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Abstract

In structural biology, Small-Angle Scattering experiments (SAS) are unique, because

although they provide low resolution data, they can be performed in closer-to-native condi-

tions than those arising in X-Ray crystallography. A number of questions on SAS, however,

remain unsolved, particularly in the light of modelling ensembles of conformers in solution.

In this article, we study the ensemble average and covariance of SAS profiles analytically.

Using this ensemble covariance, we demonstrate the hierarchical nature of SAS profiles.

Furthermore, we show that the information content is not uniform and reaches its maximum

in the intermediate q range. The arguments are generalized using microsecond-scale

molecular dynamics trajectories of the lysozyme and on an ensemble of the intrinsically dis-

ordered protein p15PAF. We show that for highly flexible systems, the SAS profile is a repre-

sentation of the ensemble of conformers in solution, and not that of one conformer in

particular.

Introduction

Biological small-angle scattering (SAS) of X-rays (SAXS) or neutrons (SANS) has regained

interest, judging by the technical improvements made to beamlines recently [1, 2]. SAS experi-

ments are easier to perform and in closer-to-native conditions than X-ray crystallography.

Therefore, SAS is in a unique position for structural biologists, and the generalization of in-

house SAXS experiments will only strengthen this position.

However convenient SAS experiments are, they only provide a limited amount of informa-

tion. They are therefore often combined with other experiments to reach atomic resolution

[3]. It is frequent to extract a number of parameters, such as the radius of gyration, the Porod

exponent, or the volume of correlation [4–8]. Simple parameters, such as thos extracted from

Kratky or Porod-Debye plots, can be used to assess the flexibility of a macromolecule [9].

Whether these or other parameters are independent of each other, and how they relate to the

maximum number of independent points in a SAS profile [10–12] has not been studied in-

depth.
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It is also becoming clear that SAS measures conformational diversity [13]. More than 60% of

all articles on the topic of SAXS ensembles have been published in the last five years, following the

development of a number of methods for ensemble modelling (EOM [14], MES [15], BSS-SAXS

[16], EROS [17], SES [18] and BE-SAXS [19]. In these methods, the SAS profile is almost always

modelled as a weighted average of the profiles of the individual conformations. The different

methods differ by the way they select the weights, and the number of conformations.

These methods are best suited to describe a small number of well-defined conformations

present simultaneously in solution. However, cases where conformations vary continuously

from one to the other are to be treated with much more care. As noted early on [14, 15], the

obtained ensemble is then illustrative of the diversity of possible conformations. The number

of conformations these methods propose are then not necessarily to be taken as granted,

because the conformations are expected to have a strong internal variability [20]. In that

respect, EROS [17] goes further in modelling continuous motion, because each conformation

is already an average over a potentially large number of structures. Yet, the number of parame-

ters, which in essence is three times the number of atoms times the number of structures, still

becomes very large for such systems, and the risk of overfitting is not negligible. The most

promising approach in that respect is the recently proposed BE-SAXS [19]. It proposes a gen-

erative model for the protein ensemble fitted on experimental SAXS data. This model therefore

controls the expansion of the number of parameters. Yet it is unclear how that number of

parameters can be extracted from it, and how to summarize the obtained distribution. Clearly,

additional ways to represent continuous conformational variability would be welcome in the

field. A first step is therefore to describe how structural variability affects SAS profiles in solu-

tion, which is the aim of this article.

Materials and methods

We used the two 1 μs Molecular Dynamics (MD) simulations of the lysozyme described by

Po-chia Chen and Jochen S. Hub [21], dropping the first 100 ns in each simulation. We per-

formed the most likely alignment of the remaining frames using THESEUS [22]. This align-

ment produced a clash-free median structure for which the median atomic fluctuation was

τ = 0.5 Å. It corresponds to the structure in the input which is closest to the center of the clus-

ter. The median structure of the first simulation was taken as the center structure for all analyt-

ical calculations (and Figs 1 and 2).

Because we do not want to discuss the impact of solvation models on the calculations, we

used a single model (FoXS [23, 24] with c1 = 1 and c2 = 0) to compute the SAS profiles of all

structures of the simulations; more accurate solvation models should however be employed for

practical applications when long MD trajectories are available [21, 25–27]. We refer to this as

the correlated dataset. The numerical SAS variance of the lysozyme was then obtained by com-

puting the variance matrix of these SAS profiles. We do not expect other solvation models to

be very different from the two cases presented here.

Extension to intrinsically disordered proteins was performed on the p15PAF ensemble

[28], available in the protein ensemble database under the accession code PED6AAA. We used

the experimental profile of p15PAF, and the 4939 structures comprised in the ensemble. Indi-

vidual SAS profiles were calculated with FoXS using c1 = 1 and c2 = 0.63.

Results

Ensemble average and covariance of SAS profiles

In this article, we relate the SAS profiles of conformers arising naturally in solution through

thermal motion. We start with the Debye formula of the scattering intensity at momentum
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transfer q� 4π sin θ/λ (scattering angle 2θ and wavelength λ) for an atomic structure compris-

ing N atoms whose coordinates define the vector X

IXðqÞ ¼
XN

k¼1

XN

l¼1

fkðqÞflðqÞ
sin ðqdklÞ
qdkl

ð1Þ

where dkl is the Euclidean distance between atoms k and l and fk(q) is the form factor of atom k
at q [29]. Form factors used in this formula must include volume exclusion and solvent effects.

Their definition is not a trivial task and falls outside of the scope of this article.

We now treat X as a random vector having 3N components. To model thermal motion we

assume that X follows a Normal distribution around a mean structure x� with a diagonal

covariance matrix such that atom k has variance t2
k along each of its coordinates. This simplify-

ing assumption allows us to obtain analytical formulæ; it is the same as that used for the

Debye-Waller temperature factors [30, 31]. We discuss generalizations thereof further down.

Average intensity

The average intensity is computed by taking the mathematical expectation EðIXðqÞÞ of the

intensity IX(q) over X. Using the linearity of the expectation in the Debye formula (Eq 1), we

have

E IXðqÞð Þ ¼
X

k

fkðqÞ
2
þ
X

k6¼l

fkðqÞflðqÞE
sin ðqdklÞ
qdkl

� �

ð2Þ

Therefore, we seek the average of
sin ðqdklÞ

qdkl
for any pair of atoms k and l. It can be shown that in

this case, the distance d between these two atoms follows a noncentral χ distribution with

Fig 1. Lysozyme average SAS profile and standard deviation. Average SAS profile in blue dashed line,

left axis, in arbitrary units, Eq 6. Standard deviation in solid red line, right axis, in arbitrary units, square root of

Eq 11 with qi = qj. All calculations use τ = 0.5 Å and FoXS form factors with c1 = 1 and c2 = 0 [23, 24].

https://doi.org/10.1371/journal.pone.0177309.g001
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three degrees of freedom, whose probability density function is

pwðdkljd
�

kl; tk; tlÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðt2

k þ t2
l Þ

p
dkl
d�kl

exp �
ðdkl � d�klÞ

2

2ðt2
k þ t2

l Þ

� �

� exp �
ðdkl þ d�klÞ

2

2ðt2
k þ t2

l Þ

� �� �

ð3Þ

where d�kl is the distance obtained when the atoms are at their average positions (see S1 Text).

Without any approximation, we thus have

8q � 0; E
sin ðqdklÞ
qdkl

� �

¼
sin ðqd�klÞ
qd�kl

exp � q2 t2
k þ t2

l

2

� �

ð4Þ

This equality can then be inserted in the Debye equation to yield the SAS profile of the ensem-

ble of conformations centered at structure x� described by the normal random variable X, now

referred to as thermal ensemble.

E IXðqÞð Þ ¼
XN

k¼1

XN

l¼1

fkðqÞe
� q2t2

k=2

� �
flðqÞe

� q2t2
l =2

� � sin ðqd�klÞ
qd�kl

þ
XN

k¼1

1 � e� q2t2
k

� �
fkðqÞ

2
ð5Þ

Fig 2. Contour plot of lysozyme SAS profile correlations. The correlations are given by ρ(qi, qj) (Eq 10).

RG = 15.2 Å. Smallest correlation is -0.28 and is indicated by a blue dot. Calculations use τ = 0.5 Å and FoXS

form factors with c1 = 1 and c2 = 0 [23, 24].

https://doi.org/10.1371/journal.pone.0177309.g002
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In the simple case where every atom has the same variance τ2, we have

E IXðqÞð Þ ¼ e� q2t2 Ix� ðqÞ þ 1 � e� q2t2
� �XN

k¼1

fkðqÞ
2

ð6Þ

This result was obtained differently in 1932 by R. W. James [32], as recently rediscovered by

P. B. Moore [33], who generalized it to anisotropic motion (i.e., arbitrary diagonal covariance

matrix for X). It makes clear that the SAS profile of the thermal ensemble deviates from that of

its center structure for momentum transfer values around and above 1/τ. For τ� 1 Å, this

effect is not within the measurable range of q values. However, in systems with large domain

movements for which τ� 1 Å, this effect becomes of prime importance. The fact that multiple

different conformers coexist in solution can then be captured by SAS experiments. Indeed, the

SAS curve of x� is then noticeably different from that of the thermal ensemble.

In addition, suppose that our system adopts two different conformations A and B, and that

each of these is subject to thermal motions with deviations τA and τB such that τA� τB. This

can happen, for example, when the system is made of two domains connected by a linker; A
would be the state in which the two domains are in contact along a well-defined interaction

surface, and B would be when the domains don’t interact. Then, assuming no interactions

between A and B particles, the average intensity is a weighted sum of the intensities for A and

B, each of them given by Eq 6. At low angle, the SAS profile contains information from both

conformations. However, because the SAS intensities decay much faster for large τ values, the

SAS profile of A will dominate that of B at high angle (assuming the populations of A and B are

comparable). Therefore, in SAS, the higher q gets, the more we focus on well-defined confor-

mations. There can be a number of them, but they must be well-defined. On the contrary, con-

tinuous conformational variability is more likely only to be noticed at low q values.

Variance and correlation

In any case, because conformations of a thermal ensemble are related, there exist a number of

rules that link their SAS profiles together. The SAS profile of one such conformation cannot

deviate from Eq 5 in an arbitrary way. This is what we now show, by computing the covariance

VðIXðqiÞ; IXðqjÞÞ ¼ EðIXðqiÞIXðqjÞÞ � EðIXðqiÞÞEðIXðqjÞÞ between the SAS profile at qi and qj.
For this purpose, we again use the Debye formula (Eq 1). The expectation of a product of

intensities is

E IXðqiÞIXðqjÞ
� �

¼
X

kl

X

mn

fkðqiÞflðqiÞfmðqjÞfnðqjÞE
sin ðqidklÞ
qidkl

sin ðqjdmnÞ
qjdmn

 !

ð7Þ

Then, we notice that

E
sin ðqidklÞ
qidkl

sin ðqjdmnÞ
qjdmn

 !

¼ E
sin ðqidklÞ
qidkl

� �

E
sin ðqjdmnÞ
qjdmn

 !

ð8Þ

when k,l,m,n describe four different atoms. Therefore, the terms that do not cancel out of the

covariance calculation are 1) when k =m and l = n, i.e., the covariance of a distance with itself,

which we call autocovariance; and 2) when k =m and l 6¼ n, i.e. the covariance between two dis-

tances that share a common atom, which we call cross-covariance.
First, similar to the calculation of the average intensity, the autocovariance can be given in

closed form. It however leads to a formula that is numerically unstable [34]. Second, the cross-

covariance cannot be computed in closed form because the probability density function of the
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bivariate noncentral χ distribution is not known. Special cases exist for the bivariate noncen-

tral χ2 probability density function [35] and the characteristic function [36], but the expecta-

tion still cannot be calculated.

We therefore seek an approximation to this distribution. A certain number of approaches

exist [34, 37], but we use a more direct one (see S1 Text). It is based on a series expansion

when all distances are much larger than τ. The bivariate noncentral χ distribution is then

approximated as a bivariate normal distribution with mean vector d
0

and covariance matrix S

d0 �
d�kl þ

t2
k þ t2

l

d�kl

d�kn þ
t2
k þ t2

n

d�kn

0

B
B
B
@

1

C
C
C
A

Σ �
t2
k þ t2

l nt2
k

nt2
k t2

k þ t2
n

 !

n �
d�kl � d

�

kn

d�kld�kn
ð9Þ

Using this approximation, and to second order in τ/d�, we can express the correlation and the

covariance between the SAS profile at qi and qj (see S2 Text)

rðqi; qjÞ �
VðIXðqiÞ; IXðqjÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðIXðqiÞ; IXðqiÞÞVðIXðqjÞ; IXðqjÞÞ

q ð10Þ

VðIXðqiÞ; IXðqjÞÞ ¼ Vautoðqi; qjÞ þ Vcrossðqi; qjÞ ð11Þ

Vautoðqi; qjÞ �
X

k

fkðqiÞfkðqjÞ
X

l6¼k

flðqiÞflðqjÞV
�

ij ðd
�

klÞ ð12Þ

Vcrossðqi; qjÞ �
X

k

fkðqiÞfkðqjÞ
X

l 6¼k

flðqiÞ
X

n6¼k;l

fnðqjÞVijðd
�

kl
; d�

kn
Þ ð13Þ

V�ij ðd
�

klÞ ¼ ðt
2

k þ t2

l Þqiqjsðqid
�

klÞsðqjd
�

klÞ ð14Þ

Vijðd
�

kl
; d�

kn
Þ ¼ nðd�

kl
; d�

kn
Þt2

kqiqjsðqid
�

klÞsðqjd
�

knÞ ð15Þ

sðxÞ �
d

dx
sin ðxÞ
x
¼

1

x
cos ðxÞ �

sin ðxÞ
x

� �

ð16Þ

In all cases we studied, the standard deviation (SD) has the characteristic shape of Fig 1

(solid red line, see also S3 Text). The SD starts at zero, consistent with the fact that I(0) is pro-

portional to the number of electrons, and is not impacted by conformational changes. It then

quickly reaches a maximum, and then decreases to a plateau. On a relative scale therefore, the

standard deviation represents a non-monotonically increasing proportion of the scattered

intensity. This finding is consistent with those discussed for the average intensity (Eq 5),

in that the conformational diversity is captured at wide angles. We do not expect different

hydration models to produce significantly different standard deviations, unless they

hydrate different conformers of the ensemble in a different way. However, in the most realistic

cases, changes in conformation should cause the solvent shell to rearrange. The water density

would therefore be impacted. Consequently, the standard deviation at I(0) could be be

nonzero.

We now focus on the the correlation structure of the same SAS profile (Fig 2). In all cases

we studied, correlations are strong close to the diagonal, and vanish when points are far apart.

SAS profile correlations reveal SAS hierarchical nature and information content
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It is also frequent to observe at least one basin with negative correlations. The fact that points

that are close together are highly correlated was expected. Indeed, this observation is a simple

consequence of the predictable nature of SAS profiles on very short q scales.

Conversely, points that are far apart seem to be largely decorrelated. This fact demonstrates

the hierarchical nature of SAS profiles [38]. Being a Fourier transform, the SAS profile

describes the shape at low angle. At higher angle, it starts describing the quaternary structure

and so forth. What these results suggest, is that SAS compartmentalizes these descriptions.

Although individual atoms have a nonzero scattering contribution along the whole range of

q values, collectively, a different trend emerges. For example, changes in the quaternary struc-

ture that do not modify the overall shape will not affect the onset of the SAS profile.

Another striking feature that can be seen in Fig 2 is that the bandwidth of this correlation

matrix varies along the diagonal. Thus, neighboring points will be more or less correlated

depending on their absolute position along the SAS profile. That is, the density of independent

points along a SAS profile changes as q changes. In information theory, the mutual informa-

tion of two random variables quantifies how much information one carries on the other. If we

take two neighboring points along the SAS profile, their mutual information is

Iðqi; qjÞ ¼ �
1

2
log 1 � rðqi; qjÞ

2
� �

ð17Þ

If the mutual information is high, qi and qj are strongly related, and consequently the informa-

tion content of the SAS curve is lower in that region. But ρ(qi, qj) is directly related to the band-

width of the correlation matrix. Therefore, the information content is not uniformly

distributed along a SAS profile, and is larger when the bandwidth is smaller.

In all cases studied (see also S3 Text), the bandwidth is large at low q, becomes minimal

between qRG * 3 − 6 and then broadens again at higher q, suggesting that the information

content follows the opposite trends. This result confirms practical observations that the mid-q
range (qRG * 3 − 6) is the most useful in structure refinement, while high-q, although benefi-

cial, is not as valuable [39].

Extension to correlated motion

The analytical model described until now makes the simplifying assumption that thermaliza-

tion induces independent random normal displacements for each atom. Such an assumption

has strong limitations [33, 40]. In particular, movements in solution are anisotropic, do not

follow a normal distribution, and strong correlations between atoms or even protein domains

can be expected. To a lesser extent, the bivariate noncentral chi distribution must be approxi-

mated to still obtain analytical results. This second-order approximation implies that the

resulting covariance formulæare not exact but nonetheless very close, and in any case negligi-

ble compared to that of the anisotropic motion. In any case, more realistic representations of

thermalization can be obtained with molecular dynamics (MD) simulations. We used the two

1 μs simulations of the lysozyme described by Po-chia Chen and Jochen S. Hub [21], from

which we calculated the variance matrix.

Trends in the standard deviations are similar between correlated and independent motion

(Fig 3). We see, however, that standard deviations are up to three times larger for correlated

motion than for the independent case. They reach 4% of the SAS mean intensity on average,

and can go up to 7% at q = 0.28 Å−1 in this example. These proportions are comparable with

the experimental noise level, which commonly ranges from 0.1% to 10% in current experi-

ments. This observation suggests that some structures, which arise naturally through thermal

motion, can have a SAS profile that is noticeably different than that of their relatives.

SAS profile correlations reveal SAS hierarchical nature and information content
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They are, however, related through a set of rules which we now describe by looking at the

correlations (see also S4 Text). Again, the correlated dataset is very comparable to the indepen-

dent one. It has approximately the same location for the smallest correlation and the most nar-

row bandwidth. However, we can observe that 1) the smallest correlation is roughly twice as

large, 2) the bandwidth is smaller overall, and 3) new correlation extrema appear between

medium and high-q. We do not expect the just described features to change significantly

between two hydration models. S4 Text shows the correlation matrix obtained from a second

MD simulation. It is reasonable to expect that a change in hydration model would not cause

larger differences than those observed between these two simulations.

The depicted correlations can be understood as forming a set of rules that must be satisfied

by the SAS profile of any structure within the thermal ensemble. It comes to no surprise,

therefore, that the region which has the highest coefficient of variation (q = 0.28 Å−1) is

the one which is also the most constrained by the correlations. If in some conformers of the

thermal ensemble, the SAS profile deviates by 7% from the ensemble SAS profile, then in

doing so it must also deviate both at low and high q in a direction that is dictated by the

covariances.

As can be seen, the variance grows with the square of the atomic motion (Eqs 14 and 15).

For the lysozyme with correlated motion, these variances are comparable to experimental

noise levels. For intrinsically disordered proteins in which atomic motion is an order of mag-

nitude larger, this effect dominates the noise, as shown in the case of p15PAF (Fig 4, see also

S5 Text) [28]. Therefore, the SAS profile of such a protein is not a static snapshot of one of its

conformers, but instead captures its whole conformational complexity.

Fig 3. Lysozyme standard deviation compared to signal and noise. Standard deviation of correlated

motion (i.e., first MD simulation) is dashed red line (see text for calculation). Standard deviation of

independent motion (square root of Eq 11 with τ = 0.5 Å) is bottom solid red line. For reference, the

experimental SAXS profile of the lysozyme (top) and its standard error (bottom) are shown in blue (bioisis

code LYSOZP). Average SAS profile in the case of independent motion: top solid red.

https://doi.org/10.1371/journal.pone.0177309.g003
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Discussion

In this article, we describe the influence of continuous conformational changes on the SAS

profile of a protein ensemble. To compute the quantities derived in this article, an atomic or

pseudo-atomic model of the protein is needed. They describe how the SAS profile of a struc-

ture is modified if it is allowed to be flexible. The resulting SAS profile then contains informa-

tion on the conformational diversity around that structure. It is however perfectly possible that

this ensemble SAS profile be reproduced by a single, different structure. It is up to the model-

ing expert to determine whether it makes sense to include conformational flexiblity in the

modeling or not. However, if the flexible ensemble and the other single structure both fit an

experimental profile equally well, Occam’s razor would call for a description of the system by

the simpler model. Therefore, and as already noted by others, ensemble modelling should only

be performed if no satisfactory single conformation can be found.

In the second part of this article, the described SAS covariances are obtained through a long

MD simulation. Care must be taken that this simulation is representative of the conforma-

tional diversity in solution. Multiple simulations should then yield the same covariance matrix.

Unfortunately, even for very long simulations, such as the ones used here, small correlations

are very difficult to converge. In our case, the second lysozyme simulation has the same overall

covariance structure as described (trends in the variances, behaviour of the bandwidth, loca-

tion of the global correlation minimum); but there are a number of differences as well: Stan-

dard deviations are up to four times larger than the independent case and reach up to 10% of

the SAS mean intensity at q = 0.27 Å−1. Also, correlations between mid and high-q ranges do

not stabilize (see supporting material). We suspect that these differences are mainly due to the

fact that the second simulation has an enhanced loop motion [21].

Fig 4. p15PAF experimental SAXS profile and ensemble average SAXS profile. p15PAF profile [28]

(PED code PED6AAA) in blue. Ensemble average SAXS profile in thick red (Eq 6). 68% (1σ) confidence

interval in red, (Eq 6 �
ffiffiffiffiffiffiffiffiffiffiffiffi
Eq 11
p

). The deposited ensemble contains 4939 structures. Individual SAXS profiles

were calculated using FoXS with c1 = 1 and c2 = 0.63.

https://doi.org/10.1371/journal.pone.0177309.g004
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We however hope that it will be possible to measure such a matrix experimentally, alleviat-

ing the need for an atomistic model of the protein. Through freezing of the particles in space

with cryo-SAXS [41], it should be possible to measure SAS profiles of subsets of the thermal

ensemble, and then infer the SAS covariance from them. This approach would work if the

solution is sufficiently diluted so that the beam can interact with a small number of molecules,

detecting fluctuations from thermodynamic averages. Through freezing in time with the X-ray

free electron laser, the coherence of the beam might allow to reconstruct the SAS covariance

directly, as already described three decades ago [42–44]. In essence, since for this experiment,

the scattering pattern collected on the detector is not radially symmetric, correlations between

and within annuli could be related to those of the SAS profile described in this article. We

therefore hope that future developments will make the measure of SAS covariances possible.

Conclusion

In this article, we have studied SAS profile correlations. We have shown they reveal the hierar-

chical nature of SAS profiles. We provided evidence that some portions of the experimental

SAS profile are affected by ensemble averaging. Note that the SAS profile correlations

described here have nothing in common with those estimated in a recent article, which are

correlations of the noise of SAS experiments [45]. We, instead, estimate the correlations that

are present within the signal itself.

First, a simple harmonic model of thermal motion allowed to obtain analytical expressions

for the correlation between two points in a SAS profile. Second, the analysis of recently pub-

lished microsecond MD simulations [21] allowed us to see that most trends in the correlations

are conserved when thermal motion is modelled with more realism. Third, on the p15PAF

structural ensemble [28], SAS profiles of different conformations within that ensemble differ

more than the experimental error bar at q. Ensemble averaging can therefore be measured in

that region. Last, we believe that these correlations could be measured experimentally with the

help of cryo-SAXS or free-electron lasers.

Our developments show that SAS profiles are hierarchical, in the sense that successive

regions of the SAS profile are decorrelated. Within these regions however, the knowledge of

SAS correlations is essential to correctly describe highly flexible systems, such as intrinsically

disordered proteins. We believe that in these systems, the SAS profile alone is not enough to

grasp the system’s dynamics.
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zyme simulations, and Pau Bernadó for discussion on extension to IDPs. This work was

funded by the European Research Commission (Advanced Grant ERC-2011-StG 294809 Bay-

CellS, to MN).

Author Contributions

Conceptualization: YS.

Data curation: YS.

Formal analysis: YS.

Funding acquisition: MN.

Investigation: YS.

Methodology: YS.

Project administration: MN.

Resources: MN.

Software: YS.

Supervision: MN.

Validation: YS.

Visualization: YS.

Writing – original draft: YS.

Writing – review & editing: YS.

References
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