannot be generated de novo, they have 
to be segregated into daughter cells during mitosis, which 
is achieved through extensive mitochondrial fission prior 
to mitosis. Mitochondrial network fragmentation coincides 
with phosphorylation of human Drp1 at S616 by Cdk1/cyc-
lin B kinase, but the functional impact of this modification 
on Drp1 is currently unknown, as its GTPase activity does 
not seem affected in vitro. Interestingly, as cells exit mitosis, 
the mitochondrial network is restored via APC/C (anaphase-
promoting complex/cyclosome)-mediated degradation of 
Drp1 [83]. Mitochondrial network fragmentation has been 
also observed upon phosphorylation of Drp1 S616 by Erk2 
in cancer cells, where it appeared to play a role in tumor 
proliferation [84, 85]. Recently, Drp1 S616 has been found 
to be phosphorylated also by Cdk5 kinase in neurons, but its 
effect on Drp1 activity and mitochondrial network morphol-
ogy is controversial [86, 87].

Drp1 S637 is phosphorylated by cyclic AMP-dependent 
protein kinase A (PKA) and this modification was found 
to inhibit the GTPase activity, most likely by preventing 
intra-molecular interactions between the GED and GTPase 
domain [88, 89]. This phosphorylation implicated Drp1 as 
a survival-promoting substrate of PKA, in particular during 
starvation, where elongation of the mitochondrial network 
and increased ATP production sustain metabolic needs [90]. 
Calcineurin was identified as the phosphatase responsible 
for S637 dephosphorylation [89] and was then shown to 
mediate calcium-induced, Drp1-dependent mitochondrial 
fission [91]. Calcineurin-mediated Drp1 dephosphorylation 
appeared to have a marginal effect on Drp1 oligomerization 
or its GTPase activity, while strongly regulating the recruit-
ment of Drp1 to the OMM [91, 92]. Both phosphorylation 
sites are shown in Fig. 2b.

Ubiquitination

Ubiquitin is a 76-amino acid polypeptide, which is cova-
lently attached to lysine residues of target proteins via an 
enzymatic reaction. Ubiquitin can either regulate protein 
stability by targeting modified substrates to proteasomal 
degradation or change their biological function by modu-
lating functional interactions. Drp1 has been shown to 
be ubiquitinated by the ubiquitin ligase Parkin [93]. This 
modification targets Drp1 for proteasomal degradation and, 
therefore, Parkin depletion increased Drp1 levels and mito-
chondrial fragmentation. The OMM-anchored ubiquitin 
ligase MARCH5 (also known as MITOL) also plays a role 
in mitochondrial dynamics; however, it is not clear from the 
published reports whether MARCH5 specifically regulates 

fusion or fission [94–96]. Several proteins involved in mito-
chondrial dynamics are reported substrates of MARCH5, 
including Drp1, Mfn1, Mfn2 and Mid49 [97–100], possibly 
explaining the heterogeneity of published results concern-
ing MARCH5 function. A recent report added another layer 
of complexity by showing that Drp1 is not only a substrate, 
but also a regulator of MARCH5 activity, along with Mff 
(Mitochondrial fission factor, a Drp1 receptor on the OMM, 
see below) [101]. New studies will shed light on the role of 
MARCH5 activity towards its several identified substrates.

Sumoylation

Small ubiquitin-like modifier (SUMO) is a ubiquitin-related 
protein, which can be covalently linked to a target protein. 
SUMOylation regulates protein conformation (and hence 
activity), localization and interaction with cellular part-
ners [102]. The SUMO-conjugating enzyme Ubc9 and 
SUMO itself were identified as Drp1 interacting partners 
by yeast two-hybrid analysis and SUMO partially colocal-
ized with Drp1 at fission sites [103, 104]. Later work identi-
fied MAPL (mitochondrial-anchored protein ligase) as the 
mitochondrial-anchored E3 SUMO ligase able to directly 
SUMOylate Drp1 in the variable domain [105, 106], Fig. 2b. 
Interestingly, four lysines are differentially spliced into three 
of the Drp1 isoforms, raising the possibility that SUMOyla-
tion might also account for functional differences among 
Drp1 isoforms [106]: SUMOylation led to increased Drp1 
stabilization on the OMM and increased mitochondrial fis-
sion [104]. Drp1 SUMOylation is reversed by the SUMO 
protease SENP5 [107], in particular during mitosis, where 
Drp1 deSUMOylation correlated with increased binding and 
release of Drp1 to/from the OMM, thereby stimulating fis-
sion [108]. Phosphorylation and deSUMOyation thus appear 
to converge in activating Drp1 during mitosis.

S‑nitrosylation

Nitric oxide (NO) is not only a neurotransmitter of the cen-
tral nervous system: in addition to its signaling role, NO 
can be covalently linked to thiol groups of target proteins, 
such as cysteine residues, in a process called S-nitrosyla-
tion. S-nitrosylation can affect protein function, stability or 
subcellular location [109]. Drp1 was found to be S-nitros-
ylated on C644 (Fig. 2b) upon NO overproduction due to 
pathological conditions, such as accumulation of β-amyloid 
aggregates, key mediators of Alzheimer disease [110, 111]. 
This correlated with rapid Drp1-dependent mitochondrial 
fragmentation, followed by energy production failure and 
cell death [110]. However, these findings were subsequently 
questioned by Bossy et al. [112], who failed to detect a 
change in Drp1 oligomerization and GTPase activity upon 
S-nitrosylation. Additionally, OPA1 was also found to be 
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S-nitrosylated. Therefore, at present S-nitrosylation of Drp1 
may not be uniquely responsible for NO-induced mitochon-
drial fission.

O‑GlcNAcylation

O-GlcNAcylation refers to the reversible but covalent 
attachment of N-acetyl-glucosamine to serine or threonine 
residues of a target protein. O-GlcNAcylation of Drp1 was 
shown to increase Drp1 GTP-binding activity, Drp1 translo-
cation to the OMM and mitochondrial fission in cardiomyo-
cytes [113]. O-GlcNAcylation of Drp1 was accompanied by 
decreased levels of Ser637 phosphorylation; further investi-
gations are thus required to discriminate whether the effects 
observed upon O-GlcNAcylation are mediated by decreased 
Ser637 phosphorylation or whether O-GlcNAcylation 
directly affects Drp1 function. Recently, decreased O-Glc-
NAcylation levels were shown to result in an increase in 
Drp1-dependent mitochondrial fission, along with a decrease 
in the mitochondrial membrane potential and mitochondrial 
content [114]. An interesting aspect is that O-GlcNAcylation 
directly links mitochondrial morphology with the metabolic 
state of the cell, as the latter regulates cellular levels of the 
O-GlcNAc donor UDP-GlcNAc [115].

Drp1 recruitment through receptors on the OMM: Mff, 
MiD49/51, and Fis1

Although being the master regulator of mitochondrial fis-
sion, more than 95% of Drp1 is cytosolic [68]. Hence, Drp1 
recruitment to mitochondria is an early and key step in 
mitochondrial division, which is stimulated by the presence 
of four single-pass transmembrane Drp1 receptors that are 
anchored to the OMM: mitochondrial fission factor (Mff), 
the mitochondrial dynamics proteins 49 and 51 (MiD49 and 
MiD51) and Fis1.

Fis1

Fis1 was the first identified receptor for Drp1 [116, 117]. 
In yeast, Fis1 appeared to regulate mitochondrial morphol-
ogy by recruiting the yeast Drp1 homologue Dnm1 to the 
OMM in concert with the partially redundant adaptor pro-
teins Mdv1 and Caf4 [118, 119]. However, no Mdv1 and 
Caf4 homologs have been found in mammals, suggesting 
that the machineries for mitochondrial fission have diverged 
during evolution. In agreement with this hypothesis, to date 
there is mixed evidence about the role of Fis1 in mammals. 
Some reports have involved Fis1 in Drp1-dependent mito-
chondrial fission [120–122], and shown it binds Drp1 [120, 
123]. These data were not reproduced in other studies [121, 
124, 125]; furthermore, Fis1 knockout cells displayed very 
mild fission defects, raising questions about the precise role 

of Fis1 in Drp1 recruitment and mitochondrial fission [92, 
123].

Fis1 was recently proposed to play a specific role in stress-
induced mitochondrial fission [126, 127]. Indeed, induction 
of mitophagy caused Fis1 to form a complex with several 
ER proteins and Mff-recruited Drp1. Fis1 overexpression 
has in turn been shown to trigger mitophagy [40, 90, 128]. 
Fis1 deletion induces accumulation of the autophagy marker 
LC3 at mitochondria during stress-induced, Parkin-mediated 
mitophagy [127, 129] and Fis1 knockout cells show severely 
impaired mitophagy [128]. Thus, the role of Fis1 in mito-
chondrial dynamics may be restricted to specific physiologi-
cal conditions such as apoptosis and mitophagy.

Mff

Mff is a 30-kDa C-tail-anchored membrane protein, which 
is considered a prime Drp1 receptor at both mitochondria 
and peroxisomes, as for both organelles its overexpression 
stimulates fission and Drp1 recruitment, while its ablation 
induces elongation [123, 130]. Unlike Fis1, Mff accumulates 
in discrete foci, where it recruits dimeric or higher order 
complexes of Drp1 [131]. Interestingly, the formation of Mff 
clusters is lost in Drp1 knockout cells, suggesting that Drp1 
binding in turn influences Mff oligomerization [132]. Mff 
might promote Drp1 recruitment to facilitate severing of 
mitochondria specifically at ER-mitochondria contact sites, 
as suggested by imaging experiments and by mutagenesis 
data on Drp1 [133, 134]. The regulation of Drp1 by Mff is 
complicated by the presence of several Mff isoforms [130], 
which were recently shown to have a differential effect on 
the Drp1 isoforms [77]. Additionally, Mff also appears to 
increase the Drp1 GTPase activity and may thereby promote 
Drp1 spiral compaction and consequently the severing of 
mitochondria [131, 135]. Interestingly, Mff appears to be 
restricted to metazoans, highlighting that the overall con-
served mitochondrial fission machinery can accommodate 
additional proteins, likely providing new ways to regulate 
fission.

MiD49/MiD51

Evolutionarily, mitochondrial division (MiD) proteins 
appeared after Mff, since they are only present in chordates, 
possibly reflecting a higher specialization in the mitochon-
drial division machinery. MiDs were unambiguously iden-
tified as Drp1 receptors through immunoprecipitation and 
yeast two-hybrid assays [124]. As in the case of Mff [123], 
the interaction between Drp1 and MiDs also appears to be 
transient, requiring chemical crosslinking for its detection 
[124]. MiDs bear an N-terminal transmembrane domain that 
anchors them to the OMM, and are not present on peroxi-
somes. The structures of the MiD49- and MiD51-soluble 
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domains have been recently solved, revealing a similar 
nucleotidyltransferase domain [136–138]. Despite this simi-
larity, MiD49 and MiD51 differ in their nucleotide-binding 
capacity, as MiD49 lacks the critical residues required for 
nucleotide binding. Interestingly, a MiD51 mutant deficient 
in nucleotide binding was still capable to recruit Drp1 to 
mitochondria, but appeared unable to promote mitochondrial 
fission [137].

Cooperation or specialization?

Why does Drp1 need several receptors to localize to mito-
chondria? Although the receptors may play independent and 
partially redundant functions in Drp1 recruitment [92, 125, 
132], recent work showed that Mff and MiDs colocalize with 
the ER at mitochondrial fission sites, suggesting functional 
cooperation of the receptors [139]. Given that Mff prefer-
entially interacts with dimeric Drp1 and stimulates Drp1 
GTPase activity [65, 131], while MiD51 inhibits it [125, 
140], a plausible speculation might be that Mff first recruits 
dimeric Drp1 at mitochondria and MiDs would then pro-
mote Drp1 self-assembly, while inhibiting its GTPase activ-
ity. Finally, Mff would stimulate the GTPase activity of the 
assembled Drp1 oligomer to promote fission. The canonical 
Drp1 receptors Mff and MiD49/51 may thus cooperate under 
specific conditions or in specific cell types. The picture has 
been recently further complicated by additional OMM 
proteins shown to also promote Drp1 recruitment, such as 
SAMM50, a component of the SAM complex, which inserts 
beta barrels in the OMM [141]. SAMM50 has been shown 
to interact with Drp1 and induce Drp1-dependent mitochon-
drial fission through an unknown mechanism [142]. Inter-
estingly, SAMM50 could coordinate outer and inner mem-
brane fission, as it also interacts with VDAC, a component 
of OMM/IMM contact sites and with the MINOS/MITOS 
complex in the IMM.

Determining the site of fission along a mitochondrion

Initial constriction occurs at ER–mitochondrial contact 
sites

ER–mitochondria contact sites were described already in the 
1960s [143] and are visible by EM, but the molecular nature 
of the proteinaceous tether between the two organelles is 
still largely obscure. In mammalian cells, Mfn2 is thought 
to tether the ER and mitochondria [23, 144] and ER–mito-
chondrial contacts were also found to contain a complex 
of the IP3 receptor, the chaperone Grp75 and the voltage-
gated anion channel VDAC [145]. Additional proteins found 
at contact sites include Rab32 [146], mammalian target of 
rapamycin complex 2 (mTORC2, [147], PACS2 [148]), 
and the recently identified Syntaxin 17, an evolutionarily 

conserved SNARE protein, a possibly ancestral tethering 
molecule [149]. ER–mitochondria contact sites can span up 
to 20% of the mitochondrial surface [150] and were mainly 
thought to serve as a platform for lipid exchange and  Ca2+ 
signaling [24, 25]. In a spearheading work, Friedman and 
colleagues showed that ER–mitochondria contact sites 
also play a role in mitochondrial division: 88% of the mito-
chondrial fission events were found to be marked by ER 
tubules, which wrapped around mitochondria, and appeared 
to promote fission by constricting mitochondria in a pro-
cess termed ER-associated mitochondrial division (ERMD) 
[133]. Intriguingly, the ER seems to play an analogous role 
in the fission of endosomes [151]. ER-marked mitochondrial 
constrictions show a diameter comparable to that of Drp1 
helices and may, therefore, physically facilitate Drp1 recruit-
ment or be actively sensed by Drp1. The ability of dynamin 
and dynamin-like proteins to detect membrane deformations 
[152], polymerize, and induce local membrane rearrange-
ments seems to be ancestral, as a bacterial dynamin-like 
protein has recently been shown to accumulate in foci of 
antibiotic or phage-induced membrane deformations to pro-
tect membrane integrity [153]. The ER could also induce 
mitochondrial fission by promoting lipid insertion at contact 
sites or by clustering Mff and MiD49/51 [133, 139], which is 
expected to promote Drp1 recruitment. In addition, proteins 
present at ER-induced preconstrictions may support local 
Drp1 activation, as shown for MiD51 [154] and Syntaxin 
17, which has been recently shown to specifically bind GTP-
loaded Drp1 [149].

ER‑associated mitochondrial division preferentially occurs 
next to the nucleoid

Mitochondria are the only organelles of animal cells that har-
bour their own circular genome (mtDNA), which associates 
with proteins that pack it into a nucleoid. As for the nuclear 
genome, the distribution of mtDNA molecules to daugh-
ter mitochondria is a crucial event. Early studies noticed 
that nucleoids are often localize at the tips of mitochondria 
[155, 156] or next to Drp1-marked constrictions [157], sug-
gesting a link to mitochondrial fission. Ban-Ishihara then 
found that mitochondrial fission occurs in the vicinity of a 
nucleoid in 70% of all cases, and nucleoids cluster in Drp1-
deficient cells [158]. This confirmed previous work showing 
that mitochondrial fission prevents nucleoid clustering and 
mtDNA loss in cellulo, later also shown in vivo [159, 160]. 
Interestingly, the nucleoid position correlated with ER–mito-
chondria contact sites in 85% of cases, raising the unsolved 
question as to how the nucleoid position is sensed by the ER 
across the two mitochondrial membranes and vice versa. Not 
only do nucleoids seem to communicate their position to 
the ER across the IMM and OMM, but recent data showed 
that the number of ERMD events increases up to threefold 
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in presence of replicating nucleoids [161], highlighting the 
importance of the functional state of the nucleoid. mtDNA 
replication was found to occur upstream of Drp1 recruit-
ment and mitochondrial division, and blocking nucleoid rep-
lication had been previously shown to cause Drp1 and Mff 
redistribution [158]. Whether ERMD at replicating nucle-
oids equally distributes the newly synthesized mtDNA into 
daughter mitochondria appears controversial [158, 161].

The role of the cytoskeleton in Drp1‑dependent fission

Actin and actin‑binding proteins

The first hint that actin may be involved in mitochondrial 
dynamics came from an early study in which actin depo-
lymerization by cytochalasin D was shown to slow down 
mitochondrial fusion in mammalian cells [162]. In a pio-
neering work, De Vos and colleagues subsequently showed 
that actin depolymerization by cytochalasin D or latrunculin 
A impairs CCCP-induced mitochondrial fission by prevent-
ing Drp1 recruitment to mitochondria ([163], see Table 1 for 
an overview of drugs commonly used to manipulate mito-
chondrial dynamics). Stabilization of actin filaments through 
Wiskott–Aldrich Syndrome protein (WASP) overexpression 
was shown to increase mitochondrial length in Drosophila 
neurons, impairing Drp1 recruitment and eventually leading 
to neurodegeneration [164]. In search for factors mediating 
the actin-dependent localization of Drp1 to mitochondria, 
Myosin II was identified as a crucial player, a finding that 
the authors confirmed in mammalian cells.

The mechanism by which actin polymerization at mito-
chondria would regulate Drp1 recruitment has been recently 
investigated in more detail. Ji et al. showed that actin polym-
erization on mitochondria supports Drp1 maturation by 
incorporation of small Drp1 oligomers already associated 

with mitochondria. Interestingly, also MiD-containing com-
plexes have been shown to coalesce and mature, raising the 
possibility that MiD foci maturation might also be depend-
ent on actin dynamics [139]. Actin polymerization on mito-
chondria was found to precede the appearance of large Drp1 
oligomers at fission sites upon ionomycin-induced mito-
chondrial fission [135]. In vitro studies showed that actin 
directly binds Drp1 in a GTP-dependent manner, stimulating 
its GTPase activity, which is further increased by the soluble 
domain of Mff [135, 165].

The identification of the ER as a major player in regulat-
ing mitochondrial pre-constriction upstream of Drp1 has 
set the stage for the discovery of the role played by the ER-
localized form of inverted formin 2 (INF2) [166]. Together 
with the Arp2/3 complex and tandem monomer-binding 
proteins (TMBPs), formins constitute one of the three 
actin nucleator families characterized to date (reviewed 
in [167]). Interestingly, INF2 mutations have been associ-
ated with a subset of Charcot–Marie–Tooth disease [168], 
a disease in which several other genes regulating mito-
chondrial morphology have also been implicated, such as 
Mfn2, GDAP1 or DNML2 (https://ghr.nlm.nih.gov/condi-
tion/charcot-marie-tooth-disease). INF2 is a differentially 
spliced protein, which promotes the polymerization of lin-
ear actin filaments [169]. Depletion of the ER-targeted form 
of INF2 was found to increase the mitochondrial length 
and reduce Drp1 localization at mitochondria. Recently, 
Manor et al. identified Spire1C as a new player in INF2-
dependent mitochondrial fission [170]. Spire1C, a splic-
ing isoform of Spire1, localizes to the OMM and belongs 
to the TMBP actin nucleator proteins. TMBPs bind the 
pointed end of the actin filament, leaving the fast-growing 
barbed end free to associate with formins that stimulate 
further growth [171]. Thus, the discovery of Spire1C may 
explain why INF2 induced actin polymerization specifically 

Table 1  Most commonly 
used treatments to manipulate 
mitochondrial morphology

Treatment Effect on mitochon-
drial morphology

Mechanism of action References

CCCP Fragmentation Protonophore [163]
FCCP Fragmentation Protonophore [91]
Oligomycin Fragmentation Mitochondrial complex V inhibitor [163]
Ionomycin Fragmentation Mitochondrial  Ca2+ ionophore [135]
BAPTA-AM Fragmentation Ca2+ chelator [133]
High extracellular  K+ Fragmentation Mitochondrial  Ca2+ influx [211]
KN93 Fragmentation CamKII inhibitor [211]
UO126 Fragmentation MAPK–ERK inhibitor [211]
Arachidonic acid fragmentation Permeability transition pore inducer [91]
mdivi-1 Hyperfusion Inhibition of yeast Dnm1

Mitochondrial complex I assembly inhibitor
[212, 213]

Latrunculin B Hyperfusion Actin depolymerization [166]
Cycloheximide Hyperfusion Translation inhibitor [214]

https://ghr.nlm.nih.gov/condition/charcot-marie-tooth-disease
https://ghr.nlm.nih.gov/condition/charcot-marie-tooth-disease
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at ER-mitochondria contact sites despite displaying an 
even ER membrane staining [169]. In addition, pull-down 
assays revealed a direct interaction between the soluble 
domains of Spire1C and INF2. Importantly, inhibition of 
the Spire1C–INF2 interaction decreases ER–mitochondria 
overlaps and mitochondrial fission [170]. Spire1C overex-
pression induces actin polymerization on mitochondria and 
a significant increase in fission, while its downregulation 
had the opposite effect, inducing mitochondrial elongation. 
Further work is needed to uncover the signals that regulate 
the interaction between Spire1C and INF2.

How does INF2-induced actin polymerization provide 
the force required for mitochondrial (pre)constriction? 
Higgs and collaborators recently identified Myosin II as 
a downstream effector in INF2-dependent mitochondrial 
division [172]. Myosin II was found at mitochondrial fis-
sion sites in an actin- and INF2-dependent manner and its 
depletion or chemical inhibition decreased mitochondrial 
fission rates and mitochondria-associated Drp1 levels [135, 
172]. These findings support a model in which the INF2-
mediated polymerization of antiparallel actin bundles at 
the ER-mitochondria contact sites leads to recruitment 
of Myosin II, whose activation by an as yet unidentified 
signal would promote actin filament pulling, resulting in 
mitochondrial constriction (Fig. 3a). This process has been 

termed mitokinesis, in analogy to cytokinesis and to the 
term mitochondriokinesis introduced by Kuroiwa [173]. 
Of note, Myosin II has already been described to regu-
late membrane fission in other cellular pathways such as 
cytokinesis [174], phagocytosis [175] and trans-Golgi fis-
sion [176].

Recent work identified transient actin structures on the 
OMM that are not limited to ER–mitochondria contact 
sites [135] (see also Fig. 3b). Interestingly, impairment 
of Drp1-dependent fission was associated with an accu-
mulation of F-actin on the OMM, suggesting that actin 
disassembly requires Drp1 activity. The authors identified 
Arp2/3-dependent actin polymerization as an additional 
actin polymerization mode that participates to mitochon-
drial fission [177]. The Arp2/3 complex [178] differs from 
formins and TMBPs in that it creates branched actin struc-
tures. Intriguingly, depletion of Arp2/3, cofilin and cort-
actin impaired FCCP-induced fission, while resulting in 
the accumulation of Drp1 oligomers on highly elongated 
mitochondria. These oligomers were hypothesized to rep-
resent non-functional Drp1 fission complexes, similar to 
what has been observed upon MiD49/51 overexpression, 
which leads to mitochondrial elongation with a concomi-
tant accumulation of actin and non-functional Drp1 on 
the OMM [124].

a Linear actin 

b Branched actin 

c Septins
Drp1 

INF2

Spire1c

Arp2/3 complex ER

actin

septin

myosin2 cortactin

Fig. 3  The cytoskeleton contributes to Drp1-dependent mitochon-
drial fission. a Linear actin polymerized by INF2 and Spire1C at 
the ER–mitochondria contact sites contributes to mitochondrial con-
striction with the aid of Myosin II, promoting Drp1 recruitment and 

mitochondrial fission. b Arp2/3 complex-mediated polymerization of 
branched actin on the OMM regulates Drp1 dynamics and mitochon-
drial fission. c Septins interact with Drp1 to regulate Drp1-mediated 
mitochondrial fission
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Given that the Arp2/3 complex is involved in actin 
polymerization at several subcellular locations [167], an 
interesting open question is how differential regulation 
is achieved. Recent data on different models showed that 
the composition of the Arp2/3 complex is variable; while 
Arp2 and Arp3 are invariant and essential core subunits, 
the other subunits (ArpC1–ArpC5) play a regulatory role, 
and their substitution or posttranslational modification 
appears to determine localization and activity of the com-
plex (reviewed in [179]). Future work will elucidate the 
exact composition of the Arp2/3 complex acting in mito-
chondrial fission, and its associated molecules, including 
the nucleation promoting factors that activate it.

A detailed description of the F-actin dynamics on 
the entire mitochondrial network in cultured HeLa cells 
showed that a wave of transient actin polymerization forms 
on a subset of mitochondria, rapidly cycling through the 
entire mitochondrial network and locally coinciding with 
fission [180]. These cyclic waves of actin-induced mito-
chondrial fission were proposed to regulate mitochondrial 
morphology at the level of the whole mitochondrial net-
work. Actin appeared to assemble preferentially on elon-
gated mitochondria, promoting their fragmentation, then 
promptly disassembled to allow refusion. Drug inhibition 
experiments showed that this process depends on Arp2/3 
and formins, confirming the involvement of both actin 
polymerizing factors in actin-driven mitochondrial fis-
sion. Indeed, INF2/Spire1C- and Arp2/3-mediated actin 
polymerization may be to some extent functionally redun-
dant, allowing Arp2/3-mediated actin polymerization to 
take over in cells that express low levels of INF2, such 
as epithelial or immune cells [181]. This would implicate 
that according to the tissue, different types of actin struc-
tures (linear versus branched) can fulfil a similar function 
in mitochondrial division. We currently lack a clear view of 
the actin filament structure during mitochondrial fission, a 
comprehensive list of the associated components, as well as 
the mechanisms that stimulate it beyond uncouplers [163, 
177] and increases in intracellular calcium [135, 182].

Targeted actin polymerization participates in mem-
brane fission in a number of different processes, such as 
endocytosis [183] and endosome fission [184], where it 
might act in conjunction with the ER [151]. An intriguing 
parallel can also be drawn with the intracellular bacterium 
Listeria monocytogenes, which initiates actin polymeriza-
tion at the bacterial surface through the surface protein 
ActA [185]. This bacterial-induced local actin polymeri-
zation has been shown to compensate for a fission defect 
caused by deletion of a bacterial murein hydrolase [186] 
and also to regulate the timing of the division cycle of 
wild-type Listeria inside cells [187]. Whether the mecha-
nisms by which actin stimulates this plethora of fission 
processes are the same or not remains an open question.

Septins

In contrast to actin, septins have been implicated in mito-
chondrial fission only very recently. Septins are a family of 
GTP-binding proteins discovered more than 40 years ago 
as regulators of cytokinesis in yeast [188, 189]. In humans 
there are 13 septin-coding genes, with many of them being 
expressed in a tissue-specific pattern. Now fully accepted as 
components of the cytoskeleton, septins can heterooligomer-
ize into non-polar filaments, which can then assemble into 
higher order structures such as rings, bundles and gauzes. 
At present septins have been involved in diverse cellular 
processes such as cytokinesis, ciliogenesis, axon guidance 
and endocytosis and are thought to restrict protein diffusion 
at membranous structures such as the cell cortex, the yeast 
bud neck, and the ER, as well as restricting bacterial actin-
based motility [188, 189].

A recent study highlighted a new role for septins as 
regulators of Drp1-dependent mitochondrial fission [190] 
(Fig. 3c). Sept2 was found to interact directly with Drp1, and 
depletion of Sept2 or Sept7 increased mitochondrial length. 
Sept2 depletion also delayed FCCP-induced mitochon-
drial fission and looping. About 30% of the mitochondrial 
constrictions appeared to be positive for Sept2, indicating 
that it might transiently associate with fission sites or be 
involved in a subset of fission events, as it has been proposed 
for INF2 and Myosin II [191]. What is the functional role 
of the Sept2–Drp1 interaction? Imaging coupled to mito-
chondrial fractionation experiments revealed that Sept2 is 
important for efficient recruitment of Drp1 to mitochondria, 
as Sept2-depleted cells displayed less Drp1 on mitochon-
dria, similar to INF2 and Myosin II depletion [166, 172] 
(Fig. 2c). Septins might facilitate Drp1 recruitment through 
multiple mechanisms: first, septins might directly promote 
mitochondrial pre-constriction and Drp1 retention. Second, 
it is tempting to speculate that septins function as a scaf-
fold at mitochondria and promote functional interactions of 
Drp1 with other proteins involved in mitochondrial fission, 
similar to the function that septins have already been shown 
to fulfil in other contexts, such as cytokinesis [192]. For 
example, septins might promote posttranslational modifica-
tions of Drp1 that allow its retention onto mitochondria. 
Multiple septins have indeed been shown to interact with 
the SUMOylation machinery by yeast two-hybrid screen-
ing and could, therefore, act as a scaffold to promote Drp1 
SUMOylation. Another way septins might promote Drp1 
function is by affecting its oligomerization status on mito-
chondria, similar to actin [135]. In this context, Ji et al. 
noticed cytosolic Drp1 oligomers, which may be associ-
ated with cytoskeletal structures. In agreement with this, 
we observed septin-associated oligomeric Drp1 structures in 
the cytosol (our unpublished observation), while Strack et al. 
found microtubule association of a specific Drp1 isoform, 
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Drp1-x01 [66]. Different cytoskeletal structures may hence 
act as a cytosolic reservoir for delivering Drp1 oligomers to 
mitochondria.

Dynamin performs the terminal abscission step

In vitro studies have shown that Drp1 is able to induce lipo-
some tubulation and branching [60], but no fission has been 
observed in contrast to what has been observed with the 
endocytic Dynamin 1, which tubulates and severs liposomes 
in a GTP-dependent fashion [193]. Lee et al. have recently 
solved this conundrum by showing that the ubiquitous endo-
cytic Dynamin 2 (Dyn2) terminates mitochondrial abscis-
sion downstream of Drp1 [194] (Fig. 4). Dyn2 required both 

its GTPase activity, as well as its PH and polyproline lipid-
binding domains to mediate mitochondrial fission, although 
the structural arrangement of these domains with respect 
to the OMM remains unclear. Strikingly, Dyn2 mutations 
have been found associated with Charcot–Marie–Tooth type 
2 disease and a recent case report showed that the Dyn2 
R369W mutation induced multiple mtDNA deletions [195], 
reinforcing the link between mitochondrial dynamics and 
mtDNA maintenance. Interestingly, peroxisome fission 
has also been shown to require a cooperation between the 
mitochondrial dynamin Dnm1p and the endocytic dynamin 
Vps1p in yeast [196]. In mammalian cells, the ER, Arp2/3, 
the actomyosin system and Dyn2 [184] (Fig. 4) are all impli-
cated in both endosomal and mitochondrial fission, raising 

a ER-mediated constriction at future �ssion site

b Drp1 recruitment and maturation

c Dynamin 2 recruitment

d Fission and Dynamin 2 disassembly

Drp1 receptor

Drp1 

Dynamin

nucleoid

INF2

Spire1c

Arp2/3 complex
ER

actin

co�lin

septin

myosin2 cortactin

Fig. 4  Mitochondrial fission is a multistep process. a The site of fis-
sion on mitochondria is first marked by an ER tubule which constricts 
mitochondria by wrapping around them. b Drp1 is recruited to the 
OMM with the aid of receptors, actin and septins, oligomerizes and 

initiates mitochondrial constriction. c Dynamin is recruited through 
an unknown mechanism and d drives mitochondrial abscission upon 
GTP hydrolysis
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the question as to how specific targeting is achieved [151, 
184, 196, 197].

From an evolutionary perspective, it is interesting to note 
that an implication for endocytic dynamins in mitochondrial 
fission has been also shown in eukaryotes as distinct as the 
red algae Cyanidioschyzon merolae and the parasite Trypa‑
nosoma brucei [198, 199]. Consistent with the partnership 
between Dyn2 and Drp1 uncovered by Lee et al., a recent 
study proposed that the evolutionary ancestor of endocytic 
dynamins and Drp1 mediated both mitochondrial and vesicle 
abscission [53].

In contrast to Drp1, Dyn2 seems to associate only very 
briefly with mitochondrial division sites and segregates 
asymmetrically, suggesting important differences in the 
assembly and disassembly kinetics of Drp1 and Dyn2 [194]. 
Like endocytic dynamins, Drp1 disassembly requires GTP 
hydrolysis [60] and in addition possibly calcium [194], but 
although advances have been made by structure–function 
studies [200, 201], relatively little is known concerning the 
regulation of this essential step of the fission cycle.

Drp1‑independent fission

The canonical mitochondrial fission process occurs through 
Drp1 (Fig. 3); however, accumulating evidence suggests 
the presence of Drp1-independent fission mechanisms. 
For instance, during L. monocytogenes infection of epithe-
lial cells, the mitochondrial network undergoes a dramatic 
fragmentation with concomitant impairment of the respira-
tion capacity [182]. Surprisingly, Drp1 oligomers are absent 
from fragmented mitochondria (Fig. 1c). Analysis of this 
phenomenon in Drp1-depleted cells as well as in Drp1KO 
MEF revealed that L. monocytogenes-induced mitochondrial 
fragmentation is Drp1 independent [202]. Another exam-
ple is provided by the abscission of mitochondria-derived 
vesicles (MDVs) [203, 204]. MDVs are induced by oxida-
tive stress in a Parkin and Pink1-dependent manner, bud 
off mitochondria in a Drp1-independent manner, and then 
deliver their content to the lysosome to allow the selective 
removal of damaged proteins from the OMM [204].

Recently, mitophagy was reported to also occur in the 
absence of Drp1 [48]. Through live cell imaging experi-
ments, the authors showed that upon induction of mitophagy, 
a mitochondrial bud emerges and is progressively isolated 
from the parental mitochondrion to finally detach by a still 
unidentified mechanism, which does not rely on Drp1. It is 
interesting to note that while Drp1 is required for embryonic 
development, it appears to be dispensable for the viability of 
in vitro-cultured cells [35]. This further suggests the exist-
ence of Drp1-independent mitochondrial fission mechanisms 
with a basal activity, which can be boosted under specific 
conditions such as oxidative stress, mitophagy induction or 
Listeria infection.

Open questions

Although the appearance of the mitochondrial fission 
machinery has been postulated to precede that of fusion in 
evolution [173], no conserved machinery has been identi-
fied that would mediate fission of the inner mitochondrial 
membrane. A bacterial-derived system which induces fis-
sion from the matrix through an FtsZ homolog was detected 
across multiple eukaryotic species, suggesting that it was 
an ancestral mode of division [54], but little is known in 
mammalian cells. Because mammals lack a recognizable 
homolog of the bacterial fission protein FtsZ [53, 54] and 
the appearance of the organelle-dedicated dynamin Drp1 
through gene duplication was found to coincide with the 
loss of FtsZ [53], Drp1 is currently thought to simultane-
ously sever both the OMM and the IMM. In agreement with 
this hypothesis, activation of Drp1 results in a fragmented 
mitochondrial network. But matrix constrictions have been 
observed in the absence of functional Drp1 in mamma-
lian cells, suggesting the presence of an inner membrane 
fission machinery [205] which would respond to uncou-
plers or other stimuli that induce fission by acting directly 
on mitochondria. A few candidates for IMM fission have 
been proposed, including the inner membrane proteins 
TMEM11 [206] and MTGM/Romo1 [207], intermembrane 
space proteins as MTP18 [208] and the short, soluble form 
of OPA1 [209]. While overexpression of these candidates 
induced mitochondrial fission, their depletion did not always 
yield the hyperfusion phenotype that would be intuitively 
expected. We anticipate that the model for mitochondrial 
fission will be further refined by integrating the characteri-
zation of new players with the advent of new imaging tech-
niques that allow high-resolution imaging of mitochondria 
with limited photodamage [135, 210].
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